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Abstract

Background.—Repetitive task practice reduces mean upper extremity motor impairment in 

populations of patients with chronic stroke, but individual response is highly variable. A method to 

predict meaningful reduction in impairment in response to training based on biomarkers and other 

data collected prior to an intervention is needed to establish realistic rehabilitation goals and to 

effectively allocate resources.
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Objectives.—To identify prognostic factors and better understand the biological substrate for 

reductions in arm impairment in response to repetitive task practice among patients with chronic 

(≥ 6 months) post-stroke hemiparesis.

Methods.—The intervention is a form of repetitive task practice using a combination of robot-

assisted therapy and functional arm use in real-world tasks. Baseline measures include the 

Fugl-Meyer Assessment, Wolf Motor Function Test, Action Research Arm Test, Stroke Impact 

Scale, questionnaires on pain and expectancy, MRI, transcranial magnetic stimulation, kinematics, 

accelerometry, and genomic testing.

Results.—Mean increase in FM-UE was 4.6 ± 1.0 SE, median 2.5. Approximately one-third of 

participants had a clinically meaningful response to the intervention, defined as an increase in FM 

≥5. The selected logistic regression model had a receiver operating curve with AUC=0.988 (Std 

Error = 0.011, 95% Wald confidence limits: 0.967 – 1) showed little evidence of overfitting. Six 

variables that predicted response represented impairment, functional, and genomic measures.

Conclusion.—A simple weighted sum of six baseline factors can accurately predict clinically 

meaningful impairment reduction after outpatient intensive practice intervention in chronic stroke. 

Reduction of impairment may be a critical first step to functional improvement. Further validation 

and generalization of this model will increase its utility in clinical decision-making.
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Introduction

Stroke is the third leading cause of adult disability worldwide1. Recent global trends toward 

stroke onset earlier in the lifespan2, 3, with COVID-194–6 and increased survival result in 

more individuals living with chronic stroke-related disability7, highlighting the need for 

effective long-term rehabilitation strategies1. Upper limb motor impairment affects up to 

80% of stroke sufferers acutely and persists in 40%8. This impairment in arm function 

accounts for at least 50% of the decline in quality of life for stroke survivors, even for 

those who regain the ability to walk and return to work9, 10. Rapid reduction in impairment 

subacutely is well documented, while measurement of change in the chronic stage can 

be complicated by changes in overall condition, compensatory movement strategies, and 

learned non-use11. Some stroke survivors require lengthy rehabilitation to achieve their 

rehabilitation potential. Intense task repetition12 13, can also occur with less intensive14. 

Understanding the potential for rehabilitation and prediction of recovery beyond the acute 

and subacute periods, particularly in response to specific therapeutic interventions, is critical 

to maximizing the efficiency of care utilization and delivering personalized therapy in the 

longer term.

In the acute/subacute period after stroke (variably defined as days to 3–6 months after 

the initial insult), significant work has been done identifying early predictors of short-term 

recovery, such as motor-evoked potentials (MEPs)15–17. In chronic post-stroke hemiparesis, 

similar predictors have been studied.18–20. But most of the studies on prediction have looked 

at overall recovery, rather than response to a particular intervention. So, the extensive 
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explorations of recovery during the acute and sub-acute periods may not tell us about the 

chances for eliciting improvement in the chronic state in response to a particular therapy.

Studies in chronic stroke have associated baseline measurements with response to intensive 

task practice, robotic or otherwise, e.g.21, 22, but there is no predictive model that we know 

of for guidance of patient selection. Factors that have been proposed and studied include 

imaging and neurophysiology measures of motor system involvement, sensory and motor 

function itself, and genomics. Some factors that have not been studied, to our knowledge, 

include pain and expectancy of response to the treatment. While some individual factors 

may not be significant predictors on their own, taking multiple factors in consideration 

together has the potential for better predictions or response to treatment.

Objectives and Summary

The purpose of this study is to identify baseline prognostic factors in chronic stroke that 

influence motor recovery in response to repetitive task practice and to develop a predictive 

model of response to a standardized intervention for the upper limb. In this manner, 

we propose to contribute to understanding the mechanisms of recovery; and develop an 

algorithm to better match patients in the chronic phase to effective therapy based on their 

individual behavioral, neurophysiological, and genetic composition. In this manuscript we 

present a planned analysis producing a predictive model using baseline variables to predict 

response as measured by improvement in Fugl Meyer score above a pre-defined threshold23.

