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ChIP-Hub provides an integrative platform for
exploring plant regulome
Liang-Yu Fu1,2,4, Tao Zhu 1,4, Xinkai Zhou1,4, Ranran Yu1,4, Zhaohui He1, Peijing Zhang3, Zhigui Wu1,

Ming Chen 3, Kerstin Kaufmann 2✉ & Dijun Chen 1✉

Plant genomes encode a complex and evolutionary diverse regulatory grammar that forms

the basis for most life on earth. A wealth of regulome and epigenome data have been

generated in various plant species, but no common, standardized resource is available so far

for biologists. Here, we present ChIP-Hub, an integrative web-based platform in the ENCODE

standards that bundles >10,000 publicly available datasets reanalyzed from >40 plant

species, allowing visualization and meta-analysis. We manually curate the datasets through

assessing ~540 original publications and comprehensively evaluate their data quality. As a

proof of concept, we extensively survey the co-association of different regulators and con-

struct a hierarchical regulatory network under a broad developmental context. Furthermore,

we show how our annotation allows to investigate the dynamic activity of tissue-specific

regulatory elements (promoters and enhancers) and their underlying sequence grammar.

Finally, we analyze the function and conservation of tissue-specific promoters, enhancers and

chromatin states using comparative genomics approaches. Taken together, the ChIP-Hub

platform and the analysis results provide rich resources for deep exploration of plant

ENCODE. ChIP-Hub is available at https://biobigdata.nju.edu.cn/ChIPHub/.
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Genome-wide charting of transcription factor (TF) binding
and epigenetic status has become widely used to study
gene-regulatory programs in animals and plants. Chro-

matin immunoprecipitation sequencing (ChIP-seq) is a powerful
method to capture DNA targets for TFs or histone modifications
across the entire nuclear genome of any organism1–7. From a
technical point view, the success of ChIP-seq experiments largely
depends on the development and validation of highly gene-
specific antibodies or tagged transgenic lines8–10. However,
crosslinking-based ChIP techniques inherently suffer from several
limitations, including low throughput, poor resolution, sub-
optimal signal-to-noise ratio, and a tendency to ‘detect’ false
positives11,12. In this regard, several recent techniques, such as
ChIP-exo13 and CUT&RUN14, are alternatives to the current
standard of ChIP-seq to improve the resolution in identifying
protein binding locations. The in vitro DAP-seq technique15–17,
which is based on screening of a genomic DNA library with an
affinity-purified TF followed by high-throughput sequencing, is
fast, inexpensive, and more scalable than ChIP-seq for the gen-
eration of genome-wide TF binding-site maps. However, only a
subset of the TF binding sites identified by DAP-seq is accessible
in vivo, and typically individual TFs are analyzed – while in vivo,
TFs may interact in a combinatorial, tissue-specific manner with
other TFs thereby altering DNA-binding preferences. Com-
plementary in vivo experimental approaches—for example,
FAIRE-seq, DNase-seq and ATAC-seq—can identify binding
sites in open chromatin regions for all associated factors simul-
taneously and can provide additional information about DNA-
binding proteins and their regulatory functions8,18. Thanks to
these rapidly developing techniques, a tremendous amount of
data have been generated by several large consortia (such as the
ENCODE consortium in human19 and mouse20, as well as the
modENCODE consortium in fly21 and nematode22) or various
smaller projects (such as the fruitENCODE project in flowering
plants23).

Several databases15,24–28 were recently established for visuali-
zation and efficient deployment of public ChIP-seq data by the
research community. However, no comprehensive resource is
available for plant research. Another major bottleneck in current
plant research is the lack of a standardized routine for evaluation
and analysis of ChIP-seq data. Therefore, the comparison of data
generated by different laboratories is not straightforward, ham-
pering data integration to generate hypotheses for further
investigation.

In this work, we comprehensively collect >10,000 public reg-
ulatory genomic datasets from >40 plant species and reanalyze
them in a uniform way based on the ENCODE standards. All
result data are bundled in an integrative platform named ChIP-
Hub for visualization and meta-analysis. We explore the co-
association of different developmental regulators and associated
hierarchical regulatory networks. We provide an atlas of dynamic
promoter and enhancer landscapes across representative plant
tissues and predict the sequence grammar underlying the chro-
matin dynamics of tissue-specific regulatory elements. Finally, we
apply comparative genomics approaches to investigate the func-
tion and conservation of tissue-specific regulatory elements and
chromatin states across different plant species.

Results
The ChIP-Hub resource. ChIP-Hub collects all plant regulome
data deposited at the NCBI SRA database. These data were
generated by high-throughput sequencing experiments including
ChIP-seq, DAP-seq, DNase-seq and ATAC-seq. By the time of
finalizing this manuscript (as of July 2021), there are >10,000
individual datasets (whose experiment IDs start with SRX, DRX,

or ERX) available at NCBI SRA in >40 plant species, with a nearly
exponential growth in recent years (Fig. 1a, b and Supplementary
Fig. 1). Although most datasets were generated in model organ-
isms (such as Arabidopsis, rice and maize), the high-throughput
regulome experiments have also been widely used in non-model
plant species. We manually curated all the datasets through
assessing ~540 original publications and >800 biological projects
(Fig. 1c) and categorized them into different experimental groups,
including open chromatin (11.5%), TFs and other proteins
(27.3%), histone-related (39.9%), and input control experiments
(19.4%; Fig. 1d).

We adapted the working standards provided by the ENCODE
consortium10 to set up computational pipelines and to system-
atically reanalyze all public regulome data in plants (Fig. 1e; see
Methods). To make our reanalysis results easily accessible to
external users, we have developed an integrative web-based
platform (ChIP-Hub) to explore all the reanalyzed data sets.
Additional data (e.g., sample metadata, references, TF genes,
miRNAs, TF motifs, chromatin states and comparative genomics)
were also collected and deposited in the database (Fig. 1e).
Therefore, the resources are bundled in a well-accessible
application that also allows visualization and meta-analyses
(Supplementary Fig. 2). Furthermore, in order to continuously
add more source data in the future, we have designed ChIP-Hub
to be updated quarterly with semi-automatic pipelines, including
systematic metadata curation and automatic data processing.

