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Abstract

Protein-ligand scoring functions are widely used in structure-based drug design for fast evaluation

of protein-ligand interactions, and there is of strong interest to develop scoring functions

with machine learning approaches. In this work, by expanding the training set, developing

physically meaningful features, employing our recently developed linear empirical scoring

function Lin_F9 (J. Chem. Inf. Model. 2021, 61, 4630 – 4644) as the baseline, and applying

extreme gradient boosting (XGBoost) with Δ-machine learning, we have further improved

robustness and applicability of machine-learning scoring functions. Besides the top performances

for scoring-ranking-screening power tests of CASF-2016 benchmark, the new scoring function

ΔLin_F9XGB also achieves superior scoring and ranking performances in different structure types

that mimic real docking applications. The scoring power of ΔLin_F9XGB for locally optimized

poses, flexible re-docked poses and ensemble docked poses of CASF-2016 core set achieve

Pearson’s correlation coefficient (R) of 0.853, 0.839 and 0.813, respectively. In addition, large-

scale docking-based virtual screening test on LIT-PCBA dataset demonstrates the reliability and

robustness of ΔLin_F9XGB in virtual screening application. The ΔLin_F9XGB scoring function and

its code are freely available on the web at: (https://yzhang.hpc.nyu.edu/Delta_LinF9_XGB)
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INTRODUCTION

Molecular docking is one of widely utilized computational tools for structure-based

drug discovery that attempts to predict the ligand binding pose and provide an estimate

of binding affinity for protein-ligand complex.1–3 The most critical component of

docking is the scoring function, and a robust scoring function should perform well

across a variety of applications.4–11 In recent years, a variety of machine-learning

(ML) scoring functions12–25 have been developed and outperformed classical scoring

functions at retrospective benchmarks, and some scoring functions also performed well

on prospective structure-based virtual screening (SBVS) application, such as AtomNet26

and vScreenML.27, 28 Wallach et al introduced AtomNet, the first CNN-based scoring

function incorporating 3D structural information, and they applied AtomNet in several VS

campaigns.26, 29–31 Adeshina et al proposed the vScreenML and used it for prospective

SBVS against human acetylcholinesterase (AChE).27 Besides the generic scoring functions,

target-specific ML scoring functions have been developed to focus on certain protein target

or family,20, 21, 32, 33 which can outperform other models on that particular target case.

However, the target specific scoring function approach will not be applicable for a novel

target with little experimental data available. Thus, it is of significant interest to develop

robust ML scoring functions.

Several key metrics5–9 have been developed to assess performance of scoring function

for different tasks, including: (I) scoring, which assesses the linear correlation between

predicted and experimental measured binding affinities; (II) ranking, which evaluates the

ranking ability of a scoring function to rank the known ligands for a certain target protein by

predicted binding affinities; (III) docking, which evaluates the ability of a scoring function

to identify native binding site and binding mode of ligand among computer generated

decoys; (IV) screening, which assesses the ability to identify true binders for a given target

from random molecule libraries. Extensive retrospective and comparative studies1, 5–9, 34–42

demonstrate that some widely used classical scoring functions, such as GlideScore43, 44

and Autodock Vina45, perform relatively well in docking and screening tasks, but their

scoring power are less satisfactory. Many ML scoring functions have achieved significantly

better scoring power on crystal structures.17–19, 25, 33, 46–63 However, more extensive

evaluations indicate that this enhancement in scoring performance accompany with

significant under-performance in docking and screening power tests compared to classical
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scoring functions.64, 65 It remains a challenge for the scoring function development to not

only improve scoring power, but also perform well for docking and screening tasks.

To tackle the challenge, recently we have employed the Δ-machine learning approach,66, 67

in which a correction term to the Vina scoring function is parametrized with machine

learning, to develop two successive scoring functions, ΔvinaRF2066 and ΔVinaXGB,67

achieving top performances for all metrics of CASF-2016 benchmark compared to 33

classical scoring functions. On the other hand, based on a small high-quality training

data, we have developed a linear empirical scoring function, Lin_F9, which achieves better

scoring and ranking powers than Vina on different structure types, including crystal pose,

local optimized pose and docked pose.68 Lin_F9 has been successfully applied to virtual

screening and rational design of SARS-Cov-2 main protease inhibitors.69

A major motivation for the current work is to use Lin_F9 as the new baseline scoring

function and incorporate Δ-Learning machine learning approach to further enhance scoring

and ranking performances on different structure types. Here, Δ-Lin_F9 machine learning

strategy via eXreme Gradient Boosting (XGBoost)70 have been explored. The training set

is enlarged to include more experimental measured weak binders. One is crystal structures

with weak binding affinities obtained from updated PDBbind database71, 72. The other is

to use computer-generated decoys with weak binding affinities obtained from BindingDB

database73, 74. In addition, in order to learn from docked poses, top 1 docked poses from

end-to-end (E2E) docking are also included in the training set. More details of E2E docking

protocol are described in Methods. For feature exploration, the previous used Vina 58

features in ΔVinaXGB is replaced by a specialized Vina 48 features, in which polar-polar,

polar-nonpolar, nonpolar-nonpolar, hydrogen bond and metal-ligand interactions in different

distance ranges are described using a series of gauss functions. The overall feature set

consists of 76 protein-ligand features and 16 ligand-specific features.

In this article, we described the development of a new state-of-the-art scoring function

ΔLin_F9XGB. The overall evaluation indicates that ΔLin_F9XGB can not only perform

consistently among the top compared to classical scoring functions in CASF-2016

benchmark, but also achieve superior prediction accuracy on different structure types,

including docked poses that mimic real docking applications. In addition, we evaluated

the screening performance of ΔLin_F9XGB on LIT-PCBA dataset,75 which consists of 15

diverse target proteins with large-scale experiment-verified actives/decoys. The ΔLin_F9XGB
scoring function and its code are freely available on the web at: (https://yzhang.hpc.nyu.edu/

Delta_LinF9_XGB).