Methods

The rationale, aims, and methods for this study were published23, and are briefly 

recapitulated here.

Study Design

In this prospective single-group study, participants received 36 one-hour sessions consisting 

of 45 minutes of robot-assisted therapy and 15 minutes of transition-to-task training (TTT), 

as was used in our prior trial, which demonstrated improvements in measures of impairment, 

function, and patient reported outcomes24. Participants were eligible for the study if they 

presented with mild/moderate to severe arm dysfunction, as assessed by a Fugl-Meyer (FM) 

baseline score of 10–45 (see Figure 2). Following informed consent, participants began 

baseline evaluation consisting of clinical arm assessments, brain imaging, saliva collection 

for DNA testing, robot-derived kinematic assessment, and transcranial magnetic stimulation 

(TMS) as a measure of corticospinal integrity23. After baseline assessment, participants 

completed 3 sessions per week for 36 sessions or 18 weeks of robot-assisted therapy, 

whichever came first, based on an intent-to-treat framework. Participants were re-assessed, 

by a therapist (LBH) who had no knowledge of treatment details or interim study analysis, 

every twelve sessions with the final evaluation occurring after 36 sessions or 18 weeks. This 

was followed by twelve weeks of retention without training and a follow-up assessment at 

24 weeks.
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Assessments

Clinical arm assessments collected were the Upper Extremity Fugl-Meyer, 6-Item Wolf 

Motor Function Test-Time and Functional Ability, Action Research Arm Test, and strength 

and range of motion assessment. In addition, we created a proprioception score by summing 

the proprioception subsection items from the Fugl-Meyer for the paretic limb (range: 0–6). 

Change in score on the Fugl-Meyer from baseline to final evaluation served as the primary 

outcome and basis for predictive model development.

Intervention—Details of the robots, TTT, and training regimen can be found in our 

previous trial and methods papers23, 24. Participants completed one-hour sessions of therapy, 

with a target of 36 sessions, 3 times per week over 12 weeks. Participants were allowed 

a maximum of 18 weeks to complete all sessions. Each session had 45 minutes of 

robot-assisted therapy followed by 15 minutes of transition-to-task (TTT) functional arm 

use therapy. The first third of sessions focused on distal movements (wrist/forearm), the 

second on proximal movements (elbow/shoulder), and the last third of sessions alternated. 

The majority of participants trained on the lnMotion2 wrist robot and lnMotion2 shoulder/

elbow robots (Bionik, Watertown, MA, USA), while a subset trained on the Armeo Power 

(Hocoma, Volketswil, Switzerland).

Neurophysiology

TMS.—As previously detailed23, paretic and non-paretic resting motor thresholds 

and recruitment curves were assessed for three arm muscles (FDI, ECR, AD), and 

neurophysiological corticospinal integrity scores (TMS score) were calculated for each side. 

The TMS score had the full range of values in our study population (0–9). The method by 

which the TMS score was derived is explained in our methods paper23.

MRI.—Lesion masks were hand-drawn on T1-MPRAGE and/or 3D FLAIR images. All 

lesion masks were validated by a second researcher. The primary region-of-interest was 

the corticospinal tract (CST). The T1-MPRAGE, 3D FLAIR, and lesion mask were 

co-registered using FSL FLIRT to the participant’s T2--weighted image to obtain a co-

registered T2 lesion mask. The MNI152 brain and the CST template (bilaterally) from the 

Johns Hopkins University atlas were co-registered to each participant’s T2-image for percent 

CST lesion analysis. The inverse FLIRT transformation was used to convert all T2 lesion 

masks to MNI space for comparison of lesion size and location across participants. Lesion 

masks were flipped across the x-axis if necessary (n=13) such that all lesions were in the 

right hemisphere. For the DTI analysis, each participant’s T2 image was co-registered to 

their DTI b0 image. DTI analysis was performed in DSI Studio. Percent lesioned, fractional 

anisotropy (FA), and mean diffusivity (MD) of the CST were calculated for each participant 

for both affected and unaffected sides.