Comprehensive evaluation of plant regulome data. One
experiment may consist of multiple replicates of ChIP-seq sam-
ples and associated control samples. We therefore obtained >6000
individual experiments (Fig. 2a) with manual curation based on
experimental designs in original publications or project descrip-
tions. We assigned each experiment to a specific group based on
the investigated regulatory factor. ChIP-Hub covers experiments
for nearly all plant TF families and well-investigated histone
modifications (Fig. 2b and Supplementary Fig. 3).

We then systematically evaluated the data quality of individual
experiments (n= 6055). Although 89.2% of the experiments have
been published in peer-reviewed journals, nearly 40% of the
experiments lack control datasets, and only 37.8% have technical
or biological replicates (Fig. 2c). Problems of lack of controls or
replicates are more obvious in the earlier studies (Supplementary
Fig. 4). Nevertheless, most of the evaluated experiments readily
meet a variety of quality specifications based on the ENCODE
criteria10 (Fig. 2d). More than 75% of the investigated datasets
show moderate to high values of signal-to-noise ratio based on
enrichment scores of FRiP (fraction of reads in peaks), NSC/RSC
(normalized/relative strand cross-correlation coefficient)10 and
SPOT (signal portion of tags)29. Most of the experiments show
good quality in terms of the library complexity, as measured by
PBC (PCR bottleneck coefficient) and NRF (nonredundant
fraction). Not surprisingly, all these quality metrics are positively
correlated with each other (Supplementary Fig. 5). As expected,
the enrichment SPOT score of experimental groups is signifi-
cantly higher than that of input control (Fig. 2e). In summary, the
above results indicate overall high quality of individual experi-
ments in the analysis.

We identified a total of 52.3 million high-confidence peaks
(with an IDR, Irreproducible Discovery Rate30, <0.05; see
Methods) from experiments for open chromatin, annotated TFs
and widely-investigated histone H3 modifications (Supplemen-
tary Data 1). As expected, peak summits of TF-bound or open
chromatin regions generally locate around the transcription start
site (TSS) while genomic locations of histone-modified regions
vary among different types of histone modifications (Fig. 2f). For
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genomes with more than 20 distinct experiments, the number of
identified open chromatin regions, TF binding events or histone-
modified genomic locations varies from 0.21 million (Chlamydo-
monas reinhardtii; experiments n= 32) to 21.4 million (Arabi-
dopsis thaliana; n= 3479); the fraction of genome associated with
TF-bound and histone-modified regions shows an average of
22.0% (Fig. 2g), with comparable proportions found in the mouse

(12.6%) and human (~20%) genomes19,20. However, the propor-
tion may be far underestimated for most plant genomes since
many regulators have not yet been investigated. Of note, about
3500 individual experiments have been generated in Arabidopsis
(Fig. 2b), resulting in annotated genomic regions in terms of
chromatin status or TF binding encompassing at least 82.1% of
the Arabidopsis genomic sequence in aggregate (Fig. 2g).
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Fig. 1 The ChIP-Hub platform: data collection and the computational pipeline. a Explosive generation of regulome and epigenome data in plants. The
scatter plot (top) shows the number of datasets over time, as colored by the top representative plant species. Each data point represents one SRA
BioProject. The cumulative number is also shown (in pink). b Timeline plots showing the overview of the number of datasets, publications and BioProjects
over time. c Pie chart showing the distribution of datasets by plant species. d Pie chart showing the distribution of datasets by sample categories. e A
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Interestingly, 68.8% of Arabidopsis genome is annotated as
potential regulatory regions based on 347 ChIP-seq experiments
(each has >50 targets) for 157 distinct TFs (Supplementary Fig. 6
and Supplementary Data 2), suggesting pervasive regulatory
potential in the compact Arabidopsis genome.

Extensive TF co-associations and regulatory loops in Arabi-
dopsis. We investigated TF co-associations and TF-targets gene
regulatory networks using TF-related ChIP-seq experiments in
Arabidopsis. Integrative analysis of TF-bound genomic regions
revealed potential TF co-associations by regulating a similar set of
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target genes (Fig. 3a and Supplementary Fig. 7), as exemplified
around the APETALA1 (AP1) gene locus (Fig. 3b and Supple-
mentary Fig. 8). We organized the pairwise TF co-association into
networks with TFs as nodes and their co-binding possibility as
edges (Fig. 3c and Supplementary Fig. 9). We observed three
dominant co-associated TF modules (M1-M3). M1 consists reg-
ulators from TF families of bZIP, bHLH and MYB, while M3

includes MADS TFs response for flower development31. Interestingly,
M2 contains various regulators for the regulation of histone modifica-
tions, including histone acetyltransferases (GENERAL CONTROL
NON-REPRESSED PROTEIN5 [GCN5]), deacetylases (HISTONE
DEACETYLASE 2C [HD2C]), methyltransferases (ET DOMAIN
GROUP2 [SDG2], FERTILIZATION-INDEPENDENT ENDOSPERM
[FIE], SWINGER [SWN] and CURLY LEAF [CLF]), demethylase
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(JUMONJI 14 [JMJ14], RELATIVE OF EARLY FLOWERING 6
[REF6]/JMJ12) and bivalent histone readers (EARLY BOLTING IN
SHORT DAY [EBS]) (Fig. 3c). These regulators tightly co-associate with
timing regulators such as CIRCADIAN CLOCK ASSOCIATED1
(CCA1)/ LUX ARRHYTHMO (LUX) for the circadian clock and
FLOWERING LOCUS C (FLC)/ SHORT VEGETATIVE PHASE
(SVP) for the initiation of flowering.

