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Abstract
Metal complex luminophores have seen dramatic expansion in application as imag-
ing probes over the past decade. This has been enabled by growing understanding 
of methods to promote their cell permeation and intracellular targeting. Amongst 
the successful approaches that have been applied in this regard is peptide-facilitated 
delivery. Cell-permeating or signal peptides can be readily conjugated to metal 
complex luminophores and have shown excellent response in carrying such cargo 
through the cell membrane. In this article, we describe the rationale behind apply-
ing metal complexes as probes and sensors in cell imaging and outline the advan-
tages to be gained by applying peptides as the carrier for complex luminophores. 
We describe some of the progress that has been made in applying peptides in metal 
complex peptide-driven conjugates as a strategy for cell permeation and targeting of 
transition metal luminophores. Finally, we provide key examples of their application 
and outline areas for future progress.
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Dppz	� Dipyrido[3, 2-a:2′, 3′-c]phenazine
FLIM	� Fluorescence lifetime imaging
icO2	� Intracellular oxygen
IP	� Imidazo[4, 5-f][1, 10]-phenanthroline
MLCT	� Metal-to-ligand charge transfer
MMP	� Mitochondrial membrane potential
MPP	� Mitochondria-penetrating peptide (FrFKFrFK)
phen	� 1,10-Phenanthroline
PLIM	� Phosphorescence lifetime imaging microscopy
STED	� Stimulated emission depletion microscopy
TAP	� 1,4,5,8-tetraazaphenanthrene

1  Introduction

Fluorescence microscopy is one of the most important and ubiquitous tools in the 
life sciences. Its applications vary from the simple visualisation of fixed samples 
to quantitative and dynamic determination of biological processes in living cells 
and tissues. Luminescent metal complexes are emerging as highly useful probes for 
fluorescence microscopy, competing with more traditional organic fluorophores due 
to their excellent, tuneable photophysical properties and their amenity to sensing 
applications.

Indeed, many metal complex luminophores are addressable through multimodal 
methods and offer prospects for applications in imaging, sensing and theranostics.

Probes with visible to near-infrared (NIR) excitation and emission are required in 
bioimaging. In particular, emission that coincides with the biological optical win-
dow (650–1000 nm) is preferable because NIR light is more isotropically scattered 
by tissue, and light in this frequency range is not absorbed by biomolecules. It is 
therefore more penetrative through biological tissue and moreover autofluorescence 
from endogenous sources upon NIR excitation is minimal. As luminescence from 
most transition metal complexes is formally phosphorescence, their emission exhib-
its a large Stokes shift (energy difference between absorption and emission max-
ima). This is advantageous as it avoids artefactual effects from inner filter effects or 
self-quenching, which may be more prevalent when the probe is localised at high 
concentrations. Another rarely considered advantage of the large Stokes shift is that 
it facilitates dual use of such complexes as probes in tandem luminescence and reso-
nance Raman measurements under resonant excitation, since the Stokes shift ena-
bles excitation and detection of the resonance Raman signature away from the over-
whelming emission signature [1, 2]. The long-lived and triplet nature of the excited 
state of many metal complex luminophores, notably those of ruthenium(II) and 
iridium(III), render them susceptible to quenching by analytes such as molecular 
oxygen (O2), reactive redox species or pH. The characteristic luminescence lifetime- 
or intensity-based response typically reflects the interaction of the metal complex 
with these species within a cellular or tissue environment.

Luminescence intensity-based sensing can be performed using conventional 
instrumentation such as a fluorescence microscope or plate reader. An important 
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limitation is that the absolute signal intensity alone, cannot typically be used as a 
reliable quantitative marker for a single target analyte because intensity in cellulo 
is influenced by many factors. Most notably, it will vary with distribution in the cell 
which is rarely uniform, and physiochemical issues such as photodamage, probe 
leaching and interaction with species such as proteins or lipid membranes within 
the cellular environment can influence emission intensity. Additionally, intensity 
can be affected by the excitation source or detector drift and sensitivity. A practical 
approach to facilitate use of emission intensity for sensing is to apply ratiometric 
sensing. The ratiometric approach involves referencing the sensor probe emission 
signal to a stable emission signal from a dye that does not respond to the analyte or 
species of interest, but is subject to the same instrumental fluctuations that influence 
the intensity of the analytical signal.

An alternative way to obtain insight into a particular analyte that is not dependent 
on dye concentration or instrumental fluctuations is to apply fluorescence lifetime 
imaging microscopy (FLIM), or phosphorescence lifetime in the case of most metal 
luminophores. It is a quantitative imaging technique that can be used for real-time 
mapping of the cellular and tissue microenvironment, including cell functions and 
metabolic changes where the lifetime of a fluorophore is influenced by its local envi-
ronment. As indicated, unlike intensity-based methods such as confocal fluorescence 
imaging, the image is independent of luminophore concentration, reflecting only the 
emission lifetime distribution of the probe.

A challenge that has traditionally impeded the application of metal complexes as 
bioimaging and biosensing probes is the poor uptake of such materials into cells. 
This has been widely overcome in recent years with a variety of strategies involving 
modification of the physicochemical properties of the complex or bioconjugation 
[3]. Conjugation of complexes to cell-penetrating and signal peptides specifically, 
has proven to be a particularly attractive and reliable method for achieving efficient 
cellular uptake without the use of permeabilisation agents. In particular, in the con-
text of metal complex luminophores, this approach has the potential to very specifi-
cally drive the probe to target organelles with complex membrane structures such as 
the mitochondria or nucleus.

This review focuses on the more commonly studied luminescent transition row 
complexes of Ru(II), Ir(III), Os(II) and Re(I) with some examples from less well 
studied transition metal complexes such as Pt(II), Pd(II), Rh(III) and Zn(II).

2 � Photophysical Profile of an Ideal Chromophore for Bioimaging

Luminescence imaging, including, particularly, confocal fluorescence and lumines-
cence lifetime imaging methods, are widely used techniques in biochemistry and 
molecular biology as they offer high contrast, sensitivity, good resolution and flex-
ibility in choice of luminophore probe. In addition, with commercialisation of more 
advanced imaging methods, including super-resolution and multiphoton methods, 
there is a growing need for probes that meet the demands of these methods, includ-
ing robust photostability, sensitive environmental responsivity, high membrane per-
meability and targeted localisation. Indeed, studies to date have demonstrated that 
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metal complexes can be applied in interrogating the cell environment and studying 
dynamic processes in vivo via a variety of imaging methods and that they have the 
synthetic versatility to tune to the desirable photophysical properties while maintain-
ing biocompatibility and low cytotoxicity.

2.1 � Favourable Properties of Metal Complexes

The ideal photophysical/optical characteristics of a luminescent imaging probe vary 
depending on the imaging methodology, although a number of characteristics are 
common to all, including the need for high molecular brightness (product of the 
molar extinction coefficient and quantum yield) and photostability. A diverse range 
of probes have been developed for fluorescence/luminescence imaging, including 
fluorescent proteins, expressed in  situ in the cell, or exogenously applied probes, 
including organic fluorophores, nanoparticles, quantum dots and metal complexes. 
Organic fluorophores such as rhodamine, cyanine dyes, and the Alexa Fluor and 
Atto dyes, have been used widely as contrast agents in fluorescence microscopy to 
date as they exhibit high molecular brightness and in the case of Atto and Alexa 
Fluor probes, show good photostability. However, intrinsic drawbacks of organic 
fluorophores include a narrow Stokes shift which leads to inner filter effects and 
self-quenching at high optical densities, and in many cases, limited photostability. 
They also frequently show poor solubility in aqueous media, and so, application in 
cells often requires pre-dissolution in organic solvent that promotes cellular permea-
tion but often through damage to the membrane. Finally, the short emission life-
time of organic fluorophores (usually in the range of 1–5 ns) is typically too short 
to enable time gating as a method to discriminate probe emission from background 
autofluorescence, and in sensing applications, limits quenching capability for diffus-
ing species (the dye singlet states limit oxygen sensing also).

Aside from time gating, another approach to avoid autofluorescence interference 
in cellular or tissue imaging is to use a probe that emits in the red or NIR spec-
tral range. Autofluorescence, excited at short excitation wavelengths, occurs from 
naturally fluorescent molecules within the cell and tissue environment or medium 
and usually decays on the nanosecond timescale. Nicotinamide adenine dinucleotide 
(NAD) and flavin adenine dinucleotide (FAD) are examples of intrinsic biological 
fluorophores for which several studies on their fluorescent properties have been car-
ried out. Even if, for example, in Stokes-shifted emission, the probe is excited in 
the blue visible spectral range, which excites autofluorescence, its detection can be 
avoided if the probe emission is in the red region. In the context of luminescence 
imaging, but also therapy, a probe absorbing in the low-energy visible or NIR region 
is also desirable as this allows for deeper light-tissue penetration and avoids bio-
logical damage from continuous photo-irradiation into spectral regions where there 
is absorbance by tissue [4–9]. This is illustrated in Fig. 1 where emission from an 
Os(II) polypyridyl complex in the 650–800-nm region avoids any significant back-
ground signal from biological autofluorescence of a multicellular spheroid [10].

Transition metal complexes have also shown good photostability, which is 
particularly robust in the case of osmium(II) polypyridyl luminophores, where 
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photodecomposition and photobleaching can be completely avoided. To date, the 
coordination compounds of the (second and third row) d6 metals Ru(II), Os(II) or 
Ir(III) are amongst the most widely studied transition metal imaging probes.

Figure 2 shows examples of luminescent metal complexes discussed in this sec-
tion, highlighting key ligands used as building blocks for the design and develop-
ment of metal complex luminophores.

Aside from their favourable photophysical properties, which are highly tunable 
due to the synthetic versatility of transition metal luminophores, metal complexes 
can also show good and also tuneable aqueous solubility, cell permeability and 
uptake and can be driven to subcellular structures through a range of approaches, in 
particular, as discussed in this review, by bioconjugation to peptides.

2.2 � Tuning of Photophysical Properties

The photophysics and photochemistry of the prototype metal complex [Ru(bpy)3]2+ 
has been very thoroughly studied, and it is often used as an example to describe 
the photophysical activity of Ru(II) complexes [11–14]. The ultraviolet spectrum 
of [Ru(bpy)3]2+ is dominated by intense π–π* ligand bands and the broad metal-
to-ligand charge transfer (MLCT) transitions in the visible region. Spin-forbidden 
transitions are facilitated by spin orbit coupling which can be very large for second 
and third row transition metals such as Ru(II) and Os(II) complexes. Upon photon 
absorption, the singlet 1MLCT excited state is populated and undergoes rapid inter-
system crossing ( k

ISC
 ), populating a triplet MLCT (3MLCT) excited state with unity 

quantum yield. In the case of [Ru(bpy)3]2+, deactivation from the lowest excited 
MLCT state to the ground state (1A1g in Oh symmetry) is observed through emis-
sion or non-radiative decay via thermally activated (Ea) population of the 3MC state 
(3T1g in Oh symmetry). This latter process can lead to ligand dissociation. Indeed, 
enhanced ligand dissociation following 3MC population is observed for sterically 
strained complexes or for complexes coordinated to ligands with a weak σ donor 

Fig. 1   Confocal imaging of a single live human pancreatic cancer (HPAC) spheroid treated with an 
Os(II) polyarginine probe, [Os-(R4)2]10+ at 100 μM/48 h. Using a 490 nm white light laser for excita-
tion, emission was collected between A 650 and 800 nm; Os(II) channel and B 500–570 nm; auto-fluo-
rescence window. C Os(II)/autofluorescence channel overlay. Reprinted (adapted) with permission from 
Ref. [10] (https://​pubs.​acs.​org/​doi/​10.​1021/​acs.​inorg​chem.​1c007​69). Further permissions related to the 
material excerpted should be directed to the ACS

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00769
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such as in Ru(II) 2,2′-biquinoline (biq) complexes [15], where reduced ligand field 
splitting capacity reduces the energy of the dissociative 3MC, facilitating its thermal 
population from the 3MLCT state. This is, for example, observed in [Ru(tpy)2]2+, 
where tpy is terpyridine, which exhibits a weak short-lived emission at room tem-
perature [16]. The rigid tpy ligands cause geometric distortion from the ideal Oh 
geometry and smaller N–Ru–N trans angles (158.6°) that give rise to a weaker 
ligand field reducing the energy of the 3MC state, thus facilitating radiationless 
deactivation [17].