Genetics.—Saliva was collected using saliva collection kits (Oragene OGR-500, Ottawa, 

ON, Canada) at baseline evaluations. DNA was purified and genetic polymorphisms were 

determined by polymerase chain reaction and targeted sequencing for following genes: 

BDNF, COMT, dopamine transporter, and klotho. We chose these particular genetic loci 

because of previous demonstrations of their importance either in post-stroke recovery or 
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neural plasticity23, 25, 26. Polymorphisms were unable to be determined from two samples; 

thus, sample sizes for the four genes assessed ranged from n=40 to n=42.

Analytical Plan

Prediction model.—Logistic regression models were developed on the primary binary 

outcome of an increase in FM of greater than or equal to five points at final evaluation, 

which is considered the minimal clinically important difference (MCID)27. The models of 

the form

E Y = pr Y = 1 = 1
1 + exp − Z

were constructed where pr(Y=1) equals the probability that participant Y is classified as 

a Responder and Z = intercept + ∑i wi xi (i.e., Z is a linear sum of a constant intercept 

and the features (xi, value of the variables) weighted by the parameter estimates (wi, 

parameter estimates). The prediction rule is therefore defined by the inner sum of the 

weights wi and features xi. A sample is classified as a Responder if the sum is greater 

than the threshold. Variables entered into the model selection process were chosen based on 

prior literature demonstrating their possible relationships to stroke recovery (see Tables 1, 

and Supplementary Tables 1, 2, 3). Gender, ethnicity, dominant side affected, and genetic 

variables were dummy-coded. Models with a fixed set of predictors (3–7) were compared. 

We selected one model for each training set with the highest likelihood score (chi-square) 

statistic. The individual variables survived in the final model if they survived in 60% – 70% 

of the models. The individual estimates for each variable did not have to be independently 
predictive (i.e. p < 0.05.) Leave One Out Cross-Validation (LOOCV) and the best subset 

selection method in SAS were used to choose the final model. The final model with 

six predictors was selected based on overall fit (AUC), avoiding overfitting, and lack of 

significant decrease in AUC with cross validation.

There are concerns when fitting a model with a large number of covariates and modest 

sample size. These concerns include overfitting to the dataset, co-linearity between 

variables, and limited applicability of the model. By controlling the number of variables 

selected for the model and employing internal validation, we aim to keep the model 

manageable so it could be more clinically useful, while also decreasing the potential for 

overfitting. The Leave One Out Cross-Validation (LOOCV) approach has the advantages 

of producing model estimates with less bias and more ease in smaller samples28. To create 

the leave-one-out training sets, the SAS Surveyselect procedure was used for creating 42 

independent replicates of the original data set. Individual observations are systematically 

removed from each of the sets, creating a training set and testing set. There was one 

missing value of baseline paretic dynamometry, for which we imputed the sample median. 

We performed the variable selection on training sets 1 through 42, using a logistic model 

and the best subset selection method in SAS. This selection method allowed us to control 

the number of variables we wished to include in the model (typically 4–6 variables). The 

macro was written to select one model for each training set with the highest likelihood 

score (chi-square) statistic, based on the number of variables. The variables most frequently 
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selected across training sets were then included in the final predictive model; typically, a 

variable was selected if it was in 60% – 70% of the models. The leave-one-out procedure 

was repeated for cross-validation of the predictive model, by calculating the individual 

predicted probability of each response level and re-estimating the parameter estimates. The 

summary statistics of the area under the receiver operating characteristic curve (AUROC) 

were calculated to measure prediction performance and to compare the logistic model and 

that generated by the cross-validation procedure.

Results

Screening and enrollment into the study is shown in Figure 1. The majority of participants 

were screened and enrolled at the Baltimore site. Of the 68 participants who consented to 

the study, 42 completed the principal outcome measures, withdrawals being due to either 

meeting exclusion criteria or scheduling and transportation issues. Thirty-eight participants 

completed the intervention sessions on the IMT robots, and four participants on the Armeo 

Power robot with 38 completing the 24-week follow up. Because of additional exclusions 

for TMS and MRI, or inability to tolerate those methods, not all participants completed 

those measures and were excluded from analysis that required them. N=37 participants had 

MRI sessions, n=34 had TMS sessions. Outcome measures showed mean improvement (± 

standard error) on the FM of 4.6±1.0 (Table 1), on the ARAT of 2.2±0.67, and the Short 

WMFT-FAS of 0.3±0.05. Thus, the intervention had the expected mean effect, based on our 

experience with this intervention in a previous study. Of the 42 participants who completed 

the primary outcome assessments, 16 (38%) were responders by the criterion of at least a 

5-point increase in Fugl-Meyer (Table 1), as defined prior to the study23.