Next, we constructed a hierarchical regulatory network by
integrating potential direct TF target genes based on ChIP-seq
and predicted miRNA-target interactions, with upstream TFs at
the top of the hierarchy, miRNA genes and their target genes at
the middle and bottom levels, respectively (Fig. 3d). This “meta-
network” includes 117 upstream TFs, 134 miRNA genes, and 462
common target TF genes, and the predicted regulation relation-
ship tends to show a regulator (TF or miRNA) family-specific
manner. We identified a comprehensive set of miRNA-mediated
feed-forward loops (FFLs; n= 13,630) from the meta-network
(Fig. 3d and Supplementary Data 3). In particular, the floral FFLs
identified in our previous analysis31 are overrepresented in this
extended list (χ² test, p < 2.2e-16; Fig. 3e). Furthermore, we
validated the confidence of predicted FFLs using known gene
interactions from the flowering pathways32. For example,
regulatory loops involved in the flowering-time regulation33 and
the antagonistic interaction between class A and class C genes in
the ABCE model of flower development34 have been confirmed
by our data (Fig. 3f). In sum, the above analysis provides a rich
resource to study the biological role of regulatory loops in specific
contexts.

Dynamics of tissue-specific regulatory elements. More than
1100 open chromatin datasets have been reanalyzed in ChIP-
Hub, which offer an opportunity to comprehensively annotate
plant regulatory elements such as enhancers. As a proof of con-
cept, we predicted a catalogue of 18,753 promoters and 9976
enhancers in ten representative tissues of Arabidopsis by inte-
grative analysis of 65 open chromatin datasets from nine
studies35–43 (Supplementary Data 4 and 5; see Methods). Clus-
tering analysis based on chromatin accessibility reveals that both
promoters and enhancers can distinguish different types of tis-
sues, despite data generated by different studies (Fig. 4a and
Supplementary Fig. 10a, b). Supporting this notion, we observed
instances of promoters and enhancers that are specifically active
in certain types of tissues (Fig. 4b and Supplementary Fig. 11). To
compare tissue specificity of promoters and enhancers, we cal-
culated their divergence of chromatin accessibility across tissues
based on the Jensen-Shannon diversity (JSD) index. We found
that enhancers are generally more tissue-specific than promoters
(Fig. 4c). Based on the distribution of JSD score, we defined
regulatory elements with JSD > 0.26 as highly specific ones
(Fig. 4c). We summarized the number of TF binding sites
(including 157 TFs as analyzed above) in both promoters and

enhancers and found that enrichment of TF binding in highly
tissue-specific regulatory elements is significantly different
between promoters and enhancers (Fig. 4d). However, there is no
difference of enrichment of TF binding in low tissue-specific
promoters and enhancers.

We further investigated the sequence grammar underlying the
chromatin dynamics of tissue-specific regulatory elements. We
applied Basset44 to train a convolutional neural network (CNN)
to discriminate one tissue from all other tissues on the basis of the
sequence content within accessible sites (Supplementary Fig. 10c,
d). The convolutional filters (n= 600) in the first CNN layer
detect repeatedly occurring local sequence patterns, each
comprising a weighted matrix of sequence features akin to a TF
motif position weight matrix (PWM). The resulting PWMs were
matched to known TF motif databases using the Tomtom motif
comparison tool45. By this we were able to identify known or new
motifs represented in tissue-specific promoters and enhancers for
each tissue (Fig. 4e and Supplementary Fig. 10e). For example, the
classification of root tissues is strongly associated with a filter
matching the motif of WOX11, which is critical for initiation of
the root primordium during root organogenesis46,47.

The highly tissue-specific regulatory elements (including 4702
promoters and 4234 enhancers) were grouped into ten different
clusters based on their chromatin accessibility (Fig. 5a). We
associated potential target genes of these regulatory elements
using the ‘nearest neighbor’ strategy48, so that one gene may have
multiple regulatory elements (Fig. 5b). Note that the nearest
neighbor strategy could lead to false target associations due to
chromatin loops which can help the formation of interactions
between the regulator and its target genes. Nevertheless, the
chromatin conformation in Arabidopsis is dominantly repre-
sented by kb-sized interactive regions based on Hi-C
analyses49,50, which indicates that enhancers mostly target their
neighboring gene(s) in Arabidopsis. Regulatory elements in
clusters 2 (C2) and C3 are highly active in flower-related tissues,
and their target genes are largely involved in biological processes
such as ‘flower development’ and ‘floral organ development’
(Supplementary Data 6), including a list of well-known genes
controlling floral transition and flower development32, such as
LEAFY (LFY) APETALA1 (AP1), FRUITFULL (FUL), STERILE
APETALA (SAP) and AGAMOUS-LIKE 24 (AGL24). Regulatory
elements in C4 and C7 are specifically active in root- and leaf-
related tissues, with target genes in ‘response to biotic stimulus’
and ‘defense response’, respectively. For example, NAC1 has
shown to mediate auxin signaling to promote lateral root
development51, while YY1 is an important regulator of the ABA
response network for plant growth and development52.

Evolution of regulatory elements across multiple plant species.
To demonstrate the power of ChIP-Hub for comparative genomic
analyses, we mapped the active promoter and enhancer elements