METHODS

Data Preparation

Training Set—The main component of our training set is inherited from the previous

ΔVinaXGB’s training set, which is based on PDBbind (v2016) database71 and CSAR decoy

set76, 77. The details of this component can refer to the paper.67 We cleaned the data by

removing 3 covalent ligands and by removing previous constructed PDBbind decoys. The
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afterward cleaned data consists of 6816 PDBbind binders and 6321 CSAR decoys. In terms

of binder set, 1556 weak binders (pKd < 6) and 510 strong binders (pKd > 9) were selected

from PDBbind (v2018) general set71 and added to our binder set. It should be noted that

the binder set have both with water (receptor-bound waters) and without water structures.

All these binders come from PDBbind database and meet the requirements: (I) should be

Kd/Ki binding data; (II) local optimized pose with RMSD <=2 Å from crystal pose; (III)

Noncovalent ligand. Furthermore, in order to add more strong binder poses, 235 docked

poses obtained by flexible re-docking (pKd > 9 and RMSD <= 1 Å from crystal pose) were

selected and added to the binder set. As shown in Table S1, the overall binder subset of

training set has 9117 complex structures with Lin_F9 local optimized ligand poses used

to generate features, and the experimental measured binding affinities (pKd(exp)) are the

labels.

In terms of decoy set 1 (see Table S1), which serves as a negative control of binding

pose and binding affinity in the whole training set, a total of 7111 structures with

estimated binding affinities (pKd(est)) are constructed using CSAR76, 77 decoy set and

BindingDB73, 74 weak binders. For 6321 CSAR decoys inherited from ΔVinaXGB training

set67, the (pKd(est)) for each decoy is determined by comparing the RMSD between

decoy and crystal pose, as well as by comparing the Lin_F9 predicted binding affinity

(pKd(Lin_F9)) and pKd(exp) of crystal pose: if the RMSD is no larger than 1 Å, which

means the decoy is similar as crystal pose, pKd(est) is assigned as the pKd(exp) of

crystal pose; else, for RMSD larger than 1 Å, pKd(Lin_F9) is calculated and compared

with pKd(exp): if the pKd(Lin_F9) is less than the pKd(exp), the pKd(est) is assigned as

pKd(Lin_F9); otherwise, pKd(est) is assigned as the maximum value between pKd(exp) –

0.5×(RMSD-1) and 0.5×pKd(exp). So, the pKd(est) is smaller when RMSD is larger, but not

smaller than half of pKd(exp). In addition, 790 decoys were obtained from top 1 docked

poses of very weak binders (pKd < 3) in BindingDB using E2E flexible docking. As these

weak binders do not have crystal protein-ligand structures, the above pKd(est) protocol is

not applicable. For these BindingDB decoys, the pKd(est) is determined by only comparing

the pKd(Lin_F9) and pKd(exp): if the pKd(Lin_F9) is less than the pKd(exp), the pKd(est) is

assigned as pKd(Lin_F9), otherwise, pKd(est) is assigned as pKd(exp).

In addition, in order to learn from flexible docked poses of complexes, we construct a decoy

set 2 (see Table S1), in which top 1 docked poses are generated from the above binder

set using E2E docking protocol that combines ligand conformer generation and flexible

docking: starting with ligand 2D SDF file, a maximum of 10 conformers per ligand are first

generated with OpenBabel 2.4.1 version using genetic algorithm, and then are docked to the

target protein by flexible ligand docking using Lin_F9 scoring function. The top 1 scored

pose is used to construct decoy set 2. Next, we only select top 1 docked pose that is diverse

from its crystal pose, but the predicted pKd(Lin_F9) is not different too much with pKd(exp).

It meets the requirements: (I) RMSD between top 1 docked pose and crystal pose, minus

RMSD between its locally optimize pose and crystal pose, should larger than 0.5 Å. (II) The

difference between pKd(exp) and pKd(Lin_F9) is smaller than 3. The decoy set 2 consists of

5715 E2E top1 docked poses.
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Overall, our training set consists of 21,943 complexes, including 9,117 crystal structures

(locally optimized near native poses) and 12,826 docked structures, which have no overlap

with the following validation and test sets. Based on the UniProt ID, these 21,943 complexes

come from 1366 target proteins (with UniProt ID) and 42 antibody proteins (without

UniProt ID). There are 7,493 structures with waters and 14,450 structures without waters in

the training set, and the latter includes 6,321 docked decoys obtained from CSAR decoy set.

Validation Set—The binder subset of validation set is same as the previous ΔVinaXGB’s

validation set67, which included 316 complexes with three different structure types: crystal

pose, local optimized pose without water and local optimized pose with receptor-bound

waters. In addition, we also construct a decoy set (see Table S1) that consists of E2E top

1 docked poses of these 316 complexes in both dry and water environments. The overall

validation set consists of 1578 complexes. This validation set is used to (1) conduct the early

stopping in model training to avoid the overfitting of XGBoost on training set; (2) select a

model that can perform well on different structure types.

Test Set—CASF-2016 benchmark9 is used to evaluate the performance of our scoring

function. Besides the standard assessment of four different powers (scoring power, ranking

power, docking power and screening power) defined in CASF-2016 benchmark, we have

also assessed scoring power and ranking power of our scoring function on locally optimized

poses (LocalOpt) of CASF-2016 core set, in which ligand crystal poses have been locally

optimized with Lin_F9.

Feature Generation

Table S2 summarizes all features employed in our scoring function development. The

feature set consists of 28 buried solvent accessible surface area (bSASA) features, 48 Vina

features, 3 bridge water features, 2 Beta-cluster features, one ligand efficiency (using Lin_F9

score divided by number of heavy atoms) and 10 ligand descriptors computed using RDKit

version 2020.09.4. For bSASA features, same as ΔVinaXGB, a total of 30 bSASA features

are computed regarding to three different structures (complex, ligand, and protein). Each

structure comprises of one total bSASA term and nine pharmacophore-based bSASA terms

where pharmacophore types are characterized based on SYBYL78 atom types and DOCK79

neighboring atoms. MSMS80 program is employed to calculate the atomic SASA with a

1.0 Å probe radius and the bSASA = SASAunbound −   SASAbound. As the halogen atoms

are only presented in ligand molecules, we kept only halogen-based bSASA complex term

to avoid zero variance of halogen-based bSASA protein term and avoid redundancy with

halogen-based bSASA ligand term. This resulted in 28 bSASA terms in our feature set.