Predictive Model

Following the predictive model selection process, the final model predicted response to 

therapy based on the following variables, with the variable followed in parenthesis by the 

values that predicted response to the intervention: 1. side affected (non-dominant), 2. time 

since stroke (greater time), 3. FM proprioception score (higher score), 4. Wolf average 

time (shorter time), 5. paretic hand grip strength (lower strength), and 6. klotho SNP 

(homozygosity). These variables were consistently selected across a large percentage of the 

training datasets (see Table 2). The AIC for the model was 24.92 and the −2log likelihood 

was 10.92. An ROC curve was constructed (Figure 3), resulting in AUC=0.988 (Std Error 

= 0.011, 95% Wald confidence limits: 0.967 – 1). Parameter estimates for the individual 

predictors are given in Table 2. Note that the baseline total FM score did not survive the 

model selection process.

The cross validated individual predicted probability of each response level was then derived 

from the leave-one-out principle—that is, dropping the data of one subject and re-estimating 

the parameter estimates. AUC estimate based on cross validated predicted probabilities was 

AUC=0.938 (Std Error = 0.035, 95% Wald confidence limits: 0.868 – 1, see Figure 3). A 

contrast test comparing the AUCs showed that the AUC drop with cross-validation did not 

reach statistical significance (difference = 0.050, X2=3.63, p=0.06).
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Biological Variables

None of the neurophysiological variables were retained as predictors in the predictive 

models. Thus, we conducted post hoc investigations of these variables to examine whether 

there were any differences between responders and non-responders.

TMS and relationship to disability.—The TMS score had a mean value of 2.4 overall 

and was only slightly higher (3.0) in the responders. The TMS score was correlated with the 

baseline Fugl-Meyer (r = .81, r2 = 0.65, p < 0.001, n=34) but not the change in Fugl-Meyer 

(p=.10).

Genotype distribution

There were very few of the BDNF met alleles (T), likely because the Black population 

was highly represented in this study. The other genotypes had three levels represented. The 

klotho genotype was selected for the predictive model, as 86% of non-responders, but only 

14% of responders, were klotho heterozygotes. This difference was significant (Fisher’s 

exact test, p = 0.04) and the genotype ended up in the final, selected model.

MRI.—Overall, responders tended to show less structural damage than non-responders 

(Supplemental Table 3); however, these differences were not significant (lesion volume, 

p=.17; percent of CST lesioned, p=.22). Lesion overlap maps were constructed separately 

for responders and non-responders and displayed (Figure 4). While, as expected, the non-

responder lesion mask extended further than that for responders, the majority of lesion 

overlap were similarly located in deep white matter motor tracts.

Pain, Expectancy, and Robot type results

Pain scores revealed only minor levels of pain across the whole population of participants 

in the trial. Expectancy regarding the likelihood of the intervention being successful was 

variable, with no significant predictive power regarding the actual outcome in our final 

models. As only four participants had therapy with a second robot type, there was no 

statistical power to detect a difference in response to robot type.

Discussion

The goal of the study was to discover baseline factors that predict clinically meaningful 

improvement in the FM:UE score. We found that baseline values of non-dominant paresis, 

greater time since stroke, weaker paretic limb strength, homozygous klotho genotype, higher 

FM proprioception score, and shorter Wolf motor function times, together formed a sensitive 

and specific predictive model of response to 3 months of combined robot-assisted and 

repetitive-task-training as measured by improvement in FM score.

Strengths and weaknesses of the model

Our model applies to long-term chronic stroke survivors who are an increasingly larger 

segment of the population29 and for whom we now know that not only maintenance of 

function, but actual motor recovery is possible long after the initial insult30. Furthermore, 

although we do not yet know whether this model would generalize to other types of training, 
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the use of a robot that targeted multiple joint functions in addition to intensive therapist-led 

functional task training will likely simulate many current training methods that rely on 

intensive graded training such as the GRASP program31 or Constraint-induced Therapy32.