Substitution at the 4′ position of the terpyridine ligands in [Ru(tpy)2]2+ with 
electron donor or acceptor moieties can enhance the excited state lifetime [18] by 
destabilising the metal-based highest occupied molecular orbital (HOMO) or stabi-
lising the ligand-based lowest unoccupied molecular orbital (LUMO), respectively. 
A review by Medlycott and Hanan reports on the various synthetic strategies used 
to enhance the room-temperature photophysical properties of Ru(II) complexes of 
tridentate ligands [17].

Emission from Ru(II) complexes typically occurs in the wavelength range of 
580–800 nm with λexc ≈ 400 to 550 nm. Luminescence lifetimes are typically on the 
order of hundreds of nanoseconds with quantum yields of 1–5% (e.g. [Ru(bpy)3]2+; 
φair = 0.04 in water [19]). Molecular brightness, which is defined as the product of 
molar extinction coefficient (ε) and quantum yield (φ), is an important photophysical 

Fig. 2   Chemical structures of selected luminescent metal complexes discussed in this section
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characteristic of an imaging probe, as it can determine the sensitivity and signal-to-
noise ratio for luminescence detection. Molar extinction coefficients for Ru(II) com-
plexes are in the range of 5000–20,000 M−1 cm−1 meaning, their molecular bright-
ness is moderate when compared to organic dyes such as fluorescein. Although less 
optically tuneable than Ir(III), modification of the σ-donor or π-acceptor properties 
of Ru and Os complexes can also be used to tune the photophysics of these com-
plexes. For example, coordination of strong π-acceptor ligands, such as 2,2′-biqui-
noline (biq), decreases ligand field strength and stabilises dπ orbitals, leading to 
red shifts in absorption and emission of Ru(II) complexes [20]. While, as described 
above, this can promote population of the 3MC state, simultaneous co-coordination 
of a strong σ-donor ligand such as pyridyl-1,2,4-triazolate (trz) will promote photo-
stability by raising the energy of the 3MC, thus preventing both thermal population 
of this state and potential photodecomposition. Thus, strategic co-mixing of ligands 
can promote red emission whilst impeding photoinstabilty [20, 21].

Alternative strategies to obtain Ru(II) complexes with NIR emission have 
included widening the bite angle of the coordinated ligand to increase the 
ligand field. For example, as mentioned, [Ru(tpy)2]2+ complex is short-lived 
with a weak emission at room temperature [16], whereas [Ru(terpy)(dgpy)]2+ 
(dgpy = 2,6-diguanidylpyridine and terpy = substituted 2,2′:6′,2′-terpyridine) com-
plex exhibits a NIR emission at 900 nm [22]. Widening of the ligand bite angle, such 
as in the case of [Ru(bqp)2]2+ (where bqp = 2,6-bis(8′-quinolinyl)pyridine), results 
in red shifted and long-lived luminescence at room temperature (τ ≈ 3 μs) [23].

While molecular brightness is modest for most Ru(II) complexes, this is less of 
an issue for Ir(III) complexes, and they are also inherently more sensitive to the 
impact of ligand modification due to mixing of ligand and metal states. Factors such 
as absorbance and emission maxima and molecular brightness are relatively easily 
modified through ligand modification. The excited states of Ir(III) complexes fre-
quently contain mixed contributions from both 3LC and 3MLCT and permit greater 
photophysical tuning, leading to complexes with a diverse range of emission proper-
ties across the visible to NIR spectrum. The photophysical properties of such com-
plexes can be tuned via a number of strategies via π-extension of the coordinated 
ligands, or their modification with electron donating/withdrawing substituents to 
cyclometalated ligands or by introducing an ancillary ligand, e.g. N, N coordinating 
ligands that have σ-donating or п-accepting properties [24–27]. A recent review on 
NIR-emitting Ir(III) complexes discusses in detail the different methods that can be 
utilised to tune the photophysics of Ir(III) complexes [28]. Of note, although Ru(II) 
complexes are typically weaker emitters and less amenable to photophysical tuning 
than Ir(III) complexes, an advantage is that they tend to exhibit lower cytotoxicity 
upon uptake into cells [29, 30].

Shifting the emission maxima toward the NIR region can also be achieved by 
selecting an alternative metal centre. Os(II) polypyridyl complexes exhibit emis-
sion typically centred in the NIR region (> 730  nm), which is advantageous in 
the context of bioimaging, including cellular and tissue imaging [31–35]. Os(II) 
complexes share many of the same photophysical properties with their ruthe-
nium analogues, with some key differences; The 3MC state is higher in energy 
in Os(II) complexes due to increased crystal field splitting that raises the energy 
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of the anti-bonding eg
* levels, making it thermally inaccessible from the emitting 

3MLCT state. Thus, Os(II) complexes are extremely photostable, and their photo-
physics tend to show weak temperature dependence compared to their ruthenium 
analogues [16].

However, in comparison to [Ru(bpy)3]2+, the 3MLCT excited state lifetime of 
Os(II) is much shorter-lived, and quantum yields are lower. This is a feature of 
the energy gap law which comes into play for red to NIR emission. It predicts that 
the non-radiative rate decay increases as the energy gap between the excited and 
ground state decreases [36]. Therefore, the low-energy MLCT in the case of Os 
complexes leads to efficient non-radiative decay.

The bis-terpyridine [Os(tpy)2]2+ complex, in contrast to [Ru(tpy)2]2+, exhib-
its an intense long-lived luminescence at room temperature due to the greater 
3MC/3MLCT energy gap [16].

Amongst the d6 complexes, rhenium(I) complexes, typically rhenium  fac  tri-
carbonyl polypyridyls, also exhibit attractive photophysical properties, including 
large Stokes shifts, long-lived oxygen sensitive emission, and high photostability. 
Thus, they have also been applied as bioimaging agents. Photophysical tuning of 
rhenium complexes is more challenging compared to complexes of Ru(II), Ir(III) 
and Os(II). In particular, the absorption of such complexes tends to be toward the 
UV or blue spectral range which limits suitability for imaging applications, espe-
cially in tissues. Nonetheless, NIR emission can be achieved by implementing the 
complex into a D-π-A system [37]. Due to the isostructural relationship between 
rhenium and technetium-99 m and their characteristic infrared absorption bands, 
complexes of rhenium(I) have been applied as probes for radio imaging and 
vibrational imaging, respectively [38, 39]. Furthermore, rhenium(I) tricarbonyl 
complexes have been developed as agents for photodynamic therapy as they tend 
to be strong photosensitisers for singlet oxygen generation [40, 41].

Pt(II)/Pt(IV) compounds have historically found application, mainly in ther-
apy as anticancer agents [42, 43], but have also been studied more recently in 
the context of imaging [44–46]. Luminescence and biocompatibility are prereq-
uisites for use in imaging, and numerous kinetically stable and emissive Pt(II) 
complexes have been reported. Pt(II) (d8) luminophores are distinctive from the 
complexes discussed above because of their square planar geometries, and Pt(II) 
luminophores have been based mainly on the general structures [Pt(C^N^N)(L)]n 
(C^N^N = aryl-substituted N^N ligand, L = monodentate ligand and n = 0 or + 1), 
cyclometalated tridentate (e.g. [Pt(C^N^C)(Cl)]) derivatives [47]. Tetradentate 
ligand and π-conjugated porphyrin coordinated Pt(II) luminophores have also 
been reported [48, 49]. Emission from cyclometalated tridentate complexes is 
usually attributed to a triplet intra-ligand charge transfer excited state (3ILCT), 
and so photophysical properties are tuneable through ligand modification [44]. 
π-Conjugated Pt(II) porphyrin complexes, in particular, can exhibit high quantum 
yields and NIR emission, but efficient and uniform cellular uptake can be prob-
lematic due to the large size of porphyrins. In addition, complexes of platinum(II) 
exhibit a square planar coordination geometry that can permit self-assembly 
by non-covalent π–π and/or Pt(II)–Pt(II) interactions and the prospect of triplet 
metal–metal-to-ligand charge transfer (3MMLCT) excited state emission [50, 51].
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Complexes of Rh(III) [52] and Zn(II) [53, 54] have also been applied in bioimag-
ing, but to date, to a lesser extent than the above metals.

2.3 � Reducing Toxicity by Ligand Modification

It is important to consider potential cytotoxicity, both dark and photo-induced, when 
designing a metal complex luminophore for bioimaging and sensing. The metal cen-
tre and coordinated ligands dictate the excited state and redox properties of a com-
plex, and these features, along with size, lipophilicity and overall charge, can gener-
ally influence cytotoxicity.

Owing to their long-lived triplet excited states, Ir(III), Re(I) and Ru(II) com-
plexes can induce cellular toxicity via a number of photochemical and photophysi-
cal routes. For example, incorporation of tap or hat ligands (tap = 1,4,5,8-tetraaza-
phenanthrene, hat = 1,4,    5, 8, 9,12-hexaazatriphenylene) in complexes of Ru(II), 
permits efficient proton-coupled electron transfer (PCET) reactions with bio-rele-
vant molecules such as DNA which can lead to cytotoxic effects. For example, the 
complexes [(N^N)2Ru(tatpp)]2+ (where N^N = bpy or phen and tatpp = 9,11 ,20,22 
-tetraazatetrapyrido[3,2-a:2′,3′-c:3′′,2′′-1:2′′′,3′′′-n]-pentacene) were shown to cleave 
DNA through a redox-mediated mechanism [55]. Sensitisation of reactive oxygen 
species (ROS), such as singlet oxygen, is another important route to photo-induced 
toxicity that can be exploited in photodynamic therapy applications [56, 57]

Another strategy to phototherapy and a route to cytotoxicity is photo-induced 
ligand dissociation or substitution which, as previously mentioned, is observed 
mainly in Ru(II) complexes upon thermal population of the 3MC states [15, 58]. 
Turro et al. investigated in detail the factors that affect ligand dissociation and sin-
glet oxygen generation and demonstrated how ligand tuning can be used to promote 
both reactions. As the ligand dissociation is thermally driven, it can be quite preva-
lent under cellular imaging conditions and used for application as such complexes 
as prodrugs [15, 59–62]. For example, Glazer et. al. have described a series of steri-
cally strained Ru(II) complexes that exhibit dramatically increased ligand photo-
release which results in a reactive ruthenium-aquo complex that can photo-bind 
DNA/biomolecules and trigger cellular apoptosis [63]. Conversely, osmium lumi-
nophores tend to be very photostable and relatively inert towards ligand substitu-
tion, thus reducing cytotoxic effects that occur through ligand dissociation routes 
[64, 65].