Different from Vina 58 features81 used in ΔVinaXGB,67 there are 48 Vina features employed

in our scoring function. As shown in Table S2 and Figure S1, polar-polar, polar-nonpolar

and nonpolar-nonpolar interactions in different distance ranges are described using a

series of gauss functions, in which the defined polar and nonpolar atoms are based on

X-Score atom types82 (same as in Vina45). Also, anti-hydrogen bond, hydrogen bond and

metal-ligand terms in different distances are described using a series of gauss functions

as well. The anti-hydrogen bond terms describe polar-polar atoms that can’t possibly be
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hydrogen bond. The metal-ligand terms describe metal-ligand interactions in protein-ligand

complexes. There are 37 gauss functions to describe the above interactions (see Figure S1).

In addition, 6 ligand specific terms and 5 interaction terms (1 repulsion and 2 desolvation

and 2 electrostatic terms) from the Vina 58 features81 are employed as well (see Table S2).

This resulted in 48 Vina terms in our feature set.

In addition, 3 bridge water features (number of bridge waters, the Lin_F9 score between

bridge water and protein, the Lin_F9 score between bridge water and ligand), which are

inherited from the previous ΔVinaXGB, are added to our feature set. Co-crystallized waters

that involve in protein-ligand interactions are considered as bridge water molecules based on

the following criteria: (1) contact with both ligand and protein, the distance between oxygen

atom of water and polar atoms of protein-ligand should within the range of 2.0 and 3.5

Å; (2) likely to form hydrogen bond networks, the angles between polar atoms in ligand,

oxygen atom of bridge water, and polar atoms in protein are no less than 60 degrees; (3)

favorable for protein-ligand binding, Lin_F9 score for bridge water is negative value when

using protein or ligand as receptor.

Moreover, our feature set contains two Beta-cluster83 features (ligand BetaScore and ligand

coverage), which compute ligand and Beta-cluster overlaps in order to describe potential

ligand-pocket complementarity.83, 84 Beta cluster is a pseudo-molecular representation of

fragment-centric pockets detected by AlphaSpace2.083. It mimics the shape as well as

atomic details of potential molecular binders. Ligand BetaScore is obtained by summing of

the best Lin_F9 score of each beta-atom overlapping with ligand heavy atoms (atom distance

< 1.6 Å means overlapping), this feature describes the occupied pocket ligandability. Ligand

coverage is calculated by number of overlapped ligand heavy atoms divided by total number

of heavy atoms. This feature describes the percentage of ligand atoms occupying the pocket.

Furthermore, 10 ligand descriptors (shown in Table S2), such as molecular logP and

topological polar surface area (TPSA), are computed for each ligand using RDKit version

2020.09.4 and added to our feature set. In our above Vina 48 features, there are 6 ligand-

specific terms. Thus, our feature set consists of 16 ligand-specific features and 76 protein-

ligand features.

Lin_F9 Scoring Function

Lin_F968 is a newly developed linear scoring function that employs 9 empirical terms,

including 5 Vina empirical terms (Gauss1, Repulsion, Hydrophobic, Hydrogen Bond,

Number of torsions), as well as 4 new empirical terms (two new Gauss terms, one metal

bond term, one new torsion penalty term). The details of each term and Lin_F9 scoring

function development can refer to this paper.68 For the CASF-2016 benchmark scoring

test, Lin_F9 performs best among 34 classical scoring functions with Pearson’s correlation

coefficient (R) of 0.680. We have implemented Lin_F9 in a fork of Smina docking suite

as an optional built-in scoring function for protein-ligand docking. Lin_F9 is accessible

through: https://yzhang.hpc.nyu.edu/Lin_F9/. Recently, Lin_F9 has been applied to the

prospective virtual screening and rational inhibitor design to target SARS-Cov-2 main

protease.69
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∆-Lin_F9 XGBoost Strategy

Similar as previous ∆-Vina strategy,66, 67 the difference between Lin_F9 score and

experimental binding affinity is used to parameterize a correction term by using XGBoost,

and our ∆-Lin_F9 scoring function in term of pKd has the following formula:

pKd ΔLin_F9XGB =  pKd Lin_F9 + ΔpKd XGBoost 1

Given a training sample i with input feature vector xi = xi_1, xi_2, …, xi_p , K additive trees

are parameterized to predict the output yi, in which each new tree corrects the difference

between target and predictions made by all of the previous trees, as the equation shown

below:

yi
K =  

k = 1
K fk xi =   yi

K − 1 + fK xi . 2

Here, yi
K − 1  is the prediction from previous K-1 trees and fK xi  is the K-th tree model.

The objective function consists of loss function l yi,   yi  and regularization term Ω fk  for

tree complexity as follows:

ℒ fk =  
i = 1
N l yi,   yi +  

i = 1
k Ω fi =

 
i = 1
N l yi,   yi

k − 1 + fk xi + Ω fk + constant
3

Ω fk =   γT + 1
2λω2 4

Here, mean squared error (MSE) is used as our loss function and the regularization term Ω
is used to control the model complexity in which T and ω refer the number of leaves and

the scores on leaves in fk respectively. To reduce correlations among trees, only a random

subset of features is chosen for splitting in each tree development.