A major advantage of our specific prediction model is the relative ease with which the 

factors in the model can be collected. In addition to collecting two personal characteristics 

and one genomic test, there are only two short motor tests and one sensory test to administer. 

Even with rest periods the total time for data collection would be less than an hour making 

this a very efficient method of predicting success for repetitive task training regimens in 

chronic stroke. The training to administer these tests would be far less time-consuming 

compared to the training necessary to collect neurophysiological or imaging data. The 

genomic testing, while not burdensome in terms of sample collection, could present a barrier 

because of test availability. In preliminary analysis, klotho genotype was correlated with grip 

strength, which appeared as a predictor in some of our earlier models. Further analysis is 

required to determine whether genotyping can be replaced with other measures.

In the final model, two factors with positive predictive value were shorter Wolf times 

and better proprioception. There is evidence of proprioceptive ability as a correlate of 

outcome in robotic rehabilitation33 and this makes sense as an ability that allows feedback of 

performance. One would expect that the ability to integrate the combination of self-directed 

and externally applied forces to achieve motor goals would depend on proprioceptive 

feedback. Since Wolf Motor Function-Time skews higher when participants cannot perform 

the tasks at all, the intervention in this study may have a functional threshold above which 

a patient must start in order to benefit. However, other positive predictive factors such as 

non-dominant paresis, greater time since stroke, and lower paretic grip strength may indicate 

that above such a threshold, impairment34 can by reversed by repetitive task practice.

Limitations

Sample size.—We were fortunate in enrolling a diverse population on factors such as 

initial impairment scores, sex, and age distribution. However, BDNF polymorphism was not 

well-represented, reducing the power to estimate the effect of this variable in the model. 

In some cases, our power to detect relationships among the neurophysiological variables 

was hampered by low variability in our sample. The completed sample size was about half 

of that which was planned, mainly due to recruitment and capacity issues. This limited 

our ability to generalize the model outside of the population that was used to estimate 

model parameters. For example, while Responders were observed across most of the range 

of baseline FM scores (Table 1, Figure 2, and Sup. Fig. 1), we cannot exclude that the 

relationship between the baseline and change scores is non-linear.

Risk of Overfitting the data.—The problem of overfitting this modest-sized data set 

is a concern. Validation and refinement of the models using new populations is critical to 

the practical application of a predictive method. Other approaches, such as random forest 

decision trees35, 36 may provide a path to a practical predictive method.

The large variability of recovery in the chronic stroke population poses a challenge to the 

generalizability of response to any form of rehabilitative therapy, including repetitive task 
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practice. Because the treatment in this study was a hybrid of robotic and therapist-provided 

treatment, our expectation is that the results are generalizable. There is no reason to expect a 

special responsiveness to a particular form of robotic task practice.

The role of biomarkers

The examination of biomarkers or surrogate indicators of the post-stroke state should 

provide a window into recovery potential15–17 but in our study these variables did not make 

it into the model despite recent advances in neuroimaging and neurophysiology techniques 

that provide new methods for examining brain structure and connectivity for possible 

biomarkers. For example, prior work has correlated changes in resting state connectivity 

on functional magnetic resonance imaging (fMRI) with motor recovery during robot-assisted 

therapy37, and diffusion tensor imaging (DTI) has been used to demonstrate a relationship 

between degree of damage in the corticospinal tract and impairment38. In concert with 

neurophysiology, genetic factors are likely to have an influence on central nervous system 

responses to motor experience39 and have been suggested to impact recovery after stroke40.. 

Recently, genetic variants in BDNF were shown to be associated with motor outcomes for 

the arm and were predictors for patients with severe baseline motor deficits in the sub-acute 

phase of recovery41. The klotho haplotypes KL and VS represent a set of six polymorphisms 

in linkage disequilibrium. In numerous studies the heterozygous genotype KL-VS is 

associated with longer lifespan and higher circulating levels of the gene product. We can 

only speculate why the homozygous (KL-KL) genotype was associated with response. 

It could be that the heterozygotes are better able to reduce impairment and maintain 

that improvement with usual care. Since exercise is related to klotho secretion42 and the 

heterozygotes have higher baseline levels of secretion, a physical activity intervention such 

as ours may be more beneficial when baseline secretion is low.