Fig. 3 TF co-associations and hierarchical regulatory networks. a Co-binding relationships of TFs. Each row or column represent one TF (colored
according to its TF family). The significance of co-binding by any two TFs were tested by Jaccard statistics, which measures the ratio of the number of
intersecting base pairs occupied by both TFs to the number of base pairs in their union. Three modules (M1-M3) show the highly interplayed regulators. A
full co-association heatmap for all investigated TFs (n= 157) can be found in Supplementary Fig. 8. b Genome browser view of TF binding intensities at the
AP1 locus. Only ChIP-seq experiments for TFs in module M1 are shown. The order of TF ChIP-seq tracks is the same as M1 in a (red box). c Network
showing significant co-associations between TFs. Significant TF co-associations are defined as their co-association scores larger than 0.2, an optimal
threshold determined by an elbow statistic (Supplementary Fig. 9a). Three highly interplayed modules in a are highlighted. The width of edge represents for
the co-association score and the size of node for its degree. d Alluvial diagram showing TF-miRNA-TF FFL motifs. Splines were colored based on the family
of miRNA genes (MIR). The names of TF or miRNA families were labeled. e Comparison of FFLs identified in this study and in our previous study31 based on
floral data. The significance of overlap ratio was made by the χ² test. f Known regulatory loops validated by our predicted FFLs (solid arrows). Regulators
without supported ChIP-seq data are colored in grey so that their regulatory interactions are not confirmed (dashed lines). Source data are provided as a
Source Data file.
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Fig. 4 Prediction of tissue-specific regulatory elements promoters and enhancers. a Sample similarity based on enhancer activity. Open chromatin
samples (with IDs labeled in square brackets) were collected from nine different studies. The input DNA samples (in grey; n= 4) are used for control. Note
that samples of productive tissues are well separated from those of vegetative tissues. b Genome browser view of selected samples (colored as a).
Annotated promoters and enhancers are provided at the bottom of tracks. Genome browser view of all samples can be found in Supplementary Fig. 11.
c Distribution of tissue-specific scores (Jensen-Shannon diversity index) of promoters and enhancers. Highly specific regulatory elements are defined
based on a cutoff (0.26) indicated by the dash line. d Enrichment of TF binding sites in accessible regions with low or high specificity. P, promoter; E,
enhancer; ns, no significance. Statistical significance of difference was calculated by the two-sided Mann–Whitney U test. Boxplot showing the median
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filters on classification of promoters in different tissues. Filters matched to known motifs are labeled. Source data are provided as a Source Data file.
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in seedlings across 17 plant species, including five monocots and
twelve dicots (Fig. 6a and Supplementary Data 7). A total of
14–28,000 open chromatin regions per species were identified in
seedlings using selected ATAC-seq or DNase-seq experiments
from ChIP-Hub (Fig. 6b and Supplementary Data 7). Although
data used here were taken from different studies, the number of
identified peaks was robust to variability in the sample size and
the genome size (Supplementary Fig. 12a–c), revealing reliable
data quality in our analyses. We predicted promoters and
enhancers based on peak data using species-specific criteria since
the distribution of distances to the nearest TSS varies largely

among the investigated species (Fig. 6b, c and Supplementary
Data 8; see Methods).

We then tracked the evolution of promoters and enhancers
across the 17 plant species by pairwise comparison of peaks
between species in a reciprocal manner using whole-genome
alignments, a similar strategy used for evolutionary analysis of
regulatory elements in mammalian species53. In brief, conserved
promoters or enhancers were defined if the underlying DNA
sequence was alignable and the degree of conservation (referred
as conservation score hereafter) was considered as the number of
species in which the DNA could be aligned (see Methods). We
plotted the conserved regulatory elements (including both
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Fig. 6 Evolutionarily tracking plant promoters and enhancers. a Phylogenetic tree showing the evolutionary relationships of plant species used in the
analysis, including five monocots and twelve dicots. b The number of predicted promoters and enhancers in each species. c Distance of peak summits to
the nearest transcription start site (TSS). d Sankey plot showing conserved regulatory elements among seven representative species, using Arabidopsis as
a reference. Each line refers active regulatory element (promoter or enhancer) is alignable to the Arabidopsis genome. e Dotplots showing the number of
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different degree of conservation. Source data are provided as a Source Data file.
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promoters and enhancers) among seven representative species
using Arabidopsis as a reference (Fig. 6d). We observed that, as
expected, Arabidopsis regulatory elements were generally more
conserved within eudicot plant species (Phaseolus vulgaris,
Citrullus lanatus and Solanum lycopersicum) than within
monocots (Oryza sativa, Zea mays and Sorghum bicolor). We
further calculated the conservation score for each promoter and
enhancer in Arabidopsis and found that promoters showed a
significantly higher degree of conservation than enhancers by
ruling out the bias due to sequence alignability between
promoters and enhancers (Fig. 6e and Supplementary Fig. 12d-
f). This observation suggests that promoter activity is evolutio-
narily stable while enhancer evolution is relatively more rapid.
We performed a similar analysis for promoters and enhancers in
other species and found largely consistent results (Fig. 6f).

We highlighted genes associated with highly conserved
promoters and enhancers in the Arabidopsis genome (Fig. 6e).
As exemplified in Fig. 6g, the genomic regions around the
ROTAMASE CYP 3 (ROC3) and FERRETIN 1 (FER1) genes
showed conserved promoter activity in most species, and these
two genes are both involved in the response to reactive oxygen
species54,55. The LIGHT-HARVESTING CHLOROPHYLL
B-BINDING 2 (LHCB2) gene, which has a conserved function
of photosynthesis56, contained highly conserved enhancers across
species. The activities of enhancer regions associated with the
AUXIN RESPONSE FACTOR 8 (ARF8) gene, which functions in
fruit development in Arabidopsis and tomato57, appear to be
specifically conserved in eudicots. To investigate the functional
relevance of promoters and enhancers with different degree of
conservation, we performed gene ontology (GO) enrichment
analysis for the associated target genes. Interestingly, the most
conserved promoters and enhancers were enriched GO terms
related to ‘meristem development’ and ‘photosynthesis’, while less
conserved regulatory elements related to various ‘metabolic
process’ and ‘stress response’ (Fig. 6h). Overall, the above
analyses provide new insights into the plant regulatory genome
from an evolutionary aspect.

Comparison and conservation of tissue-specific chromatin
states. In order to predict the functional relevance of the genomic
regions marked by histone modifications, we generated integrated
maps of chromatin states in vegetative-, reproductive- or root-
related tissues of wide-type plants for genomes with at least five
distinct marks (Supplementary Data 9 and Supplementary
Fig. 13), using ChromHMM58 to segment the genome into dis-
tinct combinations of histone modification marks (Supplemen-
tary Fig. 14). As a proof of concept, a 12-state model was trained
in Arabidopsis vegetative-related tissues (Fig. 7a). The resulting
“marked” states included six active states, four repressed states
and a bivalent state that showed distinct levels of gene expression,
chromatin accessibility, TF binding and enrichment for evolu-
tionary conserved noncoding sequences (Fig. 7b–f), accounting
for 77.8% of the genome (Fig. 7d) and covering all the major
states identified in previous studies49,59,60. Particularly, active
chromatin states 2 and 3, which are proximal to the TSS, are
associated with histone modifications of H3K4me2/H3K4me3
and TF binding for a diverse set of developmental regulators
(Fig. 7a, e). State 2 differed from state 3 in that it is enriched with
H3K9ac, H3K27ac and H3K36me3 towards TSS-proximal gene
body regions. These two states can thus be considered as active
promoter states. Interestingly, state 8 is associated with both
active mark H3K4me2/H3K4me3 and inactive mark H3K27me3,
and enriched with DNA-binding for Polycomb repressive com-
plex 2 (PRC2) and Jumonji proteins, likely being a bivalent or
bistable regulatory state61,62. This state is highly conserved in