In our development of ΔLin_F9XGB, we use the ΔpKd as the label y and employ the XGBoost

package (version 1.20) in Python 3.7 to build the XGBoost model. The input feature vector

x has p = 92 features. The hyper-parameters utilized in our model are n_estimators = 800,

learning_rate = 0.04, subsample = 0.6, colsample_bytree = 0.8, min_child_weight = 2,

max_depth = 12, and loss function (regression type) = “reg: squarederror”. By using the

validation set, the early stopping round with 50 steps is applied to reduce overfitting of

training data. Considering the high variance of XGBoost models, the final scoring prediction

is the average of ten XGBoost models initialized with different random seeds.
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Evaluation Methods

CASF 2016 Benchmark—The comparative assessment of scoring functions (CASF)

benchmark5–9 provides four different powers (scoring power, ranking power, docking power

and screening power) for evaluation of scoring function’s performance. CASF-20169 is

the latest version of CASF benchmark, which has tested more than 30 prevailing scoring.

Pearson’s correlation coefficient (R) between predicted binding affinity and experimental

measured binding affinity is used to evaluate scoring power. The CASF-2016 benchmark

includes 57 targets and 5 known ligands for each target. The Spearman’s rank correlation

coefficient ρ  is used as the quantitative indicator of ranking power by averaging over 57

targets. Docking power is evaluated by the success rate of top scored poses having RMSD

less than 2 Å in comparison with the crystal pose. Screening power, which refers the ability

of a scoring function to identify true binders among a pool of molecules, is evaluated by

two quantitative indicators: one is the success rate of identifying the highest-affinity binder

among the 1%, 5% and 10% top-ranked ligands over all 57 targets, and the other is the

enhancement factor (EF) computed with the following formula:

  EFα = NTBα
NTBtotal ⋅ α 5

Here, NTBα is the number of true binders among top α ranked candidates (e.g.

α = 1%, 5%, 10%) based on predicted binding affinities. NTBtotal is the total number of true

known binders for a given target. The final EFα is also the average over all 57 targets.

Extended Docking-Scoring tests of CASF-2016 core set—Besides standard

assessment, we also carried out extended tests of scoring and ranking performances with

various structure types of protein-ligand complexes that are generated by several flexible

docking protocols as which have first been introduced in tests of Lin_F9. They are

summarized in Table 1, including: (i) flexible re-docking, (ii) E2E docking, (iii) ensemble

docking using all 5 protein structures and (iv) ensemble docking using 4 non-native protein

structures. All these docking experiments are conducted using a fork of Smina docking

suite with Lin_F9 scoring function. Both dry environment (protein without water) and water

environment (protein with receptor-bound waters) are evaluated for these docking-scoring

tests. For each docking-scoring test, after docking, the top 5 docked poses are selected for

re-scoring using ΔLin_F9XGB, and the best-scored pose from re-scoring is used for scoring,

ranking and docking performances evaluation. In term of docking performance evaluation,

the symmetry corrected RMSD between the best-scored pose and crystal pose is calculated

by open source tool DockRMSD.85

D3R GC4 Datasets—Drug Design Data Resource (D3R)86–89 Grand Challenge 4

(GC4)86 consist of two sub-challenges: one is BACE1 Sub-challenge for pose prediction of

20 macrocyclic BACE inhibitors and affinity ranking of 154 macrocyclic BACE inhibitors,

and the other is CatS Sub-challenge for affinity ranking of 459 CatS inhibitors. Our group

has participated in GC4 BACE1 Sub-challenge, and the pose prediction of our submitted

model achieved an average RMSD of 1.01 Å. In further exploration after competition, the
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average RMSD can be decreased to 0.74 Å using a similarity-based constraint docking

method32. Similar as in the work of Lin_F9, our latest predicted poses of whole BACE1

dataset are used to test the affinity ranking performances of our scoring function and Vina

(as comparison); for the CatS dataset (459 inhibitors), predicted poses obtained from Top

submitter’s model (Max Totrov group, receipt id: x4svd) in D3R website86 are used. It

should be noted that, before re-scoring, all the poses are local optimized by Vina or Lin_F9.

LIT-PCBA Dataset—LIT-PCBA is an unbiased data set designed for benchmarking virtual

screening (VS) and machine-learning, and it can be directly used for the evaluation of

screening performance of scoring functions.75, 90 LIT-PCBA dataset consists of 15 diverse

target sets, 8020 true actives and 2,675,399 true inactive compounds. The high imbalance

between actives and inactives is intended to mimic the real-life screening tasks, which makes

it quite challenging for computational screening methods, thereby offering an opportunity to

estimate performance of virtual screening protocols in practical applications.

For each of the 15 targets in LIT-PCBA, several PDB templates are available (no more

than 15 crystal complexes) as input receptor files for docking. In order to save the CPU

cost, we only used a limit number of PDB templates for targets with more than 100,000

compounds. For each target, only one ligand binding site was considered for docking. For

example, there are 2 different structures (HAT domain and BRD domain structures) in

KAT2A target, we only selected HAT domain structure as the receptor for docking. RDKit

2020.09.4 version91, 92 was used to read SMILES string and add hydrogens and generate

initial 3D conformer for each compound. The following docking protocol was same as the

E2E docking described above. After docking, for each compound, top 5 docked poses were

selected for re-scoring using ΔLin_F9XGB and the best-score from re-scoring was used to

rank the compound in the library. The EF at top 1% was used as the quantitative indicator to

evaluate the screening power.

RESULTS AND DISCUSSION

CASF-2016 Benchmark Assessment

The scoring-ranking-docking-screening performance of ΔLin_F9XGB was tested on standard

CASF-2016 benchmark and compared with other traditional scoring functions (Figure 1).

Meanwhile, scoring power comparison with several recently developed machine learning

scoring functions has been carried out, as shown in Figure 2 and Table 2. In addition, based

on CASF-2016 benchmark, the ΔLin_F9XGB’s scoring and ranking performances on locally

optimized poses, which are obtained by Lin_F9 local optimization of crystal poses, were

also tested.