Cramer, et al43 found that greater values of ipsilesional brain activity on functional MRI 

and baseline Fugl-Meyer score predicted response to standard distal arm therapy combined 

with brain stimulation. In a study of robot-assisted arm therapy, multiple baseline clinical, 

demographic, and neuroimaging variables were entered into multivariate modeling and 

found that baseline primary motor cortical functional connectivity and less cortico-spinal 

damage predicted response44. In a slightly less chronic sample (2months-1.5years post 

stroke), Cassidy et al. found less corticospinal damage predicted response to intensive 

arm training45. These studies all had participants who were, on average, slightly less 

impaired than ours, and primarily studied single clinical measures of impairment/function 

alongside neuroimaging markers. Tozlu, et al. used multiple machine learning algorithms 

and identified baseline impairment and baseline presence of motor evoked potentials to 

predict response to a rehabilitation and brain stimulation intervention, however again 

they did not input many baseline clinical characteristics into their model production36. 

Our final model did not include any biomarkers derived from the neurophysiology or 

neuroanatomy. This could be partly due to our sample size, but there may be other brain 

anatomy biomarkers, such as grey matter volume outside of the lesioned area, that have 

a greater effect on response to the intervention46. It may also be that the biomarkers 

are correlated with the observational measures but are less accurate regarding prediction. 

Similarly to our approach, George et al. have used neural networks to examine multiple 
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baseline characteristics to predict response to multiple therapeutic interventions and found 

that a different dimension of the Wolf Motor Function test (in their case, functional ability 

score, in ours, time) predicted response to therapy47, 48. We extend upon these findings here 

using multivariate analysis on multiple clinical measures that are not directly related to each 

other, to predict response on a different measure, also including biomarkers from imaging, 

neurophysiology, and genomics.

Pain & Expectancy

Pain is an underrecognized consequence of stroke49, and pain behaviors may limit 

participation in rehabilitative therapies, suggesting pain’s potential predictive role in 

outcome and participation. However, pain was not common in this population, potentially 

because of self-selection for an intensive rehabilitation intervention, and seemingly had no 

influence on outcome. The expectancy theory of motivation to predict outcomes in stroke 

rehabilitation is an additional area of increasing interest50. While the final model did not 

include expectancy, there were more responders than non-responders with high expectancy 

values and this deserves further exploration.

Future directions: validation and opportunities

Future work should address some limitations discussed here as well as validation of the 

model developed. Since the prediction model has been cross-validated, the logical next 

step would be an independent validation. This could be done with some simplification of 

approach since imaging and TMS parameters were not significant predictors. A validation 

trial also provides an opportunity to investigate the mechanisms of response and non-

response. This would require different approaches for the demographic, stroke-laterality, 

genetic, and functional measures.

Future directions may explore the utility of improving measures of motor function rather 

than impairment. We plan to present in future publications the results of planned analyses 

for predicting function as measured by the Arm Research Action Test and patient reported 

outcomes, such as recorded by the Stroke Impact Scale. The widespread use of the FM 

assessment and its position along the continuum between precision of measurement and 

functional relevance made it the most reasonable starting point for prediction. Although the 

FM is highly correlated with more functional measures such as the WMFT and ARAT51, 

other studies have shown that other indicators of motor recovery such as smoothness of 

movement can improve significantly without recording a change in FM score52. A validation 

trial would also be an opportunity to increase the sample size, which could offer the power 

necessary to predict a continuous outcome, rather than a binary one.

Summary—Entering baseline scores into logistic regression testing resulted in a 

highly accurate, specific, and internally validated mode to predict response to therapy, 

considering the moderate sample size. Predictors of response to the treatment included 

stroke demographic factors, functional and ability measures, and genotype. Longer time 

since stroke, non-dominant side affected, better proprioception, faster timed functional 

movements, lower grip strength, and klotho homozygosity had positive predictive value. 