Lipophilicity often determines cellular uptake and influences intracellular accu-
mulation and localisation, thus affecting toxicity. Coordination to cyclometalated 
ligands has been shown to enhance lipophilicity and improve cellular uptake for irid-
ium and ruthenium complexes [66, 67]. For example, exchanging the bpy ligand in 
[Ru(bpy)2(dppz)]2+ for the cyclometalating 2-phenylpyridine (phpy) ligand yielded 
a lipophilic and cell-permeable Ru(II) complex [68]. However, the enhanced lipo-
philicity with cyclometalation can promote toxicity [69, 70].

While the nature of the ancillary ligands is important, chemical modifica-
tions to the ligand itself can also influence the lipophilicity and consequently 
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cellular uptake, localisation and cytotoxicity of the complex [71–73]. 
Increased lipophilicity and dark cytotoxicity was observed for Ru(II) bis-phen 
and bis-TAP complexes coordinated to a hydrophobic alkylamide phen ligand 
[74].

Glazer et al. reported on the uptake of two Ru(II) complexes differing in their 
charge but coordinated to the highly lipophilic dip (or dpp) ligand [75]. The 
complexes were successfully internalised by A549 cells where the lipophilic 
[Ru(dip)3]2+ (log P =  + 1.8) accumulated at the mitochondria and lysosomes, 
while the anionic and less lipophilic [Ru((SO3)2-dip)3]4− (log P = −2.2) localised 
in the cytosol and was mitochondrial-excluding. Both complexes showed photo-
induced toxicity, but interestingly, the mitochondrial accumulating complex also 
showed dark toxicity with an IC50 between 0.62 and 3.75 μM. This study high-
lights the importance of balancing charge and lipophilicity in order to modulate 
accumulation and limit cytotoxicity (Table 1).

Recently, Finn et  al. reported on functionalised Ru(II) complexes with pen-
dant and lipophilic alkyl-acetylthio chains of varying lengths [80]. The com-
plexes were capable of self-assembling into micelles under aqueous conditions 
and could traverse the cell membrane.

Polyethylene glycol has been conjugated to metal complexes to increase 
aqueous solubility and reduce dark cytotoxicity [81]. Reduced cytotoxicity was 
observed for cell-permeable Ir(III)-poly(ethylene glycol) (PEG) conjugates in 
comparison to the PEG-free counterparts [82, 83]. The long PEG chains likely 
protect the Ir(III) complexes from non-specific interactions with proteins, DNA 
and membranes within the cell.

Table 1   Lipophilicity and cytotoxicity of selected metal complexes upon synthetic modifications

a Lipophilicity, log Po/w, was estimated by the partition coefficient of each compound in octanol/water. 
Propidium iodide and Hoechst are both commercially available organic nucleic acid markers where the 
first is permeant only to damaged/dead cells, and the latter is cell-permeable. IC50 values for the metal 
complexes were determined based on incubation periods of 24 h unless stated otherwise where b48 h, 
c72 h

Compound log Po/w
a IC50 (μM) [cell line] References

[Ru(phen)3]2+ −0.33 268.0 [MCF-7]b [76]
[Ru(bpy)3]2+ −0.41 341.5 [MCF-7]b [76]
[Ru(pic)3]2+ +2.67 66.0 [MCF-7]b [76]
[Ru(bpy)2(dppz)]2+ −2.50 159.9 [HeLa] [68]
[Ru(dip)2(dppz)]2+ +1.30 – [77]
[Ru(dip)2(dppz-NH2]2+ −0.27  > 100 [HeLa]b [73]
[Ru(dip)2(dppz-CH2OH)]2+ −0.62 Cell-impermeable [HeLa] [73]
[Ru(bpy)(phpy)(dppz)]1+

phpy = 2-phenylpyridine
+1.00 0.6 [HeLa] [68]

[Os(phen)2(phpy)]+ +2.43 0.4 [A172]b [78]
[Ir(phen)(C^N)2]+

where N^C = 2-(p-tolyl)pyridine
+0.63 1.68 [HeLa]c [79]
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3 � Rationale for Peptide Conjugation to Transition Row Metal 
Complexes

Cell membrane permeability is a key barrier to the widespread application of 
metal complexes in cellular and tissue imaging. One widely used approach to 
overcome this challenge is the use of organic solvents such as dimethyl sulfox-
ide (DMSO) or detergents such as Triton-X to permeabilise the cell membrane 
of mammalian cells. Permeabilising agents act by disrupting the integrity of the 
membrane bilayer, thus promoting entry of the compound into the cell [84]. This 
approach is widely used for both organic fluorophores [85–87] and metal com-
plexes [88–91], though it is not always explicitly explained. A key drawback is 
that above relatively low volume percentages, e.g. for DMSO > 5% vol/vol, sol-
vent permeabilisation can cause irreversible damage to the cell membrane [92], so 
the approach should be used with care in the study of cultured cells and organic 
solvent as a permeant is of limited use in tissue or in vivo applications [93, 94].

Other approaches to improving permeability have focused on tuning the lipo-
philicity, charge and solubility of the complex which in turn can influence cel-
lular uptake and accumulation, as mentioned previously. The use of nanocarri-
ers [95–98], liposomes [99], dendrimers [100], sugars/carbohydrates [101, 102], 
polyethyleneglycol (PEG) chains [81, 82], vitamins [103–105], antibodies [106], 
lipophilic moieties such as triphenylphosphonium (TPP) [107], amino acids 
[108] and cell-penetrating peptides (CPPs) [81, 109–111] has also been shown 
to increase solubility and improve membrane permeability, facilitating reliable 
uptake of complexes within cells for a range of applications. Recent reviews 
describe the preparation and application of ruthenium bioconjugates [112] and 
vectorisation strategies of metal complex luminophores [3].

Following cellular uptake, subcellular targeting of organelles, such as to the 
mitochondria or nucleus, is typically of interest in the context of bioimaging/
sensing and therapy.

The nuclear envelope is a double membrane comprising of inner and outer 
nuclear membranes that converge at several sites, generating nuclear pores [113]. 
Uptake of ions and small molecules is mediated through the nuclear pores through 
a channel (~ 30 nm in diameter) via passive diffusion. In contrast, uptake of larger 
molecules is mediated through transport receptors [114]. The mitochondria also 
feature a double-membrane boundary, though structurally different to the nucleus. 
The inner mitochondrial membrane is far less permeable than the outer, allow-
ing only very small molecules to cross into the matrix where mitochondrial DNA 
(mtDNA) and other molecules of analytical interest are contained.

Peptide conjugation has emerged in recent years as a key enabling tool to pro-
mote cell uptake, particularly of non-membrane-permeable metal complexes or 
to enhance uptake and targeting of permeable complexes [115]. The mechanism 
by which peptides facilitate transport across the cell membrane is often linked to 
an energy-dependent process such as endocytosis. For example, the recognition 
of molecules by specific receptors located on the surface of the cell membrane 
can lead to a receptor-mediated endocytic pathway of uptake. In principle, it is 
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possible that the peptide may lower the uptake efficiency in comparison to the 
peptide-free complexes—for example, in instances where the complex is highly 
permeable through the membrane by passive diffusion due to their lipophilic 
character or in comparison to membrane modification methods such as use of 
permeabilisation agents. Lower uptake efficiency, however, is often balanced by 
improved precision in intracellular localisation and decreased cytotoxicity.

Peptide conjugation to metal complexes has been facilitated by a plethora of pep-
tide coupling reactions available to couple peptides to metal complexes, including, 
but not limited to, amine/carboxyl coupling reactions, “click” chemistry and Sona-
gashira coupling reactions.

Cell-penetrating and signal peptides specifically are proven reliable vectors 
for the efficient intracellular delivery of different metal complexes and for target-
ing organelles with complex membrane structures such as the mitochondria or the 
nucleus [10, 109, 116–119].

3.1 � Peptides

Peptides, short sequences (< 50) of amino acids linked by amide bonds, are physi-
ologically important biomolecules that serve in signalling processes and are ligands 
for many proteins. In the body, they function as hormones, inhibitors, antibiotics 
and anti-inflammatories, and both natural and synthetic peptides are finding increas-
ing use in therapeutic applications [120]. Peptides have been widely applied in the 
pharmaceutical industry to promote permeation of drugs across the membrane; in 
particular, cell-penetrating peptides (CPPs) have been very effective in this regard 
and have been applied both as appendages to therapeutic molecules and incorpo-
rated into nanocarriers [121]. One of the reasons that peptides have become so 
important in pharmaceuticals as cargo carriers is that they can be readily accessed, 
including linear and cyclic and branched peptides, through chemical synthesis. The 
most important route is through solid-phase peptide synthesis (SPPS), and for many 
peptide sequences, the synthesis can be automated with continuous improvements 
reported to protocols that lead to gains in speed, purity and yield. Furthermore, 
functional terminal groups can be readily appended in the synthesis protocol to 
facilitate conjugation [122]. The success of peptides in the pharmaceutical industry 
and also their application in driving organic imaging agents into cells has led to their 
application in recent years as conjugates to metal complexes to promote their cellu-
lar access and targeting.

3.1.1 � Cell‑Penetrating Peptides (CPPs)

The ability of cationic peptide sequences to cross the cell membrane and facilitate 
uptake of small molecules was first demonstrated in 1965 by Ryser and Hancock 
with the cationic amino acid-mediated enhanced uptake of albumin followed by 
studies on conjugation of poly-l-lysine to albumin and horseradish peroxidase [123, 
124].
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The most studied cell-penetrating peptide is likely the arginine-rich HIV-Tat 
transduction protein (RKKRRQRRR​) from the human immunodeficiency virus 
[125, 126]. Homopolymers of arginine (polyarginines) have shown superior cel-
lular uptake compared to other cationic analogues such as ornithine and histidine 
[127]. With studies showing no strict requirement for side chain length or backbone 
chirality (D-Arg vs L-Arg), it was concluded that the guanidinium head groups of 
arginine units are the structural features crucial to cellular uptake. Barton et al. first 
reported peptide-facilitated cellular uptake of rhodium complexes [52]. In order to 
reduce nonspecific DNA binding owing to the highly charged R8, a shorter pep-
tide sequence, RrRK (where r = d-arginine), was conjugated to a Ru(dppz) complex, 
achieving cellular uptake and nuclear accumulation above a threshold concentra-
tion of 100  μM in complete media [128]. Cargo transduction occurs for arginine 
sequences of Argn or Rn, where n = 6–11 residues, with octaarginine (Arg8) and 
nonaarginine (Arg9) being most efficiently transported. Our group has reported the 
efficient transport of an otherwise cell-impermeable Ru(II) polypyridyl complex, 
[Ru(bpy)2(pic)]2+, via conjugation to octaarginine [88]. The conjugate was found to 
passively transport into myeloma cells within 12 min. In addition, studies showed 
that Arg5 or lower conjugates are not effective in promoting metal complex permea-
tion. Wender et al. reported similar decrease in uptake efficiency of shorter polyar-
ginines [129]. Polyarginine sequences have been extensively explored for promoting 
or enhancing cellular uptake of metal complexes with applications ranging from bio-
imaging to medicinal chemistry [29, 88, 116, 130–133]. More specifically, octaargi-
nine-driven cellular uptake has been reported for a range of otherwise impermeable 
luminescent complexes differing in their metal centre (e.g. Ru(II), Os(II), Ir(III)) 
and coordinated ligands [10, 88, 116, 117, 131]. The effect of conjugation to pep-
tides on the DNA recognition properties of Ru(II) and Ir(III) complexes has also 
been explored [30, 116, 134]. Recent studies showed that appending an R8 tail to 
the Ru(II)-dppz complex increased its affinity for G-quadruplexes and that both the 
ancillary ligand and the octaarginine tail were key to control the selectivity between 
quadruplexes [134].