Standard Assessment—In Figure 1, ΔLin_F9XGB is compared with three scoring

functions, ΔVinaRF20, ΔVinaXGB and Lin_F9, previously developed in our group,66, 67 as

well as 33 traditional scoring functions that have been evaluated by Su et al.9 Our evaluation

results show that ΔLin_F9XGB achieves Top 1 performances on scoring power and ranking

power, it also achieves Top 2 performances on both the enhancement factor at top 1%

(EF1%) and success rate at top 1% (SC1%) of screening power tasks. For the scoring
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power, the Pearson’s correlation coefficient (R) and the Root-Mean-Square-Error (RMSE)

of ΔLin_F9XGB are 0.845 and 1.240, which are better than our previous best result (R =

0.796 and RMSE=1.327 for ΔVinaXGB), as shown in Figure 1A. For the ranking power

comparison, Figure 1B shows that ΔLin_F9XGB achieves the best ranking power with the

average Spearman’s rank correlation coefficient ρ = 0.704, which is also much better than

our previous best result (ρ = 0.647 for ΔVinaXGB). In addition, Kendall correlation coefficient

τ  ranking performance of ΔLin_F9XGB is evaluated as well, with τ = 0.625. For the docking

power assessment, 86.7% of ΔLin_F9XGB predicted best-scored pose is considered to be

successfully docked if 2.0 Å RMSD threshold is used in comparison with the crystal pose.

In Figure 1C, the docking power of ΔLin_F9XGB is ranked at the 7th place among all 37

scoring functions. Enhancement factor and success rate at top 1% level are computed as

the indicators for the screening power, which evaluates the ability of a scoring function

to identify true binders from random compounds. As shown in Figure 1D and 1E, the

screening power is ranked at the 2nd place among all 37 scoring functions. EF1% and SC1%

of ΔLin_F9XGB are 12.61 and 40.4%. When computing the success rate at the top 5% level

(SC5%) and at the top 10% level (SC10%), ΔLin_F9XGB achieves 59.6% and 68.4%, which

are much better than previous ΔVinaXGB’s performance (see Table S3 in Supporting Info).

In addition, in Figure 2, we compared with several advanced ML scoring functions for

the scoring power of CASF-2016 benchmark test, since these ML scoring functions are

mainly developed for protein-ligand binding affinity prediction. As can be seen, our

ΔLin_F9XGB model ranks at the 6th position among these start-of-the-art models. The top

5 performers are graphDelta17 (graph-convolutional neural network model, Pearson’s R =

0.87), ECIF::LD-GBT18 (gradient boosting tree model incorporating extended connectivity

interaction features and RDKit ligand features, Pearson’ R = 0.866), OnionNet-215

(convolutional neural network model with inputs based on rotation-free specific contacts

between protein and ligand in different shells, Pearson’s R = 0.864), TopBP12 (a consensus

model incorporating different ML methods and with inputs based on algebraic topology

for characterizing biomolecular complexes, Pearson’s R = 0.861), ECIF::GBT18 (gradient

boosting tree model incorporating only extended connectivity interaction features, Pearson’s

R = 0.857). Other methods, such as persistent spectral based ML models (Mol-PSI13 and

PerSpect ML14), algebraic graph theory-based model (AGL-Score19) and usage of diverse

ligand-based features in previous ML model (RF-Score v3+RDKit22), also show very good

scoring power in CASF-2016 test. All these methods enrich the methodology for ML

scoring function development, and our ΔLin_F9XGB also achieves state-of-the-art scoring

performance among these methods. It should be noted that, although all the ML scoring

functions presented in Figure 2 use PDBbind dataset for their training and validation, the

differences in PDBbind versions (v2007, v2010, v2014 and v2016) as well as the choice of

using PDBbind refined set or general set, will also affect the scoring performance test on

CASF-2016 benchmark.

Moreover, we also compared with several ML scoring functions that have been evaluated

with at least three different metrics for CASF-2016 benchmark. Many other ML scoring
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functions that only presented scoring power in their original paper are not summarized in

Table 2. As can be seen,ΔLin_F9XGB shows best scoring and ranking powers among these

scoring functions. AEScore,93 a deep neural network model, also has very good scoring

power (R = 0.830), but its docking power is very low (success rate = 35.8%). This low

success rate is also observed with AK-score (ensemble),94 a CNN-based scoring function,

reporting a success rate of 36.0%. A similar scoring function that employed Δ-Learning

to retain docking power is Δ-AEScore,93 which reports a success rate of 85.6%. But its

screening power is far less satisfying (EF1% = 6.16), worse than the Vina (EF1% = 7.70).

Recently, Wegner et al proposed DeepDock,95 a method based on geometric deep learning

to predict the ligand binding poses using distance potential, achieving very good docking

power (success rate = 87.0%) and screening power (EF1% = 16.41). Scoring and ranking

powers are not evaluated since DeepDock is not trained to predict binding affinities. Their

study inspired us to train a native pose identification model in our future work to further

improve the screening power. Standard assessment shows that ΔLin_F9XGB is already a very

robust and competitive protein-ligand scoring function for different tasks.

Locally Optimized Poses Assessment—Based on the crystal structure of CASF-2016

core set, we also evaluated scoring power and ranking power of ΔLin_F9XGB on its locally

optimized (LocalOpt) pose, which is locally optimized from crystal pose using Lin_F9

scoring function. Both LocalOpt pose in dry environment Co  and LocalOpt pose in water

environment Co
rw  are evaluated. Figure 3A, B illustrate the scoring power and ranking

power on LocalOpt (Co and Co
rw), together with performance on crystal structure without

local optimization (C). Compared with ΔVinaXGB, ΔVinaRF20, Lin_F9 and Vina, our new

developed ΔLin_F9XGB achieves much better scoring and ranking power on both Co and Co
rw.

For the scoring power, the Pearson’s R of ΔLin_F9XGB on Co  and Co
rw are 0.853 and 0.834.