This simple algorithm accurately predicted response to an outpatient intensive practice 
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intervention in chronic stroke and has the potential to better match patients in the 

chronic phase to effective therapy based on their individual characteristics and behavioral 

capabilities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study flow (consolidated standards of reporting trials diagram).
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Figure 2. 
Fugl-Meyer (FM) change scores as a function of total score at Baseline. Points above the 

horizontal line indicate Responders (n=16) to therapy (change in FM score >= 5 points); 

points below the line are Non-Responders (n=26).
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Figure 3. 
ROC curves for the final predictive model (Model) and cross-validation (ROC1).
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Figure 4. 
Extent of lesions across participants. Responders (n=14) are displayed on the top, Non-

Responders (n=23) on the bottom; all images were flipped to show lesions in the Left 

hemisphere. The heat map demonstrates lesion-affected-voxels shared in the range from 1 

participant to the maximum number of participants that shared that voxel with the range 

being 1–7 in Responders and 1–16 in Non-Responders. Notably, both groups had significant 

overlap of lesions within the deep motor white matter of the affected hemisphere.
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Table 1.

Participant Characteristics and Outcomes

Characteristic All Participants (n=42) Responders (n=16) Non-Responders (n=26)

Demographics

 Female 15 (36%) 8 (50%) 7 (27%)

 Race/Ethnicity: White (Non-Hispanic) 19 (45%) 4 (25%) 15 (58%)

 Race/Ethnicity: African-American 23 (55%) 12 (75%) 11 (42%)

 Right Hand Dominant 35 (83%) 12 (75%) 23 (88%)

 Age at Enrollment (years) 59.8 (11.28) 59.6 (11.25) 60.0 (11.52)

Stroke Characteristics

 Right Hemisphere Stroke 26 (62%) 11 (69%) 15 (58%)

 Dominant Side Affected 21 (50%) 9 (56%) 12 (46%)

 Time Since Stroke (years) 5.4 (5.32) 5.7 (6.36) 5.2 (4.69)

Primary Outcome: Fugl-Meyer (FM) Upper Extremity Scores

 FM responder (>=5 points) 16 (38%) --- ---

 Baseline Total Score 19.8 (9.62) 23.2 (8.61) 17.8 (9.77)

  Observed Range 10.0 – 45.5 13.0 – 41.0 10.0 – 45.5

 Final Total Score 24.4 (13.15) 33.7 (12.15) 18.8 (10.34)

  Observed Range 10.0 – 58.0 18.0 – 58.0 10.0 – 48.0

 Change Score (Final – Baseline) +4.6 (6.76) +10.4 (7.81) +1.0 (1.80)

  Observed Range −3.5 – +37.5 +5.0 – +37.5 −3.5 – +4.0

Secondary Outcomes

 ARAT Baseline Total Score – Affected 14.1 (14.67) 20.8 (13.01) 10.0 (14.36)

 ARAT Final Total Score – Affected 16.4 (16.57) 24.5 (16.58) 11.4 (14.74)

 ARAT Change (Final – Baseline) +2.2 (4.29) +3.8 (5.83) +1.3 (2.73)

 Wolf Function Baseline Score 1.7 (0.89) 2.2 (0.78) 1.4 (0.84)

 Wolf Function Final Score 2.0 (1.13) 2.6 (1.12) 1.6 (0.93)

 Wolf Change (Final – Baseline) +0.3 (0.47) +0.5 (0.60) +0.1 (0.32)

Note. Values indicate counts (and percentages) or means (and standard deviations).
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Table 2.

Parameter estimates from the predictive model. The best subset selection method in SAS was used to 

select predictors using leave-one-out training sets. The final column indicates the percent of training sets 

in which each predictor was selected. A positive parameter estimate means that a higher value of the variable 

is associated with response to treatment. Note that parameter estimates are used to weight the baseline 

parameters, and so can be outside the range of the parameter values. The values of the parameters that predict 

response are: non-dominant side affected, longer time since stroke, better proprioception, shorter Wolf time, 

lesser grip strength, and Klotho homozygosity.

Baseline Parameter Estimate Std. Error Wald X2 p-value % Selected

Intercept 11.28 8.69 1.68 0.19 ---

Dominant Side Affected (= 1) −5.26 3.10 2.88 0.09 88

Time Since Stroke (yrs) 0.44 0.28 2.52 0.11 90

FM - Proprioception 2.89 1.76 2.71 0.10 100

Wolf Motor Function – Time (s) −0.22 0.09 5.11 0.02 100

Paretic Grip Strength (kgF) −0.62 0.27 5.08 0.02 100

Klotho SNP (heterozygous = 1) −12.09 6.21 3.78 0.05 88
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