We have also demonstrated that two tetraarginine sequences across a linear 
osmium(II) complex promote cellular uptake, whereas the analogue containing R8 
at each terminal was membrane-impermeable. Our data indicated that a contiguous 
structure may not be required for octaarginine-facilitated transport and that there is 
an upper limit to the arginine chain length effective in promoting membrane trans-
port of the metal complex [10].

There have been multiple pathways and mechanisms proposed to explain polyar-
ginine CPP behaviour. Although there are a number of studies that report that pol-
yarginines can promote permeation through a passive mechanism [135] or through 
local changes at the membrane [136], the key pathway in live cells appears to be 
ATP-activated endocytosis [137]. Polyarginine interactions with cell surface lipids 
and formation of neutral complexes that transport across the bilayer have also been 
reported, as well as surface attachment through interactions with heparan sulfate 
proteoglycans (HSPG) [138–142].

Penetratin, a cationic peptide sequence (RQIKIWFQNRRMKWKK) correspond-
ing to the R-helix of the Antennapedia homeodomain, is capable of crossing lipid 
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bilayers and is also quite widely applied cell-penetrating peptide [143]. Studies have 
shown that the uptake mechanism involves direct interaction of the peptide with 
membrane lipids and does not involve vesicle disruption or pore formation [144, 
145]. Peptide conjugation of penetratin to [Ru(bpy)2-phen-Ar-COOH]2+ (Fig.  3) 
allowed for delivery of the complex to the endoplasmic reticulum in live HeLa cells 
[117].

3.1.2 � Signal Peptides

Although cell-penetrating peptides such as polyarginines can facilitate efficient cell 
permeability, more targeted subcellular organelle targeting of imaging probes or 
theranostic agents can be achieved using signal peptides. Natural signal peptides are 
amino acid sequences appended to the N termini of newly synthesised proteins in 
the ribosome that direct the protein from the ribosome along its secretory pathway 
to its destination. Such signal peptides can provide a powerful means of directing 
exogenous probes to their target within the cell, and naturally derived peptides have 
been applied in this regard, and designed sequences have been shown to be recog-
nised by proteins in organelle membranes [146].

Nuclear localisation signal (NLS) peptides derived from transcription factors can 
cross the cellular membrane and enter the nuclear envelope. To date, NLS sequences 
that have been derived from transcription factors include NFκB, TCF1-α, TFIIE-β, 
Oct-6 and SV40 [147–149]. Studies by Ragin et  al. demonstrated that the NLS 
peptide, VQRKRQKLMP, derived from NFκB, was effective in promoting nuclear 
penetration [148]. Based on this finding, Keyes’s and co-workers exploited NFκB 
transcription factor bioconjugation for the efficient and selective nuclear uptake of 
Ru(II) complexes [2, 119, 150]. Gasser et al.  reported on functionalisation of Ru(II) 
complexes with a nuclear localisation signal peptide (L-Arg-D-Arg-L-Arg-L-Lys-
CONH2) linked via a photolabile protecting group (PLPG); the resulting conjugates 
showed preferential nuclear accumulation in HeLa and MRC-5 cell lines [151]. A 

Fig. 3   Chemical structures of peptide conjugates [Ru(bpy)2phen-Ar-ER)]9+ cells [117], Ru(bpy)2phen-
Ar-R8)]10+ cells [117] and Ir-CMYC [153]
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study by the same group described the nuclear delivery of derivatised Re(I) quinolyl 
complexes using the nuclear localisation sequence, CRRRK [152].

In a recent study by Pope et  al., an alternative nuclear localisation sequence, 
PAAKRVKLD (Fig.  3), was conjugated to a cyclometalated iridium(III) complex 
[153]. The c-Myc NLS is derived from the human c-Myc protein and is essential for 
its nuclear localisation [154]. The Ir-CMYC conjugate was efficiently delivered to 
the nucleus of human fibroblast cells and was essentially non-toxic, in contrast to the 
peptide-free parent complex [153].

Cellular uptake of cyclometalated iridium(III) complexes upon conjugation to an 
endoplasmic reticulum (ER)-targeting sequence (KDEL) and the NLS PKKKRKV 
(derived from SV40 large T antigen) has also been explored [155]. Interestingly, 
although the ER-targeting conjugate accumulated at the endoplasmic reticulum, the 
NLS conjugate showed non-specific staining attributed to endosomal trapping upon 
uptake. Ypsilantis et al. presented a detailed study of the interaction of diruthenium 
complex peptide conjugates with an oligonucleotide duplex and found that the teth-
ered peptide Gly1-Gly2-Gly3-Lys1 CONH2 hindered complex binding [156].

Mitochondria-penetrating peptides (MPPs) have been employed for the spe-
cific targeting of mitochondria for imaging and therapy. Kelley et al. carried out a 
detailed iterative study on synthetic peptide sequences relating to signal sequences 
effective in promoting mitochondrial targeting of fluorescent probes/drug analogues 
[157]. Amongst the most effective of the sequences studied was an 8-amino acid 
sequence, FrFKFrFK, containing D-arginine and hydrophobic residues [157]. Keyes 
et  al. exploited this sequence and the acetyl-blocked sequence, FrFKFrFK(Ac), to 
effectively and selectively drive mono- and dinuclear Ru(II) complexes to the mito-
chondria of mammalian cells[118, 119]. As discussed in detail in later sections, 
such MPP-driven complexes have been applied as bioimaging and sensing tools in 
live mammalian cells. For example, [(Ru(bpy)2phen-Ar)2-MPP]7+ showed dynamic 
response to variations in oxygen and ROS levels [118], whereas [Ru(dppz)(bpy)
(bpy-Ar-MPP)]5+ was used as a light switch probe for mitochondrial nucleoid imag-
ing [119]. Bis-conjugation of the MPP sequence to an achiral Os(II) complex gener-
ated a NIR probe showing concentration-dependent cell death that could be tracked 
on the basis of probe localisation using confocal microscopy, offering a potential 
theranostic probe [158].

3.1.3 � Receptor‑Targeting Peptides

The peptide sequence Arg-Gly-Asp (RGD) has been applied to mediate spe-
cific binding with integrin receptors and has been extensively used in cancer drug 
research as integrin receptors, such as ανβ3, which are overexpressed in certain 
tumour cells [159–161].

Adamson et  al. first reported on RGD-labelled luminescent metal polypyri-
dyl complexes [110]. Complexes of ruthenium(II) were conjugated to a linear 
RGD peptide with the objective of targeting platelet integrin, αIIbβ3 to, through 
emission anisotropy, reflect integrin conformation status. Integrins are adhesion 
receptors and transmembrane proteins that undergo large conformational changes 
and clustering on activation that alters their affinity for their receptors, and RGD 
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is a peptide motif recognised by all integrins [162]. The yielded [Ru(N^N)(pic-
RGD)]2+ (where N^N = bpy or dpp) conjugates showed high binding affinity and 
specificity for αIIbβ3, and through alterations in metal complex photophysical 
behaviour and anisotropy, it was possible to distinguish between different acti-
vation states of integrin. A two-step binding was determined for [Ru(dpp)2(pic-
RGD)]2+ with Kd1 = 0.25 ± 0.29 μM and Kd2 = 4.37 ± 0.82 μM. Additionally, con-
focal imaging revealed that both bpy-RGD and dpp-RGD conjugates selectively 
bind to CHO cells expressing the resting form of αIIbβ3.

In spite of their biomedical importance, there are surprisingly few examples 
of linear- or cyclic-RGD-metal complex conjugates either applied as therapeutic 
agents [111, 163, 164], luminescent probes [110] or both [165–167].

A zinc phthalocyanine complex conjugated to a cyclic RGD peptide displayed 
dramatically higher cellular uptake in αvβ3

+ U87-MG cells compared with the 
αvβ3

− MCF-7 cells [168]. A recently reported Ru-cRGD (cyclic RGD) conjugate 
exhibited strong two-photon luminescence and showed preferential accumula-
tion in malignant cells with promising potential as a theranostic agent [167]. In 
an alternative system, dual-imaging nanoprobes were prepared by conjugating 
iridium(III), gadolinium(III) and RGD onto silica nanoparticles [169]. The water-
soluble particles permitted in  vitro and in  vivo studies using confocal lumines-
cence imaging and magnetic resonance imaging.

Certain vectors can be used to target cells that overexpress key receptors such 
as folate, transferrin and somatostatin at the membrane surface of different dis-
ease states [170–173]. For example, enhanced uptake of a somatostatin-targeting 
Ru(II) conjugate was achieved in A549 cells overexpressing somatostatin recep-
tors [173]. Although the conjugate did not act as a bioimaging probe, it showed 
excellent photosensitised toxicity with an IC50 of 300 μM in the absence of light 
versus an IC50 of 13 μM upon irradiation (PI > 23).

Similarly, a redox active Pt(IV) complex was coordinated to the tumour-
penetrating sequence (TKDNNLLGRFELSG) that targets the membrane protein 
heat shock protein 70 positive (memHSP70+) which is upregulated in colorectal 
cancer cells but is not usually found in healthy tissues [174]. The Pt(IV) com-
plex is reduced in the cell to Pt(II), releasing the axial ligands and leading to 
cytotoxicity[175].

This strategy of conjugation to tumour recognition or penetrating sequences can 
also be exploited in the design of targeted probes for bioimaging. For example, 
C–X–C chemokine receptor 4 (CXCR4) is overexpressed in over 23 different types 
of cancer and is more prevalent in malignant cancer tissue [176]. With this consid-
eration, a rhenium(I) tricarbonyl complex was conjugated to a derivative of T140 
(14 amino acid sequence), a known antagonist of CXCR4, and showed potential as 
an imaging agent for CXCR4 expression that was capable of differentiation between 
cancerous and healthy tissue [177, 178]. Kuil and co-workers had previously pre-
sented an iridium(III)–peptide conjugate for FLIM-based visualisation of CXCR4 
expression in cells by conjugating the complex to a series of Ac-TZ14011 peptides 
[179].

Vallaisamy et  al. reported on an iridium(III) complex conjugated to the hexa-
peptide MKYMVm, the peptide agonist, which selectively targeted formyl peptide 
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receptor 2 (FPR2) in live cells [180]. Formyl peptide receptor plays an important 
role in chemotactic signals and modulation of host defence and inflammation [181].

Gasser et  al.  have functionalised Ru(II) and Re(I) complexes with the peptide 
bombesin (BBN, 14 amino acid sequence) in order to enhance uptake and accumu-
lation of the complexes selectively in cancerous cell lines [151, 152]. The peptide 
BBN, Fig.  4, is structurally similar to the human gastrin-releasing peptide (GRP) 
and is recognised and internalised by GRP receptors that are overexpressed in some 
cancer cell lines [182, 183].