The RMSE of ΔLin_F9XGB on Co and Co
rw are 1.162 and 1.205. For the ranking power, the

Spearman’s ρ of ΔLin_F9XGB on Co and Co
rw are 0.693 and 0.700, respectively. A scatter plot

of experimental pKd vs predicted pKd for LocalOpt pose Co  is shown in Figure 4B. The

results indicate that ΔLin_F9XGB performs consistently well on the near native poses.

Docking Tests of CASF-2016 Core Set

In order to further test the scoring, ranking and docking performances for real docking

application, we enlarged the evaluation category from re-scoring of crystal pose and

LocalOpt pose to re-scoring of docking poses. Several docking tests on CASF-2016 core

set (illustrated in Table 1) are carried out, and the docked poses are re-scored by ΔLin_F9XGB
to select the best-scored pose for scoring, ranking and docking evaluations.

Flexible re-docking test—In docking preparation of flexible re-docking, both the ligand

conformer and protein conformation come from the corresponding crystal protein-ligand

complex. After docking, the top 5 docked poses for each complex were selected and then

re-scored by ΔLin_F9XGB. Similar as LocalOpt pose, both docked poses without water Cfd
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and with water molecules Cfd
rw  are evaluated. In the evaluation process, the best-scored pose

from re-scoring is used for assessment, and the performance is compared with its baseline

Lin_F9, as well as ΔVinaXGB, ΔVinaRF20 and Vina.

Figure 5A, B illustrate the scoring power and ranking power on Cfd and Cfd
rw. The baseline

Lin_F9 achieves much better scoring and ranking performances than Vina on both Cfd

and Cfd
rw, which has been discussed in our previous paper. Then, ΔLin_F9XGB is used to

re-score the top 5 docked poses, and the best-scored pose from re-scoring further improved

the scoring and ranking performances a lot. The Pearson’s R of ΔLin_F9XGB on Cfd and

Cfd
rw are 0.839 and 0.826, respectively. The RMSE of ΔLin_F9XGB on Cfd and Cfd

rw are

1.204 and 1.238. For the ranking power, the Spearman’s ρ of ΔLin_F9XGB on Cfd and

Cfd
rw are 0.712 and 0.723, respectively. A scatter plot of experimental pKd vs predicted

pKd for flexible re-docking pose Cfd  is shown in Figure 4C. As far as we know, the

scoring and ranking performances for flexible re-docking of CASF-2016 core set are better

than existing ML scoring functions. In addition, docking success rates of Vina, ΔVinaRF20,

ΔVinaXGB, Lin_F9 and ΔLin_F9XGB on both Cfd and Cfd
rw are computed to assess the ability

of scoring function to identify near-native pose, as shown in Figure 5C. Vina achieves

highest docking success rate on both Cfd and Cfd
rw. At a 2 Å RMSD threshold, the docking

success rates for Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB on Cfd are 69.1%,

67.0%, 64.9%, 57.9% and 57.9%, respectively. For Cfd
rw, the docking success rates for

Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB are 84.6%, 83.9%, 80.0%, 80.0%

and 79.3%, respectively. All scoring function’s performances improved a lot after keeping

receptor-bound water, which demonstrates the importance of explicit water molecules for

molecular docking. The difference of docking success rates between Vina and ΔLin_F9XGB
decreases from around 11.2% to 5.3% when water molecules are included. It is observed

that scoring and ranking powers of ΔLin_F9XGB are significantly better than Vina on both Cfd

and Cfd
rw, while the docking success rate of Vina is higher. This trend is consistent for other

docking tests (see Figure 5C).

End-to-End Docking Test—Here we evaluated the flexible docking on CASF-2016 core

set in an end-to-end (E2E) protocol, in which ligand conformer generation and flexible

docking are combined. For this E2E docking protocol, maximum 10 conformers were

generated for each small molecule, and all these conformers were docked to the target

protein. After docking, the top 5 docked poses were re-scored using ΔLin_F9XGB, and the

best-scored pose from re-scoring was used to assess the performance of ΔLin_F9XGB model.

Figure 5A, B illustrate the scoring power and ranking power on E2E docked pose in

dry environment CE2E  and in water environment CE2E
rw . The baseline Lin_F9 achieves

much better scoring and ranking performances than ΔVinaRF20 and Vina on both CE2E and

CE2E
rw . Similar as above flexible re-docking results, the best-scored pose from re-scoring
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by ΔLin_F9XGB further improved the performance. For the scoring power, the Pearson’s

R of ΔLin_F9XGB on CE2E and CE2E
rw  are 0.805 and 0.785, respectively. The RMSE of

ΔLin_F9XGB on CE2E and CE2E
rw  are 1.314 and 1.356. For the ranking power, the Spearman’s

ρ of ΔLin_F9XGB on CE2E and CE2E
rw  are 0.647 and 0.618. For the docking power, the docking

success rates of best-scored pose for Vina, ΔVinaRF20, Lin_F9 and ΔLin_F9XGB are shown

in Figure 5C. Once again, Vina achieves highest docking success rate on both CE2E and

CE2E
rw . At a 2 Å RMSD threshold, the docking success rates for Vina, ΔVinaRF20, ΔVinaXGB,

Lin_F9 and ΔLin_F9XGB on CE2E
rw  are 69.5%, 68.8%, 68.4%, 63.9% and 59.6%, respectively.

Though the docking power of Vina is better, its scoring and ranking performances are less

satisfied. Overall, our ΔLin_F9XGB achieves much better scoring and ranking performances

for this E2E docking test.

Ensemble (E5 and E4) docking tests—Ensemble docking is a practically useful

approach to account for protein flexibility in docking applications by docking a ligand into a

selected ensemble of protein structures. The CASF-2016 core set can be used to evaluate the

performance of ensemble docking, as it includes 57 targets and 5 protein structures for each

target. For each ligand in CASF-2016 core set, it can be docked into 5 protein structures

with the E2E docking protocol. After docking, the top 5 docked poses for each protein

structure were selected and re-scored by ΔLin_F9XGB. The best-scored pose from re-scoring

was selected to calculate scoring- ranking-docking performances of our scoring function.