sequences between Arabidopsis and other crucifer species in
terms of phastCons score63 (Fig. 7f). State 9 is a repressed
Polycomb state as it is solely associated with H3K27me3 in
intergenic regions (Fig. 7a, f). States 10–12 are constitutively
enriched with heterochromatin-associated H3K9me2, which is
required for the silencing of transposable elements (TEs) and
other repetitive DNA64,65. The H3K27me3-marked hetero-
chromatin state (state 10) can be facultative as it is enriched with
binding for proteins such as nucleosome remodeling complexes
and DNA methyltransferases. Overall, our results reveal the
previously unappreciated interplay between chromatin state and
regulator binding that likely underlies dynamic gene regulation.

The generation of tissue-specific maps of chromatin states
(Fig. 7a–f and Supplementary Figs. 15–19) also offers an
unprecedented level of comparison of genomic features among
different plant species. We thus tracked the evolution of
chromatin states in vegetative-related tissues across five plant
species (i.e., Arabidopsis, rice, barley, wheat and maize) using
Arabidopsis as a reference (see Methods). We observed that most
Arabidopsis chromatin states (excepted heterochromatin-related
states) were highly conserved in other plant species (Fig. 7g). For
example, orthologous sequences were found for 61.1% of
Polycomb-repressed regions in at least one of the compared
species. Moreover, we found significant epigenomic conservation
at orthologous chromatin state-marked regions (Fig. 7h), con-
sistent with results in human66. The above findings indicate that
plants may share a conserved histone code for gene regulation.

Discussion
ChIP-seq and complementary assays are powerful methods to
measure protein-DNA binding events and chemical modifications
of histone proteins at genome-wide level. In recent years, massive
research efforts resulted in generation of regulome and epigen-
ome data in various plant species. Re-use and comparison of data
from different source studies or among different plant species is
not straightforward due to lack of a comprehensive regulome
database in the plant field. Given this background, we launched a
project in 2015 with an aim of uniform reanalysis and compre-
hensive evaluation of plant regulome data. Here we provide
ChIP-Hub which serves as a comprehensive data portal to explore
plant regulomes, especially based on ChIP-seq, DAP-seq and
ATAC-seq/DNase-seq experiments. The ChIP-Hub platform is
different from several representative plant regulatory element
databases, including Plant Cistrome Database15, ReMap28, Plant
Regulomics27, PlantRegMap67, AGRIS68, JASPAR69 and CIS-
BP70, in terms of data content, data amount and function spe-
cificity. Omics-related datasets collected in ChIP-Hub far exceed
data in all those relevant databases. In addition, ChIP-Hub pro-
vides predicted TF binding site (TFBS) information using DNA
motifs taken from CIS-BP and JASPAR. Most importantly, ChIP-
Hub allows comparative regulomic analyses, which provides a
unique feature of ChIP-Hub among similar databases.

Although all the evaluated data in ChIP-Hub so far were taken
from public databases, unpublished data provided by users can
also be analyzed in the same way as published datasets (see online
document under the “About” page). In principle, our computa-
tional pipeline is easy and ready to adapt to analyze new types of
profiling data, such as CUT&RUN experiments for mapping
protein-DNA contacts and histone modifications. To this end, a
routine to maintain and to update ChIP-Hub in the future has
been established. In addition, we are currently improving ChIP-
Hub to support the analysis and visualization of plant single cell
sequencing data based on ATAC-seq and related techniques.

ChIP-Hub offers a new centralized resource for analysis and
comparison of plant regulome and epigenome data. Integrative
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analysis of such large-scale datasets using machine-learning-
based approaches provides a unprecedented opportunity to
extract hidden regulatory genomic patterns and thus to advance
our views of a specific biological question under
investigation71,72. For examples, several integrative studies based
on large-scale analysis of TF ChIP-seq data provide a new per-
spective of gene regulatory networks underlying plant develop-
ment and evolution31,73–76. In our study, we characterized a
regulatory landscape across ten different tissues based on open
chromatin datasets. We identified an extensive list of tissue-
specific regulatory elements (i.e., promoters and enhancers),
including those known for tissue-specific gene regulation. We
believe that the amounts of data collected in ChIP-Hub will allow

scientists to discover evidences for more specific research points.
As an example, we analyzed public DNase-seq data treated by
several environmental stresses and identified a set of regulatory
elements whose target genes are response to heat shock and dark
(Supplementary Fig. 20). The results may provide insights into
how plants adapt to changing environments.