A series of zinc phthalocyanine peptide conjugates were synthesised to target 
gastrin-releasing peptide (GRP) and integrin receptors [184] in order to initiate a 
targeted therapeutic effect.

Agorastos et al. reported a rhenium tricarbonyl complex functionalised with acri-
dine orange that could selectively stain the cell nucleus of both mouse melanoma 
(B16-F1) and human prostate adenocarcinoma cell line (PC-3) cells [185]. Conju-
gation of the complex to the bombesin peptide resulted in cell-specific uptake. The 
peptide conjugate was membrane-impermeable to B16F1 cells, but readily perme-
ated into PC-3 cells. Cell-specific uptake was achieved by exploiting the lack of 
gastrin-releasing peptide (GRP) receptors in B16F1 cells, but which are expressed 
in PC-3 cells. Interestingly, conjugation to the peptide prevented the ability of the 
complex to enter the nucleus.

A short peptide based on the endogenous opioid pentapeptide ligands was cho-
sen for the preparation of luminescent heterobimetallic Ir(III)/Au(I) conjugates that 
were found to be membrane-permeable, and localise in the lysosomes of A549 cells 
[186].

A rather different type of recognition occurs in the case of peptide nucleic acids 
(PNAs). PNAs are non-natural DNA/RNA analogues that consist of N-(2-aminoe-
thyl)glycine units which form a pseudopeptide backbone bearing the four nucle-
obases. They thus exhibit strong affinity for nucleic acid strands [187]. PNA con-
jugation has been explored in the development of luminescent rhenium-PNA 
conjugates for cell imaging and DNA targeting [188–191].

Fig. 4   Structure of Re(I) complex conjugated to a nuclear localisation signalling (NLS) peptide or a 
bombesin (BBN) derivative peptide sequence used to improve uptake of the complex by cancer cells 
overexpressing the gastrin-releasing peptide receptor (GRPR) [152]
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Although it is outside of the scope of this review on peptide-driven luminescent 
metal complexes, it is important to note that there are also several reports on metal 
polypyridyl complexes conjugated to proteins. For example, Ru(II) complexes have 
been conjugated to protein G [192], cytochrome c [193] and human serum albu-
min (HSA) protein [194] for various applications. Chakrabortty et  al. presented a 
protein-Ru(II) hybrid with photosensitising properties which targets the mitochon-
dria [194]. In this case, the Ru(II) complex was conjugated to HSA protein and 
covalently decorated with mitochondria-directing triphenylphosphine groups, thus 
achieving cellular uptake and specific subcellular accumulation.

4 � Luminescent Metal Complex Peptide Conjugates Applied 
in Bioimaging

Early examples of peptide-conjugated metal complexes in confocal imaging 
are described in studies carried out by Barton et  al. Conjugation to octaarginine 
enhanced cellular uptake of rhodium(III) 5,6-chrysenequinone diimine (chrysi) and 
ruthenium(II) dipyrido-phenazine (dppz) complexes, and interestingly, attachment 
of a fluorescein moiety, in the case of the Ru(II)-dppz complex, led to nuclear locali-
sation [52, 130]. Our group has focused extensively on the design and development 
of peptide metal complex conjugates for bioimaging, sensing and theranostics. A 
series of otherwise cell-impermeable ruthenium(II), iridium(III) and osmium(II) 
complexes have been conjugated to cell-penetrating and signal peptides and have 
been studied using confocal microscopy, lifetime imaging and resonance Raman 
spectroscopy. Recently, a polyarginine Os(II) probe was used in imaging of pancre-
atic multicellular tumour spheroids, marking the first step towards the application of 
such luminescent peptide probes in tissue imaging [10].

4.1 � Cytoplasm

Octaarginine CPPs drive cellular uptake and internalisation, usually into the cell 
cytoplasm, resulting in cytoplasmic or non-specific staining. Cell-permeable R8-con-
jugates have been explored as bioimaging probes, namely [Ir(dfpp)2(picCONH)
R8]9+ [29] and Ru(bpy)2(phen-Ar-R8)]10+, for confocal and high-resolution stimu-
lated emission depletion (STED) imaging [117], and [Os(bpy)2(pic-R8)10+ and 
[Ru(bpy)2(pic-R8)]10+ for confocal and phosphorescence lifetime imaging micros-
copy (PLIM) studies [131], and [Os-(R4)2]10+ for confocal/lifetime imaging of two-
dimensional (2D) and three-dimensional (3D) cell cultures [10]. Figure 5 illustrates 
the dye distribution of key examples of octaarginine conjugates of Ir(III), Ru(II) and 
Os(II). Conjugation to Arg8 rendered all three complexes membrane-permeable in 
aqueous solution without the requirement for permeabilisation agent such as deter-
gent or organic solvent. Fei et al. also reported on cytoplasmic and vesicular staining 
in HeLa cells following incubation with a histidine-targeting Ir(III)-HTat conjugate 
[195].
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A fused peptide consisting of a nona-arginine fragment attached to a sequence 
(RHVLPKVQA = Aβ aggregation inhibitor) with anti-amyloid activity was labelled 
via a histidine residue to a platinum(II) complex [196]. The resulting luminescent 
conjugate was studied in cells and was shown to stain the cytoplasm of HeLa cells. 
In vivo studies in Drosophila melanogaster showed that the luminescent platinum 
conjugate could permeate the blood brain barrier of these organisms and evenly dis-
tribute in the brain. This work highlighted the use of fused peptides as vectors to 
penetrate the blood brain barrier while also selectively targeting biorelevant mol-
ecules or, in this case, inhibit the formation of amyloids.

Using “click” chemistry, a rhenium(I) tricarbonyl complex was attached to a lipo-
peptide known to increase cell permeability [197]. The addition of the myristoylated 
HIV-1 TAT (myr-Tat) peptide to the rhenium complex substantially enhanced uptake 
in cells compared to the peptide-free complex and showed cytoplasmic accumula-
tion with partial nucleoli staining.

4.2 � Nucleus, DNA/RNA

The interaction of metal complex luminophores with nucleic acid materials has been 
the subject of extensive study since the 1980s. This has led to deep insight into the 
nature of metal complex–DNA interactions, expanding the prospects for both intra-
cellular sensing and photo therapy by these species. Increased understanding of the 
factors that can be used to promote metal complex permeation and organelle target-
ing have led to the application of such complexes to study nucleic acid materials in 
cells, with several studies now reporting on the nuclear uptake and staining of metal 
peptide conjugates used for imaging or sensing of DNA within live cells [198–200].

One of the earliest of such studies was reported by Brunner and Barton who uti-
lised functionalised rhodium complexes with octaarginine peptides to study DNA 
mismatches [52]. The rhodium complexes were capable of specifically binding to 
DNA mismatches where they can photocleave the DNA adjacent to the mismatch. 

Fig. 5   Confocal luminescence imaging of live mammalian cells incubated with octaarginine conjugates 
of Ir(III), Ru(II) and Os(II). A Ir-R8 in CHO cells at 70 μM/15 min incubation [29], B Ru-R8 in HeLa 
cells at 70 μM/4 h incubation (Reproduced from Ref. [117] with permission from the Royal Society of 
Chemistry) and C Os-R8 in CHO cells at 70 μM/2 h incubation in the absence of light at 37 °C (Repro-
duced from Ref. [131] with permission from the Royal Society of Chemistry)
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The rhodium complex conjugated to an octaarginine peptide appended to fluorescein 
was rapidly internalised within the cell and localised in the nucleus. It was noted that 
the presence of the peptide led to binding of matched DNA (electrostatic interaction 
between peptide and DNA), although the photocleavage only occurred at DNA mis-
matches as desired.

We reported that  specific nuclear targeting could be achieved using the afore-
mentioned transcription factor NFκB and that the localisation of the complex in the 
nucleus seems to be dictated by the lipophilicity of the complex. As shown in Fig. 6, 

Fig. 6   Chemical structures of NLS-driven nuclear targeting Ru(II) complexes and representative images 
of their corresponding application in mammalian cells. A  [Ru(bpy)2(pic-NLS)]6+(i) and [Ru(dpp)2(pic-
NLS)]6+  (ii) showing nuclei and nucleolus staining, respectively (Reproduced from Ref. [150] with per-
mission from the Royal Society of Chemistry). B Confocal (i) and STED (ii) images of [Ru(dppz)(bpy)
(bpy-Ar-NLS)]6+ nuclear and chromosomal DNA staining (Reproduced from Ref. [117] with permission 
from the Royal Society of Chemistry). C Following DNA binding of Ru-TAP-NLS in live HeLa cells, 
continuous photoirradiation of selected cells resulted in cellular damage as indicated by DRAQ 7 nuclear 
staining in blue [2] (Reprinted (adapted) with permission from Burke C. S. et. al. [2]. Copyright 2018 
American Chemical Society)
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both [Ru(bpy)2(pic-NLS)]6+ and [Ru(dpp)2(pic-NLS)]6+ (where bpy = 2,2-bipy-
ridine, dpp = 4,7-diphenyl-1,10-phenanthroline and pic = 2-(4-carboxyphenyl)-imi-
dazo-[4,5-f][1,10]-phenanthroline) were efficiently transported across the cell and 
nuclear membrane in Chinese hamsterovary (CHO) cells [150]. However, the more 
hydrophilic bpy-NLS showed nuclear staining, whereas the dpp-based conjugate 
showed accumulation in the nucleolus, thus highlighting that the lipophilic character 
of the metal complex remains important even in intraorganelle distribution.

High-resolution imaging of chromosomal DNA was achieved using a Ru-dppz 
NLS conjugate, [Ru(dppz)(bpy)(bpy-Ar-NLS)]6+, which also allowed tracking of 
the different stages of mitosis in HeLa cells using STED [117]. In a separate study, 
the [Ru(tap)2(bpy-Ar-NLS)]6+ showed nuclear penetration and DNA binding indi-
cated by the extinguished complex emission [2]. In an example of the multimodal 
addressability of such complexes, they were confirmed to remain present in the 
nucleus after emission extinction by resonance Raman microscopy. With the aim of 
extending the application of Ru-NLS conjugates toward theranostics, it was shown 
that upon in  situ photoirradiation, cellular destruction is accomplished, attributed 
to DNA oxidation by photo-induced electron transfer from a guanine base and the 
Ru(II) complex, analogous to a mechanism reported for related tap complexes in 
solution [201].

A rhenium complex conjugated to an NLS peptide was reported to exhibit nucle-
olar localisation and efficient singlet oxygen generation under light irradiation in 
polar (Φ = 0.25) or lipophilic (Φ = 0.75) environments [202]. This luminescent 
probe is attractive for dual application in both imaging and photodynamic therapy as 
it exhibits low dark toxicity (IC50 = 35 µM), but enhanced toxicity under UV irradia-
tion. In a separate study, the derivatised and caged Re(I) complex, Re-PLPG, was 
coupled to an NLS peptide that showed penetration into sub-cellular compartments 
such as the nucleoli, thus allowing interaction of the complex with nucleic acids 
[152].