From Figure 5A and 5B, we can see that in comparison with the other four scoring

functions, ΔLin_F9XGB achieves much better scoring and ranking powers for this ensemble

E5 docking test. For the scoring power, the Pearson’s R of ΔLin_F9XGB on CE5 and CE5
rw

are 0.813 and 0.790, respectively. The RMSE of ΔLin_F9XGB on CE5 and CE5
rw are 1.283

and 1.343. For the ranking power, the Spearman’s ρ of ΔLin_F9XGB on CE5 and CE5
rw are

0.677 and 0.616. Both the scoring power and ranking power of ensemble E5 docking are

slightly better than the above E2E docking with native protein structure. This suggests that,

for ΔLin_F9XGB, ensemble docking can improve the scoring and ranking performances than

docking with a single structure. At a 2 Å RMSD threshold, docking success rates for Vina,

ΔVinaRF20, ΔVinaXGB, Lin_F9, ΔLin_F9XGB on CE5
rw are 56.5%, 56.8%, 56.8%, 52.3% and

51.9%, respectively.

A more stringent test for ensemble docking is to exclude the native protein structure for each

ligand from the ensemble. The docked poses without water (CE4, in which E4 represents 4

ensemble protein structures used) and with water molecules CE4
rw  were assessed. As shown

in Figure 5, for the scoring power, the Pearson’s R of ΔLin_F9XGB on CE4 and CE4
rw are 0.808

and 0.768, respectively. The RMSE of ΔLin_F9XGB on CE4 and CE4
rw are 1.309 and 1.418.

For the ranking power, the Spearman’s ρ of ΔLin_F9XGB on CE4 and CE4
rw are 0.661 and

0.593. At a 2 Å RMSD threshold for the best-scored pose, docking success rates for Vina,
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ΔVinaRF20, ΔVinaXGB, Lin_F9, ΔLin_F9XGB on CE4
rw are 36.1%, 36.8%, 37.2%, 37.2% and

37.2%, respectively.

Altogether, in term of (i) flexible-redocking, (ii) E2E docking, (iii) ensemble docking test

including native protein structure and (iv) ensemble docking test excluding native protein

structure, the scoring and ranking performances of our new developed ΔLin_F9XGB achieves

consistently superior prediction accuracy on these real docking tests.

Case Studies of D3R GC4 Datasets

Here we evaluated affinity ranking performances of ΔLin_F9XGB on two D3R GC4 challenge

datasets 86 regarding beta secretase 1 (BACE1) and Cathepsin S (CatS) respectively.

Both targets are of significant pharmaceutical interests.96–101 The structure-based ranking

protocol depends on the protein-ligand complex structures. However, both BACE1 and CatS

datasets are very challenge for pose prediction using traditional docking program (such

as Smina) and ligand conformer generation method (such as RDKit).32, 87, 102–104 For

BACE1 dataset, we used a similarity-based constraint docking method to generate the near-

native poses. The method uses similar co-crystal macrocycle ring with BACE1 structure as

reference in the sampling process and has achieved very good pose prediction performance

(see Figure S6). For the CatS dataset, the poses were obtained from Max Totrov group’s

submitted data (receipt ID: x4svd) on D3R website, since they have achieved top2 pose

prediction in previous GC3 CatS competition.87

BACE1 macrocyclic inhibitor dataset.—The BACE1 dataset encompasses 154 small

molecules inhibitors, in which 151 of 154 ligands have macrocycle rings.86 The measured

binding affinities of the dataset span over five orders of magnitude range of IC50 (pIC50

range from 4.2 to 9.3). The macrocycle ring size ranges from 14 to 17, and conformation

of these macrocycle rings are hard to properly generated due to the limitation of ligand

conformational sampling methods.105, 106 Here, we evaluated the ranking powers of Vina,

ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB on whole 154 ligands, in which the poses

were predicted using our similarity-based constraint docking method (see Figure S6). Table

3 illustrates the ranking powers of Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB on

LocalOpt pose. For the ranking power, the Spearman’s ρ of Vina, ΔVinaRF20, ΔVinaXGB,

Lin_F9 and ΔLin_F9XGB are 0.332, 0.299, 0.307, 0.439 and 0.481, respectively. The

Kendall’s τ of Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB are 0.222, 0.201, 0.211,

0.311 and 0.349. The baseline Lin_F9 achieves better ranking power when compared with

Vina, ΔVinaRF20 and ΔVinaXGB. ΔLin_F9XGB further improved the ranking power, which

achieves the Top 3 place when compared with top 20 submissions on D3R website (the best

performer in D3R achieves ρ = 0.54 and τ = 0.39),86, 102, 103, 107–109 as can be seen in Figure

6. It should be noted that our ΔLin_F9XGB is a general scoring function evaluated for this

target-specific challenging case. The scoring power is consistently improved by ΔLin_F9XGB
since the Pearson’s R and RMSE of ΔLin_F9XGB are better in general.
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CatS dataset—The GC4 CatS dataset is composed of 459 small molecule inhibitors

with measured binding affinities spanning over three orders of magnitude range of IC50

(pIC50 range from 5.0 to 8.2).86 The challenge for ranking these CatS inhibitors might

come from their large size, high flexibility and similar chemical structures. The D3R

organizers observed an obvious improvement in participant performance for CaS between

GC3 and GC4, which may come from the use of GC3 CatS data or other CatS data

from ChemBL110–112 to develop target-specific machine learning models.86, 87 Similarly,

we evaluated the ranking performance of five general scoring functions: Vina, ΔVinaRF20,

ΔVinaXGB, Lin_F9 and ΔLin_F9XGB on GC4 CatS dataset. The poses were obtained from

Max Totrov group’s submitted data on D3R website.107 They have participated in both GC3

and GC4 CatS Sub-challenges with available predicted pose structures, and their submitted

data performs very well on pose prediction (Top 2 pose prediction in GC387). Based on their

predicted poses for 459 CatS inhibitors, Table 4 illustrates the scoring and ranking powers of

the five scoring functions on LocalOpt pose. For the ranking power comparison, Spearman’s

ρ of Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB are 0.430, 0.430, 0.399, 0.446 and

0.457, respectively. The Kendall’s τ of Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9 and ΔLin_F9XGB
are 0.293, 0.296, 0.275, 0.304 and 0.309. The improvement of ranking power for CatS is not

as significant as the above BACE1. This could be attributed to either limitation of general

scoring function for CatS or narrow binding affinities range of the dataset (only three orders

of magnitude range for 459 CatS inhibitors). In Figure 7, we also compared with top 20

submissions on D3R website,86, 107, 108 ΔLin_F9XGB only ranks at the 15th place. The top

2 performers in D3R GC4 CatS used target-specific 3D-QSAR model107 and target-specific

ligand-based deep neural network model (unpublished yet).