As more data are being generated in different plant species,
direct comparisons of data among species become possible. As a
start point, we tracked the evolution of active functional elements
(including promoters and enhancers) across 17 plant species.
Consistent with previous findings in mammalian species53, we
observed rapid enhancer and slow promoter evolution in plants
(Fig. 6e, f), reflecting a fundamental characteristic of the
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Fig. 7 Integrative analysis and comparison of chromatin states in plants. a–f Definition and enrichment for a 12-state ChromHMM58 model based on
eleven histone modification marks in Arabidopsis vegetative-related tissues. Darker green color in the heatmaps indicates a higher probability or
enrichment. In the plots, each row corresponds to a different state (in different colors), and each column corresponds to a different mark, a genomic
annotation (a), gene expression patterns (b), chromatin accessibility42 (c), TF binding for a different TF families and leaf enhancers93 (e), or conservation
information (f). Percentage and description of states summarized based on the overall enrichment of different categories of annotations are shown in d.
Gene expression data from ref. 93 conserved noncoding sequences (CNSs) and phastCons conservation score (based on nine-way multiple alignment)
between Arabidopsis and other crucifers from ref. 63. Boxplots show the median (horizontal line), second to third quartiles (box), and Tukey-style whiskers
(beyond the box). g, h Chromatin state conservation between Arabidopsis and other four plant species with annotated states in vegetative (leaves/rosette)
tissues. g Bar chart showing the percentage of conserved Arabidopsis chromatin states. The number of conserved plants is distinctly colored. Colors for
states are explained in h. h Enrichment of chromatin state conservation between Arabidopsis (row) and other species (column). Pairwise enrichment score
was calculated based on Jaccard statistics, which measures the ratio of the number of conserved base pairs to the number of base pairs in union. Darker
green in the heatmap indicates a higher enrichment. States with similar compositions of histone modification marks are colored in the same way among
different plant species. Matched states between Arabidopsis and other species are labeled as “X”. Chromatin states without matched states in Arabidopsis
are indicated in black. Unmarked states are colored in grey. Annotation of chromatin states in barley, rice, wheat and maize can be found in Supplementary
Figs. 15–19.
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regulatory genome. We also have compared the conservation of
genomic DNA regions marked by different chromatin states in
five plant species with comparable datasets, and found that at
least some chromatin states are highly positionally conserved
among the investigated species (Fig. 7g, h), suggesting a con-
served histone code in plants. In the future, ChIP-Hub would
allow to track the evolution of TF binding sites77–79 and of other
active regulatory elements in multiple plant species by com-
parative genomics.

In summary, we hope that ChIP-Hub will not only allow
experimental biologists from various fields to comprehensively
use all available regulome and epigenome information to obtain
insights into their specific questions, but also allow theoretical
biologists to model regulatory relationships under specific con-
ditions and developmental regimes.

Methods
Data source, curation and collection. Metadata of ChIP-seq, DAP-seq, ATAC-
seq/DNase-seq samples (equivalent to datasets, accession numbers start with SRX/
ERX/DRX) and projects (start with SRP/ERP/DRP) were retrieved from NCBI SRA
(https://www.ncbi.nlm.nih.gov/sra), BioSample (https://www.ncbi.nlm.nih.gov/
biosample), BioProject (https://www.ncbi.nlm.nih.gov/bioproject) and/or GEO
(https://www.ncbi.nlm.nih.gov/geo) databases. ChIP-Hub has a focus on data in
“green plants” (i.e., only considering plants in the taxonomy tree with a root ID
33090). Only data generated by Illumina platforms were kept. Firstly, each dataset
was associated with publication(s) if available (about 90% of samples can be linked
with publications). Then, each dataset was manually curated to determine its
investigated factor (i.e., which TF or histone modification mark), its experimental
type (whether ChIP or control) and its associated replicates (experiment may have
several replicates), based on the metadata and the original publications. Note that it
is important to manually check the metadata based on its corresponding pub-
lication since some metadata was misannotated in the database. For example, the
dataset SRX4063234 in fact contains two different samples, one for ChIP experi-
ment (SRR7142417) and another for control experiment (SRR7142416). In this
case, “Run” accessions (start with SRR/ERR/DRR) were instead used as sample
accessions (ca. 250 of such cases). For datasets without related publications so far,
they were marked as a “unconfirmed” status and would be regularly checked in the
future. In general, one experiment may contain replicate samples (i.e., datasets),
ChIP sample(s) as well as input control sample(s) and it was designed to investigate
regulation of a specific factor (e.g., TF or histone modification) of interest under
specific conditions. In the analysis (see the section below), each experiment was
processed independently. Furthermore, annotation information for investigated
factors was also manually curated. Broadly, factors are grouped into “TFs and other
proteins”, “histone-related” or “unclassified”. For TFs, their gene IDs and family
information were also determined if applicable. Finally, a meta file was obtained for
each experiment after curation (see Supplementary Data 10 for examples), which is
served as an input file for the ChIP-seq computation pipeline (see below).

Raw fastq files for each experiment were downloaded from the European
Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena) database. If fastq files were
not available at ENA, raw data in the SRA format were downloaded from the SRA
database and converted into fastq format using the “fastq-dump” command
provided by the SRA Toolkit (version 2.5.1). The “—split-files” option was used for
paired-end reads. Fastq files were further checked for completeness before
submitted to analysis.

Genome sequences and gene annotations were downloaded from public
databases (Supplementary Data 11). Additional annotation data were also included
in the ChIP-Hub database in order to better annotate the regulatory factors and
their regulatory networks. Annotation for miRNA genes were obtained from
miRbase80 and their genomic locations were updated (by BLAST) based on current
reference genomes. TF family information was retrieved from PlantTFDB81. TF
DNA binding motifs were downloaded from the JASPAR69, CIS-BP70 and
PlantTFDB81 databases and were scanned for occurrences in the genome using
FIMO82. These data were provided as separated data tracks in the genome browser.

Data processing. We followed the ChIP-seq data analysis guidelines10 recom-
mended by the ENCODE project to develop the computational pipeline for various
regulome data analyses (Fig. 1e). The analysis pipeline consists of quality control,
read mapping, peak calling and assessment of reproducibility among biological
replicates and was used to analyze all annotated experiments in a standardized and
uniform manner. Specifically, potential adapter sequences were removed from the
sequencing reads using the Trim Galore program (version 0.4.1) and the quality of
sequencing data was then evaluated by FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Trimmed reads were mapped to the corre-
sponding reference genomes using Bowtie283 (version 2.2.6) with parameters “-q—
no-unal—threads 8—sensitive”. The parameter “-k” was set to 1, 2 and 3 for
diploid genomes (e.g., Oryza sativa), tetraploid genomes (e.g., Gossypium

barbadense) and hexaploidy genomes (e.g., Triticum aestivum), respectively.
Redundant reads and PCR duplicates were removed using Picard tools (v2.60;
http://broadinstitute.github.io/picard/) and SAMtools84 (version 0.1.19).