Metal complex peptide nucleic acid (PNA) conjugates are a useful approach 
to probe different nucleic acid strands due to their ability to hybridise to their 
complementary oligonucleotide strands with high specificity which is advan-
tageous in sensing and therapy. For example, the Re(I)-PNA conjugate, 
[(CO)3Re(pyridazine-PNA)(Cl)2Re(CO)3], suitable for two-photon excitation 
(λexc 750 nm), revealed cytoplasmic and nuclear staining in HEK-293 cells attrib-
uted to PNA–nucleic acid binding [188]. Notably, small concentrations of DMSO 
were required for uptake of the conjugate. The emission wavelength was substan-
tially altered depending on sub-cellular localisation and could be used to differ-
entiate between the cytoplasm and the nucleus. The difference in emission energy 
is attributed to the difference in polarity/rigidity between the different locales. A 
follow-on study by the Licandro research group on related rhenium complexes 
conjugated to different PNA sequences revealed difficulties in cell studies, includ-
ing poor solubility and endosomal entrapment [189]. These issues are frequently 
encountered in biological studies of metal complexes and can hinder sensing and 
imaging applications due to a low rate of cell uptake and off-target localisation.
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4.3 � Mitochondria

The nucleus is the primary location of DNA within the cell, but the mitochondria 
is also an important repository. Although containing much less DNA, it contains 37 
genes in total that encode proteins and RNAs critical for energy transduction.

A histidine-binding Ir(III) complex was bis-conjugated to an HTat sequence 
and a mitochondrial targeting sequence derived from the mitochondrial protein 
cytochrome P450 [195]. The conjugate was membrane-permeable and efficiently 
targeted the mitochondria.

In a recent publication, precision targeting of mitochondrial DNA in live HeLa 
cells was achieved using an MPP-driven light-switching RuII-dppz complex [119]. 
Confocal laser scanning microscopy showed rapid cellular uptake of [Ru(dppz)(bpy)
(bpy-Ar-MPP)]5+ in live HeLa cells, and localisation to mitochondrial sub-structures 
was confirmed using luminescence lifetime imaging (Fig. 7). Solution titration with 
ctDNA showed that the DNA binding ability of the parent complex, mediated by 
dppz intercalation, is retained for the RuII-dppz MPP conjugate. Additionally, an 
increased binding constant was reported, which was attributed to electrostatic inter-
actions between the polycationic sequence of MPP and the anionic DNA backbone. 
The conjugate showed low cytotoxicity in the dark and under imaging conditions, 
thus facilitating mtDNA visualisation. Photo-induced toxicity was observed only 
under continuous and intense irradiation, enabling controllable initiation of cell 
death, making it an interesting prospect for theranostic applications.

Recently, the successful conjugation of an osmium(II) complex to two mitochon-
drial-penetrating peptides was reported [158]. The bis-MPP conjugate strongly con-
fined to the mitochondria at and below concentrations of 30  μM and leached out 
of the organelles and into the cytoplasm over time. At increased concentrations, it 
showed cytoplasmic and even nucleoli staining, leading to cell death. This localisa-
tion switch was also reflected by the cell death mechanism, where at 30 μM, loss of 
the membrane potential was observed, whereas at increased probe concentrations, 
a moderate effect on depolarisation and a greater caspase activity was observed 
instead.

4.4 � Endoplasmic Reticulum (ER)

The endoplasmic reticulum (ER) in eukaryotic cells is the site of synthesis and 
processing of many transmembrane and secretory proteins, synthesis of lipids and 
calcium regulation. Accumulation of unfolded or misfolded proteins trigger an ER 
stress response which regulates cell functions to either restore ER homeostasis or to 
induce apoptosis for damaged cells. Complexes that target the ER may be used as 
imaging tools to study the endoplasmic reticulum and processes, such as ER stress, 
or as therapeutic tools, as the ER signalling pathways have been linked to various 
diseases, including cancer.

The ruthenium(II) complex [Ru(bpy)2-phen-Ar-COOH]2+, exhibiting an emission 
maximum at 604 nm, was conjugated to the penetratin/ER cell-penetrating peptide, 
yielding the [Ru(bpy)2-phen-Ar-ER]9+ bioconjugate [117]. The conjugate was used 
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for super-resolution (STED) imaging of the endoplasmic reticulum in HeLa cells as 
shown in Fig. 8. Bright punctuate spots are observed in the confocal image, whereas 
STED imaging reveals the tubular structures of the ER.

4.5 � Lysosome

Lysosomes are subcellular organelles that are surrounded by a single membrane and 
are characterised by an acidic interior environment (pH ∼ 4.5 to 5), in contrast to 
mitochondria, for example, which are alkaline (pH ∼ 8). Lysosomes play an impor-
tant role in cellular processes, including homeostasis [203], energy metabolism 
[204], enzymatic activity [205] and autophagy [206] which is also related but not 
limited to inflammatory diseases. Monitoring changes in the lysosomal environment 
including pH variations can aid understanding of lysosomal function and dysfunc-
tion. Furthermore, lysosomes are emerging as attractive therapeutic targets [203]. 
For example, cyclometalated iridium(III) complexes were applied as pH-activatable 
cell imaging agents and photosensitisers, highlighting the dual application of such 
probes for photodynamic therapy and real-time therapeutic monitoring [207].

With the aim of developing potential theranostic agents, Fernández-Moreira et al. 
reported the preparation of peptide-linked bimetallic Ir(III)/Au(I) conjugates [186]. 
The luminescent properties of the iridium moiety permitted confocal imaging and 
tracking of the conjugates upon cellular uptake and lysosomal accumulation, and 

Fig. 8   Confocal (left) and STED (inset) imaging of [Ru(bpy)2-phen-Ar-ER]9+ − (70 μM/4 h)-stained ER 
in a single fixed HeLa cell. The plot profile compares the full width at half maximum (FWHM) of confo-
cal (*blackcoloured em dash*) versus STED (*red coloured em dash*) resolution. Reproduced from Ref. 
[117] with permission from the Royal Society of Chemistry
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the coordination sphere of the gold appeared to influence cytotoxic activity. The 
cysteine-containing conjugate showed antiproliferative activity which is thought to 
be attributed to the readily cleaved Au–S(cysteine) bond.

A Ru(II)-cyclodextrin-RGD nanoassembly reported by Mao et al. was found to 
accumulate in lysosomes of integrin-rich tumour cells and trigger apoptosis through 
lysosomal damage, ROS elevation and caspase activation [166]. Uptake of nano-
particles via an endocytic mechanism frequently results in lysosomal accumula-
tion. Endocytosis is generally associated with endosomal entrapment in early or late 
endosomes which then fuse with lysosomes at a later stage if they are not released to 
the cytoplasm.

Recently, the bridged octaarginine conjugate, [Os-(R4)2]10+ was found to be 
taken up initially into the cytoplasm of A549 cells prior to accumulating in lyso-
somal structures at 30  μM/48  h [10]. This permitted both confocal imaging and 
luminescence lifetime mapping of the intracellular environment, including potential 
response to redox species as discussed later. Although lysosomal accumulation is 
desired in the context of therapy or redox and pH sensing, endosomal entrapment 
can hinder delivery of a luminophore probe or nanoparticle to the desired intracel-
lular destination. The recently reported RuBDP nanoparticles were found to local-
ise in late endosomes and lysosomes of A549 cells [208]. The particles ratiometri-
cally responded to fluctuations in oxygen concentration and, interestingly, exhibited 
emission enhancement within 4  h following initial uptake, the origin of which is 
thought to reflect endosomal escape. Endosomal escape is a topic that is particularly 
important in drug delivery, and approaches addressing this challenge have focused 
on promoting endosomal membrane fusion and destabilisation or pore formation in 
the endosomal membrane [209, 210]. In addition, several endosomal escape agents 
have been identified, such as chemical agents or viral- and bacterial-derived proteins 
and peptides [211]. Following protocols emerging in this domain, e.g. through mod-
ifying the particle composition to achieve pH-induced release [211, 212], efficient 
endosomal escape and specific organelle targeting may further expand the applica-
tion of nanoparticles and probes.

5 � Sensing Capabilities of Peptide Metal Complex Conjugates

Taking advantage of the excellent targeting capability of peptides, there are several 
examples of emissive metal complex conjugates that have been applied for sens-
ing of bio-relevant species such as oxygen and molecules including DNA and pro-
teins. The characteristic luminescence lifetime- or intensity-based response typically 
reflects the interaction of the metal complex with these species within a cellular 
environment.

Coordination of responsive ligands allows for the design and preparation of com-
plexes with a responsive luminescence. For example, complexes of dipyrido[3,2-
a:2′,3′-c]phenazine (dppz) and its derivatives exhibit no luminescence in aque-
ous solution, but emission is switched on in hydrophobic environments, such as 
upon DNA binding, leading to the design and development of a range of DNA 
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“light-switch” dppz complexes [213, 214]. Sensing of important molecular struc-
tures can be enhanced via coordination of the lipophilic diphenyl phenanthroline 
(dpp) ligand, for example, which also allows for cellular uptake and targeting of 
lipid-rich regions [75, 110, 150]. Incorporation of a targeting vector allows for tar-
geted sensing. For example, conjugation of a Ru(II) sensor to a mitochondrial-pen-
etrating peptide enables monitoring of local oxygen fluctuations in live cells using 
either emission intensity or lifetime imaging.

5.1 � Oxygen

There are several methods applied traditionally for monitoring and measuring dis-
solved oxygen in biological systems, for example, Clark-type O2 electrodes [215], 
electron paramagnetic resonance (EPR) probes [216] and microelectrodes or nee-
dle probes [216–220]. However, there is a demand for less invasive techniques 
for O2 sensing and particularly for sensing modalities that can be readily followed 
dynamically intracellularly with as little as possible interference with the cell. For 
this reason, quenched phosphorescence-based O2 sensors are particularly attrac-
tive for intracellular oxygen (icO2) sensing. Ideal characteristics of an intracellular 
oxygen sensor include high oxygen responsivity, photostability, cell uptake efficacy, 
molecular brightness, biocompatibility, cytotoxicity and subcellular targeting ability 
where desired.

There are numerous examples of emissive probes that have been applied for oxy-
gen sensing using lifetime- or intensity-based methods. As mentioned, a key advan-
tage of lifetime sensing is that emission lifetime is largely independent of probe 
concentration. A drawback though is that phosphorescence lifetime imaging/sensing 
requires a microscope coupled with a lifetime/FLIM unit, which is rather a special-
ist technique, not a routine tool in many bio-laboratories. Whereas, intensity-based 
sensing can be performed using conventional instrumentation such as a fluorescence 
microscope or plate reader. Intensity-based sensing measurements, as described, can 
be applied where the probe species is combined with a reference, which overcomes 
issues of concentration and other artefacts in an intensity-based measurement. The 
choice of modality for O2 sensing will also depend on the sample for analysis. For 
example, using a conventional plate reader, intensity-based measurements permit 
parallel analysis of monolayer cells exposed to various conditions in a single experi-
ment while also carrying out the measurement in multiplicate. For three-dimen-
sional cell models or tissue samples, PLIM is typically the method of choice as it 
allows visualisation of spatial O2 distribution throughout the sample.

Complexes of ruthenium(II), iridium(III) and Pt(II) or Pd(II) porphyrins are 
amongst the most widely studied oxygen sensors owing to their long-lived triplet 
excited states which are highly susceptible to oxygen quenching, giving a character-
istic lifetime- and intensity- based response to oxygen concentration, as described by 
the Stern–Volmer equation.