Peak calling was performed using MACS285 (version 2.1.0). Duplicated reads
were not considered (“—keep-dup=1”) during peak calling in order to achieve a
better specificity86. The shifting size (“—shift”) used in the model was determined
by the analysis of cross-correlation scores using the phantompeakqualtools package
(https://code.google.com/p/phantompeakqualtools/). The parameter “—call-
summits” was used to call narrow peaks. For broad marks of histone modifications
(including H3K36me3, H3K20me1, H3K4me1, H3K79me2, H3K79me3,
H3K27me3, H3K9me3 and H3K9me1), broad peaks were also called by turning on
the “—broad” parameter in MACS2. A relaxed threshold of p value (p < 1e-2) was
used in order to enable the correct computation of IDR (irreproducible discovery
rate) values10, because IDR requires input peak data across the entire spectrum of
high confidence (signal) and low confidence (noise) so that a bivariate model can
be fitted to separate signal from noise30. Following the recommendations for the
analysis of self-consistency and reproducibility between replicates30, replicate
control samples (if available) were combined into one single control in the same
experiment. Peak calling was applied to all replicates, pooled data (pooled
replicates), pseudo-replicates (half subsample of reads) of each replicate and the
pseudo-replicates of pooled sample using the same merged control as input (if
applicable). By default, “reproducible” peaks across pseudo-replicates and true
replicates with an IDR < 0.05 were recommend for analysis. Besides, peaks with
different statistical thresholds are available upon request. For example, “significant”
peaks were defined as a fold-change (fold enrichment above background) >2 and a
-log10 (q value) >3; while “lenient” peaks as a fold-change >2 and a -log10 (q value)
>2. “Relaxed” peaks without additional thresholding were also provided so that any
custom threshold can be applied. All peak-based analyses in the pipeline (including
peak overlapping, merging and summary) were performed using BEDTools87

(v2.25.0).
Various metric scores were calculated to assess different aspects of the quality of

experiments (https://genome.ucsc.edu/ENCODE/qualityMetrics.html and https://
www.encodeproject.org/data-standards/terms/; Fig. 2c, d and Supplementary
Fig. 5). For example, library complexity is measured using the non-redundant
fraction (NRF) and PCR bottlenecking coefficients 1 and 2 (PBC1 and PBC2). The
SPOT (signal portion of tags) score, characterizing the enrichment of signal for
each experiment, was calculated by the Hotspot88 algorithm by subsampling ten
million reads. Fraction of reads in peaks (FRiP), another measure of enrichment, is
highly correlated with the SPOT score (Supplementary Fig. 5). NSC and RSC
(normalized and relative strand cross-correlation coefficient) are related measures
of enrichment without dependence on pre-defined peaks, which were calculated by
the phantompeakqualtools program89. Refer to Supplementary Fig. 21 and
Supplementary Data 12 for the definition of metrics categories.

For visualization purpose, wiggle tracks (using pooled data across replicates)
were generated by DeepTools90 with the “bamCoverage” program; different
normalization methods (including RPKM [reads per kilobase per million mapped
reads], CPM [counts per million mapped reads], BPM [bins per million mapped
reads], RPGC [reads per genomic content normalized to 1x sequencing depth] and
None) were used to generate different types of signal files. Data signal tracks were
visualized in the JBrowse91 or the WashU Epigenome Browser92.

Annotation of promoters and enhancers. We adopted a similar approach in our
previous study48 to predict Arabidopsis promoters and enhancers using open
chromatin data. In Arabidopsis, open chromatin regions whose peak summits are
> 1 kb from the nearest TSS were defined as enhancers, and the rest were con-
sidered as promoters. Prediction of promoters and enhancers in other plant species
was performed in a similar way but with predefined cutoff values (Supplementary
Data 7) according to the peak distribution and genome structure of a specific
species.

Assignment of target genes. Regulatory elements (in layman’s terms, called
“peaks”) were assigned to putative target genes based on the following rules. For a
regulatory region overlapping with any gene(s) (protein-coding genes or miRNAs),
the overlapping gene(s) were considered as its targets. Otherwise, the regulatory
element was assigned to its nearest annotated gene within up to N bp, where N is
the median size of intergenic regions (N was set to 3000 if the median size exceeded
3000). The start of genes (i.e., the transcription start site [TSS] of protein-coding
genes and the 5’ end of miRNA precursors [pre-miRNAs]) was used to calculate
the distance. In general, this approach associates a single regulatory element with
no more than two genes, with a few exceptions in the case of the regulatory element
overlapping multiple genes. This procedure was performed in each species
independently.

Chromatin state analysis. In order to use the collected histone modification
ChIP-seq data from diverse studies for chromatin state analysis and to make the
data more comparable among different plant species, only well-characterized H3-
related histone modification marks (including H3K9ac, H3K27ac, H3K4me1/2/3,
H3K9me1/2/3, H3K27me1/2/3 and H3K36me1/2/3) were considered and only data
generated in wild-type plants were used. Furthermore, the datasets were broadly
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categorized into vegetative-, reproductive- and root-related samples based on their
tissue specificity (Supplementary Data 9). In general, these broadly defined “tissue”
types (termed reference tissue types) are more comparative among different plant
species and difference in tissue collection by different studies can be eliminated.
Although the analysis is cell type agnostic, it is informative even when the relevant
cell or tissue type has not been experimentally profiled (this is the most case in
plants so far). In addition, we filtered out experiments with less than 1000 called
peaks and only considered plant species with at least five distinct types of histone
modification marks. In summary, 251 experiments from five plant species were
retained for chromatin state analysis (Supplementary Data 9 and Supplementary
Fig. 13).

ChromHMM58 (version 1.19) was applied on the ChIP-seq data of histone
modifications in three reference tissue types in five plant species to learn a
multivariate HMM model for segmentation of genome in each tissue type.
Specifically, the called peaks were first pooled from different ChIP-seq experiments
for each type of the histone modifications in each tissue type for each genome
separately. Peaks within blacklist regions were excluded from the analysis. The
remaining pooled peaks were then processed by the “BinarizeBed” command (with
the parameter “-peaks”) into binarized data in every 200 bp window over the entire
genome. Models were trained independently for each reference tissue type in each
genome since the composition of marks varied in different tissue types. We ran the
“LearnModel” command with the number of states ranging from 2 states to
15 states and selected an “optimal-state” model based on a rule that the number of
states appeared most parsimonious in terms of clearly distinct emission properties
and clear interpretability of distinction between states (Supplementary Figs. 15–19).
Furthermore, the resulting chromatin states were interpreted based on enrichment
analysis of various types of functional annotations, such as gene elements,
neighboring gene expression pattern, TF binding, chromatin accessibility and
predicted enhancers48,93. To this end, the “OverlapEnrichment” and
“NeighborhoodEnrichment” commands were used in the analysis. The meaningful
mnemonics of states for Arabidopsis vegetative-related tissues was given in Fig. 7d.

Comparative genomics. Whole-genome alignments were performed in a way as
briefly described below63. Firstly, soft masked genomes were aligned to each other
using the LastZ alignment algorithm94. Collinear alignment blocks separated by
gaps of <100 kb were then “chained” according to their locations in both genomes
and “netted” to choose the best sub-chain for the reference species95. For polyploid
plants, each sub-genome was individually analyzed such that each contained non-
overlapping chaining. The whole-genome alignments can be visualized together
with epigenomic tracks through the integrated Epigenome Browser (see below).

Cross-species comparisons of regulatory regions. Pairwise comparisons of
regulatory regions (including chromatin states, active promoters and enhancers)
were performed by one-to-one mapping annotated regions between species based
on the above whole-genome alignments. For regions mapped to multiple ortho-
logous locations in the other genome (i.e., regions split over multiple alignment
blocks), only the largest orthologous region in the same alignment block was
considered. Marked regions were considered as conserved between species when
their orthologous location in the second species overlapped a marked region by a
minimum of 50%. Note that the minimum required overlap had little influence on
the overall results given that the median value of overlaps is 100% and the mean
value is 89.9%.

Conservation scores of regulatory elements were defined as the number of
species that a given regulatory region can be alignable to other species and the
aligned region showed a peak identified by open chromatin data. To make
chromatin state interpretations more comparable across different species
(chromatin marks available for state prediction were slightly different among
species, see Supplementary Figs. 15–19), the learned chromatin states were re-
interpreted (Fig. 7g, h) based on a common set of marks as possible
(Supplementary Fig. 22).

Analysis of gene regulatory networks. To study gene regulatory networks
(GRNs) controlled by TFs with available ChIP-seq data, we focused on a specific
network motif, TF-miRNA-TF feed-forward loops (FFLs), which involves targeting
of a TF to both miRNAs and miRNA target TFs. Such trifurcate regulatory circuits
are of importance for fine tuning of downstream gene expression96,97. We high-
lighted the analysis on Arabidopsis data since a comprehensive list of TFs have
been investigated by ChIP-seq experiments in this plant species (Fig. 2b). The
methodology, however, can easily be applied to data from any other plants when
more and more data are generated. In the miRNA-mediated FFLs, target genes of
miRNAs were predicted by the TargetFinder tool98, with a prediction score cut-off
value set to 4. Other relationships (i.e., TF-miRNA and TF-TF) were supported by
ChIP-seq data. The final meta-network consisted of regulatory relationships among
117 master TFs, 134 miRNAs and 462 common target TFs (Fig. 3d and Supple-
mentary Data 3), covering nearly two-thirds of the predicted FFLs involved in
flower development31 (Fig. 3e).

Convolution neural network analysis. To identify sequence motifs enriched in
dynamically accessible regions among different tissues we used Basset44, a

convolutional neural network (CNN) approach. We set the input to the CNN as
the 600 bp sequences centered at the summit of the top 2500 highly accessible
peaks for each tissue. The output of the classifier is a binary vector of length 10 (i.e.,
the number of tissue types). We used default Basset values for most parameters,
except that we set the number of first layer filters to 600. The CNN contained three
convolutional layers, each followed by a rectified linear unit (ReLU) and a max
pooling layer, and two fully connected layers. The network architecture is sche-
matically shown in Supplementary Fig. 10c. The predictive performance of the
networks was assessed by the basset_test.lua script in Basset.

ChIP-Hub Shiny application. In order to efficiently use our reanalyzed data by
external users, we developed an integrative web-based application (ChIP-Hub)
with the Shiny framework (http://shiny.rstudio.com/), which combines the com-
putational power of R with friendly and interactive web interfaces (Supplementary
Fig. 2). All the sample metadata, curated metadata and analyzed result data were
loaded into a MySQL database, allowing for interactive retrieval through the ChIP-
Hub interface. These data were presented in tabular and chart forms in our Shiny
web application. Furthermore, the data can be searched by keyword or gene to
select datasets of interests. The associated result files, such as wiggle signal files,
peak files and additional annotation files, can be loaded into the integrated Epi-
genome Browser (https://biobigdata.nju.edu.cn/browser/) for visualization.

Online access and updates. To make this project easier to maintain for a long life
and to update in time, we have developed a semi-automatic computational pro-
gram (ChIPer) for this purpose. The program regularly (in very month according
to our current plan) checks whether any new datasets available in public databases.
If so, the new datasets will be sent for curation via email and the curated datasets
will be automatically analyzed by the data processing pipeline. New result files will
be checked and uploaded to our web server quarterly. Besides, we will include more
functionalities in our Shiny application as required.

Statistical analysis. If not specified, all statistical analyses and data visualization
were done in R (version 3.4.1). R packages such as ggplot2 and plotly were heavily
used for graphics. All the sources data for each figure can be found in the Sup-
plementary Information and the newest data can be found in our ChIP-Hub
website.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
ChIP-Hub is available at https://biobigdata.nju.edu.cn/ChIPHub/. Users can view the
processed data through the Epigenome Browser https://biobigdata.nju.edu.cn/browser/.
All the analysis results (including peak files in the BED format, signal files in the bigwig
format, comparative genomics data, predicted promoters/enhancers and gene regulatory
networks) can be downloaded through the link https://biobigdata.nju.edu.cn/ChIPHub_
download/. Metadata and peak files (in the BED format) for all curated experiments in
the current version of ChIP-Hub are also deposited at Zenodo [https://doi.org/10.5281/
zenodo.5912234]. Source data are provided with this paper.

Code availability
The code related to Figures is available at https://biobigdata.nju.edu.cn/ChIPHub_
manuscript/.
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