Phosphorescent Pt(II) and Pd(II) porphyrins exhibit phosphorescence lifetimes 
ranging from 40 to 100 μs and 400 to 1000 μs, respectively [221]. Papkovsky and 
co-workers have worked extensively on Pt(II) and Pd(II) porphyrin probes which 
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show good photostability and efficient quenching by oxygen [222–225]. The solubil-
ity of such probes in water and targeting ability can be improved by conjugation to 
protein cargos, PEG chains or cell-penetrating peptides [224, 226–229]. Dmitriev 
et  al. presented a Pt(II) coproporphyrin conjugated to a peptide fragment derived 
from the antimicrobial bactenecin 7 peptide [227]. The conjugate showed efficient 
cellular uptake across several cell lines, cytoplasmic and mitochondrial accumula-
tion and was used for monitoring intracellular O2 levels upon exposure to metabolic 
stimuli reagents. The application of this conjugate and similar Pt(II) coproporphy-
rins in cells can be hindered by poor photostability and potential photocytotoxic 
effects.

Although somewhat limited by their photostability, iridium(III) complexes have 
shown promise for in vitro and in vivo oxygen and hypoxia mapping and low cyto-
toxicity against 2D cell monolayers [230–235].

Ir(III) dyads such as the iridium–coumarin ratiometric probe, C343-Pro4-BTP 
reported by Yoshihara et al., have been developed for ratiometric intensity-based O2 
sensing [236]. In this report, the coumarin moiety (C343) is linked to the iridium 
(BTP) complex through a tetraproline amino acid linker, and upon excitation at 
405 nm, energy transfer from C343 to BTP yields emission from both dyad compo-
nents at 480 nm and > 610 nm, respectively. The phosphorescence emission signal 
of the iridium is quenched by oxygen, and the ratio of the emission from the dyad 
moieties exhibits an O2-dependent response both in solution and in live HeLa cells. 
In later studies, octaproline [234] and octa- and dodecaarginine [237] linkers were 
utilised in coumarin–iridium(III) dyads in order to enhance cellular uptake to enable 
ratiometric imaging of the oxygen gradient in HeLa cells.

Several complexes of ruthenium(II) have demonstrated in cellulo oxygen response 
as molecular probes or part of a dual emissive dyad [238–240]. In the context of pep-
tide conjugates, Keyes’ group presented the octaarginine conjugate, [Ru(bpy)2(pic-
R8)]10+ [1, 88], whose luminescence lifetime, similar to the parent complex, was 
oxygen-sensitive. Confocal imaging revealed rapid uptake of [Ru(bpy)2(pic-R8)]10+ 
in myeloma cells and human blood platelets, and lifetime imaging was used for cel-
lular oxygen mapping where, for example, the probe lifetime was shortest (~ 400 ns) 
when the conjugate localised in the cell membrane. This agrees with the increased 
solubility of oxygen in the cellular membrane. Although the emission lifetime of 
this complex is strongly oxygen-dependent, the quenching constant by O2 is largely 
pH-independent.

The advantage of peptide vectorisation is that it may enable real-time monitoring 
of local oxygen fluctuations at a specific cellular region or organelle, and cross-reac-
tivity may be minimised if other parameters remain unchanged while the analyte of 
interest is varied. For example, the mitochondrial-targeted Ru(II) conjugate reported 
by Keyes et  al. showed dynamic response to changes in local oxygen concentra-
tions and to elevated levels of reactive oxygen species using luminescence intensity 
and lifetime imaging [118]. The dinuclear ruthenium(II) probe was bridged across 
a mitochondrial-penetrating peptide yielding [(Ru(bpy)2)2(phen-MPP-phen]7+. Fol-
lowing exposure of HeLa cells to antimycin A, a mitochondrial uncoupler agent, 
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PLIM studies showed that average emission lifetime of [(Ru(bpy)2phen-Ar)2-
MPP]7+ in live HeLa cells was quenched from approximately 525–228 ns, as shown 
in Fig. 9.

Cross-responsiveness with other environmental factors such as pH, proteins/
enzymes and lipidic environments is a key limitation of lifetime imaging for single 
probes in the cell environment and indeed in molecular probes in general, as it is dif-
ficult to decouple or calibrate the analytical probe and/or reference from other poten-
tial environmental influences in the complex cell matrix. However, in studies like 
these, where relative changes to analyte are followed rather than studies of absolute 
concentration, this may be less of an issue. Nanoparticle probes offer some advan-
tages in this regard.

Nanoparticle (NP)-based systems have inherent advantages in terms of their cell 
permeability once they are between 50 and 200 nm and have appropriate lipophilic-
ity and surface charge. Several NP O2 sensor formats have been reported; they com-
prise of either (1) an O2 probe alone or (2) a probe reference pair that generates a 
ratiometric signal through Förster resonance energy transfer (FRET)  or (3) a probe 
reference pair that has independent emission signals that do not require cross-com-
munication but can be excited at a single wavelength [241–250].

Of the latter type, our group has reported a ratiometric core–shell nanosen-
sor, Ru-BODIPY NP, where the BODIPY reference probe was confined to a 

Fig. 9   Luminescence lifetime imaging of [(Ru(bpy)2)2(phen-MPP-phen]7+ in live HeLa cells, in response 
to antimycin A treatment. PLIM was carried out following A incubation with Ru(II) conjugate at 70 μM 
for 2 h in the absence of light, and treatment with antimycin A (200 μg/ mL) for B 10 min and C 100 min 
[118]. Reprinted (adapted) with permission from Martin et al. [118]. Copyright 2014 American Chemi-
cal Society
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polystyrene core, offering its protection from environment, and so a stable refer-
ence signal and a ruthenium probe conjugated to the poly-lysine shell exterior 
allowing direct exposure to the environment and O2 accessibility [241]. In the 
Ru-BODIPY nanoparticle system, the O2 indicator and reference dye are spatially 
separated into a particle core and shell, thus limiting any potential cross-commu-
nication, and they are simultaneously excited at a single wavelength. The nano-
particles showed good ratiometric response to oxygen in aqueous media with a 
rate of quenching of 7.52 × 108  M−1 s1. The emission intensity ratiometric data 
showed moderately good linearity (R2 = 0.9525) over a biologically relevant O2 
range. Following surfactant-mediated uptake of RuBODIPY NPs in CHO cells, 
lifetime imaging studies showed that the emission lifetime of the BODIPY dye, as 
expected, was unaffected by the surrounding intracellular environment in contrast 
to the ruthenium probe, demonstrating the potential of the core–shell approach to 
designing new ratiometric nanotools.

Aiming to overcome the need for a membrane permeabilising agent, a ratio-
metric sensor was then developed where the Ru(II) oxygen sensor and reference 
BODIPY dye are co-encapsulated within the particle core which is permeable to 
oxygen, and the particle exterior is decorated solely with a poly-l-lysine shell 
[208]. This approach indeed permitted uptake of the self-referenced O2 nanopar-
ticles in live mammalian cells, demonstrating the impact of even relatively mod-
est surface modification of the particle on uptake. Importantly, the particles were 
suitable for both non-invasive hypoxia imaging using confocal microscopy (xyλ 
scanning) and for quantitative ratiometric intensity-based measurements of oxy-
gen in cellulo using a plate reader assay. The isolation of the probe to the particle 
core protected it  from environmental factors other than oxygen, but may impact 
dynamic response as the oxygen must diffuse through the particle matrix to reach 
the probe.

5.2 � pH

pH is an important regulator of metabolic processes in the cell and is believed to 
play a role in signalling. pH varies across the cell organelles, and its homeostasis 
may be a marker of cell health. Therefore, sensing intracellular and organelle pH 
is an important target analyte that has been the focus of studies in metal lumino-
phore probes. A pH- and oxygen-sensitive iridium(III) complex was prepared by 
coordinating two cyclometalated ligands [2-(2, 4-difluorophenyl)pyridine; dfpp] 
to an Ir(III) centre along with the pic(COOH) ligand, 2-(4-carboxylphenyl)imi-
dazo[4, 5-f][1,10]phenanthroline, carrying a terminal carboxyl moiety, thus per-
mitting amide coupling to an octaarginine sequence in order to improve aqueous 
solubility [29]. The parent complex exhibited a lifetime of approximately 674 ns 
in degassed organic media which was reduced to 200  ns in degassed aqueous 
media at pH 6.9. Cytotoxicity studies showed that both the Ir(III) parent com-
plex and conjugate were cytotoxic towards SP2 and CHO cell lines. The cyto-
toxic character of iridium complexes has been reported in a number of studies 
[69, 251], and it is likely that increased cytotoxicity compared to other transition 
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metal luminophores is the result of its lipophilic nature inducing rapid uptake and 
wide distribution of the conjugate within cells.

Chao et al. reported an iridium(III) pH sensor that was coordinated to ligands 
containing morpholine groups [252]. They observed that morpholine promoted 
mitochondrial targeting, and the pH dependence of the emission intensity of the 
probes was explored in HeLa cells where extracellular pH was adjusted and from 
6.0 to 8.0 in high-K+ media; equilibration with the cell interior was achieved 
by application of nigericin, a membrane-associating antiporter ionophore for 
K+ and H+. The emission intensities from the complexes within the cell were 
observed to respond to pH in the range of 6.0–8.0. On stimulation of apoptosis in 
the cells, using mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydra-
zine (CCCP), the emission intensity of the probes in the mitochondria was also 
observed to modulate; however, attributed to pH change, other quenching species 
may evolve in the mitochondria as a consequence of uncoupling.

As previously described, the octaarginine-driven conjugate [Ru(bpy)2(pic-
R8)]10+ was applied as a probe for oxygen mapping using lifetime imaging [1, 
88]. The emission lifetime of this complex is strongly oxygen-dependent, but the 
quenching constant by O2 is largely pH-independent, which serves the use of the 
probe in O2 mapping. Conversely, resonance Raman spectroscopy, and therefore 
the Raman signature signal of the probe, is strongly pH-dependent and is insensi-
tive to O2, thus enabling use of the probe in pH mapping using resonance Raman 
spectroscopy. The probe permits multi-parameter monitoring and mapping of the 
intracellular environment using a single probe, single excitation and two imag-
ing techniques enabled by the large Stokes shift of Ru(II) polypyridyl complexes. 
Ligands such as pic in this complex or dppz and bpy exhibit signature Raman 
signals when they participate in the MLCT the excitation is resonant with, and 
in the case of the ionizable pic ligand, its Raman signature grows into resonance 
depending on the pH of the environment/ionisation of the pic imidazole residue, 
thus providing a distinctive pH marker.

5.3 � Biorelevant Molecules: Receptors, Proteins, Enzymes

Lo et  al. presented a series of cyclometalated Ir(III) complexes containing a per-
fluorobiphenyl (PFBP) moiety and their respective conjugates, afforded through 
reaction of PFBP with the cysteine moiety in a four amino acid sequence (FCPF, 
known as “π-clamp”) [155]. Following this π-clamp-mediated cysteine conjuga-
tion, novel Re(I) conjugates were prepared and applied as imaging agents but also as 
enzyme sensors [253].

An early study, presented by Stephenson et al., described conjugation of a rhe-
nium complex to the peptide fMLF which is known to deliver to the formyl peptide 
receptor (FPR) [254]. A qualitative comparison of the cell uptake and distribution 
between a known FPR-targeting fluorescent probe (fluorescein-labelled fNLFNTK) 
and the rhenium-fMLF conjugate suggested that the rhenium probe successfully tar-
geted the FPR.
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As mentioned earlier, a rhenium(I) tricarbonyl complex was conjugated to 
a derivative of T140, a known antagonist of CXCR4 and a chemokine receptor 
which is overexpressed in cancer cells [177]. The rhenium conjugate was success-
ful in sensing CXCR4, evident by a strong luminescence signal detected from cells 
expressing CXCR4, whereas no luminescence was detected from cells lacking the 
receptor.

Although rhenium peptide conjugates have been exploited as luminescent probes 
for interrogating different cell receptors, there has been an alternative motivation for 
synthesising rhenium peptide conjugates as structural analogues for “hot” techne-
tium complex conjugates. However, in several studies, the radioactive technetium 
peptide conjugate was utilised to study specific cell receptors via radioimaging tech-
niques, for instance, SPECT [255–258].

Although not exploited for its sensing capabilities, a zinc phthalocyanine com-
plex conjugated to a receptor-targeting peptide, LARLLT, was reported to exhibit 
high selectivity for the epidermal growth factor (EGF) which tends to be overex-
pressed on the surface of cancerous cells [259]. Conjugation to the peptide increased 
the photodynamic efficacy and selectivity of complex against cancer cells with dif-
ferent receptor expression levels.

5.4 � Reactive Oxygen and Nitrogen Species (ROS/RNS)

Reactive oxygen species and reactive nitrogen species are highly reactive,  often 
radical species, generated as part of metabolic processes within the cell. They are 
potentially injurious to the cell if not regulated. ROS and RNS are numerous and 

Fig. 10   Confocal fluorescence (left) and luminescence lifetime imaging (right) of [Os-(R4)2]10+ confined 
in lysosomes at 30 μM in live A549 cells. The Os(II) conjugate exhibited lifetimes of 37 ± 1.8 ns (54%) 
and 9.3 ± 0.6 ns (32%). Reprinted (adapted) with permission from Ref. [10] (https://​pubs.​acs.​org/​doi/​10.​
1021/​acs.​inorg​chem.​1c007​69). Further permissions related to the material excerpted should be directed 
to the ACS

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00769
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00769
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include species such as superoxide (O2
·−), hydroxyl (·OH), peroxyl (RO2

·) and 
alkoxyl (RO−) radicals nitric oxide, peroxynitrite, nitrate, nitrite and nitrogen diox-
ide. RNS and ROS generation pathways are inter-dependent. For example, peroxyni-
trite (ONOO−) is the product of a reaction between nitric oxide (NO) free radicals 
and superoxide and at abnormal levels, can induce oxidative changes in intracellular 
molecules, including DNA and proteins [260].

Monitoring changes in oxygen, RNS and ROS levels within the cell and par-
ticularly within the mitochondria, one of the key cellular sources of such species, 
is invaluable in understanding both normal physiology and disease, and also in 
understanding toxicity and therapeutic response.

As mentioned earlier, the mitochondria-targeting Ru(II) probe, 
[(Ru(bpy)2)2(phen-MPP-phen]7+, is capable of responding to changes in local O2 
concentrations and also to elevated ROS levels [118].

Recent studies have highlighted the potential of Os(II) polypyridyl complexes 
for detection of oxidative damage and intracellular reactive oxygen species [10, 
261, 262]. The absence of oxygen sensitivity in the case of Os(II) complexes but 
potential redox sensitivity offers an advantage in their application as intracellular 
sensors over complexes of ruthenium or iridium. For example, phosphorescence 
lifetime imaging studies revealed that the emission lifetime of the polyarginine 
Os(II) conjugate, [Os-(R4)2]10+, was found to vary with intracellular localisation 
[10]. When confined to the lysosomes and surrounding cytoplasm, [Os-(R4)2]10+ 
exhibited reduced lifetimes in comparison to when it was initially taken up into 
the cytoplasm of cells. For example, the dominant amplitude component of the 
decay was measured as 92.2 ± 2.9  ns upon cytoplasmic uptake and 37 ± 1.8  ns 
upon lysosomal accumulation. This lifetime quenching is likely due to the pres-
ence of redox-active species as the probe luminescence was not sensitive to oxy-
gen or pH changes [10]. Figure  10 shows the confocal and lifetime imaging of 
[Os-(R4)2]10+ upon lysosome localisation at 30 μM/48 h. Lifetime imaging stud-
ies were also carried out following uptake and accumulation of the probe within 
pancreatic 3D multicellular tumour spheroids, thus highlighting the suitability of 
such probes for monitoring metabolic changes in cells, spheroids or tissues with-
out interference from oxygen.

The mitochondria-localised ruthenium(II) complex–cyanine (Ru-Cy5) scaffold, 
although peptide-free, is a good example of the application of such transition metal 
probes for in cellulo sensing and imaging, in this instance, of peroxynitrite in cells 
[263]. This energy transfer-based probe constituted a Ru(II) complex as the energy 
transfer donor and Cy5 as energy transfer acceptor. Following cellular uptake and 
mitochondrial localisation in HeLa cells, the emission of Cy5 was decreased in the 
presence of ONOO− as a result of oxidative cleavage of the polymethine bridge 
which interrupts the energy transfer between Ru(II) and Cy5. The Ru-Cy5 system 
showed low cytotoxicity, efficient mitochondrial accumulation and good selectivity 
for ONOO− (over other reactive species).

Although there are some additional examples of non-peptide metal complexes 
which exhibit a luminescence response to NO [264, 265] or radical species such 
as hypochlorite [266], there are to date limited reports of peptide metal conjugates 
which have been applied for monitoring intracellular redox species.
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5.5 � Cell Membrane Markers

Again reflecting the versatility of Ru(II) complexes as multiparameter and multi-
modal imaging tools, [Ru(dppz)2(pic-Arg8)]10+ was used in confocal luminescence 
and resonance Raman imaging [109]. Owing to the dppz ligands, the complex 
behaved as a molecular light switch where the luminescence of the complex is extin-
guished in aqueous solution, due to hydrogen bonding to the phenazine nitrogens, 
but switched on in lipid vesicles. Resonance Raman intensity mapping revealed that 
the octaarginine conjugate crossed the membrane and distributed throughout the 
cell, whereas the parent complex accumulated in the cell outer membrane.

PLIM mapping of a related osmium octaarginine conjugate, [Os(bpy)2(pic-
Arg8)]10+, revealed that the emission lifetime of the complex changed in response 
to the intracellular environment [131]. For example, the average lifetime was found 
to be 11.6 ± 0.4 ns in the cytoplasm of CHO cells and 14.5 ± 0.5 ns in SP2 cells. 
Additionally, a lifetime of 13 ± 1.5 ns and 18.8 ± 0.6 ns was observed for the mem-
brane of CHO and SP2 cells, respectively. As the lifetime of the complex is oxy-
gen-independent, this response may be due to differences in the lipid packing of the 
cell membrane of each cell line. As mentioned earlier, a variation in lifetime was 
observed for the Ru(II) analogue, [Ru(bpy)2(pic-Arg8)]10+, conjugate which was 
attributed to the increased solubility of O2 in the cellular membrane, thus reflect-
ing cell membrane oxygenation [88]. Figure  11 illustrates the PLIM mapping of 
[Os(bpy)2(pic-Arg8)]10+ and [Ru(bpy)2(pic-Arg8)]10+ in SP2 cells.

Fig. 11   Phosphorescence lifetime imaging of A [Os(bpy)2(pic-R8)]10+ (70  μM/24  h) and B 
[Ru(bpy)2(pic-R8)]10+ (350 μΜ/15 min) in live SP2 cells. The false colour images and intensity mapping 
highlight the differences in emission lifetime of the luminophore depending on its localisation in the cell. 
The emission lifetime of the osmium(II) conjugate was 14.5 ± 0.5 ns in the cytoplasm and 18.8 ± 0.6 ns 
at the cell membrane. Reproduced from Ref. [131] with permission from the Royal Society of Chemistry
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6 � Conclusions

Metal complex luminophores have been widely explored as probes of biological 
molecules, particularly of DNA in its variety of motifs, since the 1980s. In the past 
decade, their putative application as probes within the cellular environment has 
been realised, and metal complex luminophores are now rapidly extending beyond 
the scope of in vitro studies to diverse applications in cellular imaging, intracellular 
sensing and theranostics.

The beauty of metal complexes is that they are highly synthetically versatile and 
can be tailored to their application by tuning their photophysical properties (e.g., 
molecular brightness, NIR emission), through modification of the metal centre and/
or the coordinated ligands, through relatively facile synthetic methods. They can be 
tailored to meet the demands of the technique used for imaging or sensing whether 
that is phosphorescence lifetime imaging microscopy, luminescence intensity-based 
sensing using a plate reader or vibrational imaging such as Raman mapping.

Critically, metal complex luminophores can be readily conjugated to vectorising 
functionalities to facilitate cellular uptake and intracellular targeting. Peptides are a 
valuable means of promoting such permeation and targeting within cells, and their 
efficacy in this regard has been known for many years in drug delivery. As signal 
molecules, they can drive their cargo very precisely within the cell. Peptides can 
confer improved solubility and lower cytotoxicity on their cargo and can be syn-
thesised readily via high throughput and often automated solid-state synthesisers. 
Conjugation of metal complexes to cell-penetrating and signal peptides has been 
used for the efficient delivery of complexes in cell monolayers, but also recently in 
multicellular spheroids. Peptides, to date, have been very effective in driving com-
plex cargo to the cell and targeting, but the mechanism is not fully elucidated; for 
example, the role of the counter-anions accompanying the charged conjugate seem 
to have a strong effect on membrane permeability, but remains to be fully explored 
and exploited. The possibilities are extensive, and metal complex luminophore pep-
tide conjugates are likely to find increasing application in theranostic applications.

Although peptides can promote fairly rapid cellular uptake (i.e. < 1–24  h) 
required for imaging, the application of the metallo-peptide conjugates in bioas-
say experiments has been less explored. In terms of the metal complex  photo-
physics, key future challenges lie in maximising probe brightness, as inorganic 
luminophores do not compete well with organic fluorophores in this regard, but 
maximising the absorbance cross section and tuning analytically relevant respon-
sive luminescence will ensure that even if they do not match organic probes in 
terms of emission quantum yield, they offer versatile alternatives.

Another challenge is the in cellulo limit of detection and limit of quantification 
of the species that the probe is sensing. The influence of the incredibly complex 
cytosol composition or organelle environment complicates photophysical effects 
and sensing capability.

Metal complex luminophores translate well to confocal luminescence imag-
ing techniques that permit focused interrogation of a specific cell region to yield 
site-specific biorelevant information with good optical sectioning and indeed look 
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likely to provide important solutions in super-resolution methods too. In particu-
lar, lifetime imaging is the method of choice for visualising spatial oxygen distri-
bution in cells and particularly in multicellular spheroid samples. However, metal 
complex luminophores are less widely tested in the more common and conven-
tional methods used in biological labs. In particular, as probes for plate reader-
based bioassays in 96-well format which are a widely used and high-throughput 
approach where emission, lifetime or absorbance is collected from multiple cells 
across a well format. Highly selective probe targeting or switchable probes would 
be required with limited contribution from emission of the complex outside the 
region of interest for such applications. The targeting ability of the conjugate 
dye would also have to be extremely precise. Few of the dyes described above 
meet this criterion of highly specific localisation that would be required for a well 
format assay yet. Nonetheless, they have proven to be effective imaging probes 
for investigating cellular membrane dynamics, sensing receptor expression and 
monitoring redox species in mitochondria, pH fluctuations and DNA interactions 
under imaging conditions in cellulo and look likely with further advances in pre-
cision targeting to emerge as powerful tools for diverse bioanalysis.
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