Assessment of Screening Power on LIT-PCBA Dataset

Many previous studies evaluated virtual screening methods based on the Directory of

Useful Decoys (DUD)113 and its successor DUD-E114, in which most of the presumed

decoys have not been experimentally verified. To overcome this drawback, recently Tran-

Nguyen and co-workers proposed LIT-PCBA,75 a dataset derived from dose-response assays

in the PubChem BioAssay database.115, 116 All the actives and inactives in LIT-PCBA

were taken from the experimental data under homogeneous conditions. Preliminary virtual

screening (VS) experiments indicated that LIT-PCBA is very challenging, due to the (I)

high imbalance active/inactive compounds to mimic the real screening hit rate, (II) common

molecular properties shared between active and inactive compounds, (III) weak potencies

of the active compounds. One main limitation of LIT-PCBA dataset is that, more than half

of the primary assays (8 of 15 targets) are cell-based phenotypic assays, so many actives

are not validated against their putative target. Structure-based virtual screening tests on this

benchmark may have some issues, nevertheless, LIT-PCBA still provide valuable clues for

evaluation of scoring functions in large-scale VS.

Here, VS experiments on all 15 targets in LIT-PCBA were carried out using the E2E

docking protocol as described above in CASF-2016 docking test. It should be noted that,

in order to save the CPU cost, the PDB templates of some targets (targets with more than

100,000 compounds) used for docking experiments are less than the original LIT-PCBA
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provided. In addition, some targets in LIT-PCBA, such as ALDH1, IDH1 and KAT2A, have

more than one ligand binding site in the PDB templates (shown in Figure S7). Based on

the assay description and co-crystal ligand type, we only selected one docking site for each

target. Also, previous ΔVinaXGB is excluded in this VS evaluation since it needs to calculate

the time-consuming ligand stability features using RDKit (need to generate maximum 1000

conformers per ligand).

As shown in Table 5, the EF1% metric is used as the quantitative indicator to evaluate

the screening performances of Vina, ΔVinaRF20, Lin_F9 and ΔLin_F9XGB on LIT-PCBA

dataset. The average EF1% metric of ΔLin_F9XGB over all 15 targets is 5.55, which

clearly outperforms Vina (average EF1% = 2.78), ΔVinaRF20(average EF1% = 3.18) and

Lin_F9 (average EF1% = 2.21). Similar with the previous virtual screening results from

Tran-Nguyen et al,90 the average EF1% values range from 2 to 6, indicating the challenge of

the dataset. In addition, counting number of targets that satisfy the increasing thresholds (2,

5, and 10) of EF1% values, serves as a comprehensive metric to evaluate the generalization

ability of scoring function on diverse targets. As can be seen, ΔLin_F9XGB achieves the best

screening performance among these four scoring functions. At EF1% > 2, EF1% >5, and

EF1% >10, number of satisfied targets for ΔLin_F9XGB are 13, 8 and 2, respectively. Vina

only have 6 satisfied targets at EF1% > 2 threshold, limiting its applicability in real virtual

screening. Two target sets (TP53 and VDR) are really challenging for ΔLin_F9XGB since it

yields EF1% < 2. These two challenge cases were also observed by Tran-Nguyen et al,90 and

they mentioned the main reason for this failure is the weak potencies of the actives. Overall,

the results indicate that ΔLin_F9XGB has the top early hit enrichment ability among these

four scoring functions for this challenging LIT-PCBA dataset.

In addition, we compared the ROC curves and AUC values (in the Table S5, Figure S8

and S9 of the Supporting Information) in this evaluation. The average AUC values of

Vina, ΔVinaRF20, Lin_F9 and ΔLin_F9XGB on LIT-PCBA benchmark are 0.571, 0.560, 0.586

and 0.603, respectively. The AUC results are quite different from the EF1% results, since

ΔLin_F9XGB only shows slightly better performance based on AUC values. It is due to the

reason that EF1% metric focuses on the early hit enrichment. The ROC curves in Figure

S9 also show that, compared with Vina, ΔVinaRF20 and Lin_F9, actives in 7 of 15 targets

(ADRB2, ALDH1, GBA, IDH1, KAT2A, OPRK1 and PPARG) can be earlier enriched by

ΔLin_F9XGB.

In Table 6, we also collected LIT-PCBA benchmark test results from three other groups.

Tran-Nguyen et al90 evaluated 5 scoring functions (Surflex,117 Pafnucy,24ΔVinaRF20,66

IFP118 and GRIM119) where the IFP achieved the best performance (average EF1%= 7.46).

They used Surflex-Dock to generate top 20 poses for each ligand and other 4 scoring

functions were used to re-scoring these poses. For targets with several PDB templates,

the highest score value for each compound was used to evaluate the early hit enrichment

performance (for IFP and GRIM, the score for each compound is the highest similarity

between the templates and the docking poses). Compared with original Surflex-Dock, all

re-scoring methods improved the screening performance a lot, and the re-scoring based on
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simple interaction fingerprints (IFP) or interaction graphs (GRIM) outperforms ML scoring

functions. It should be noted that the performance of IFM and GRIM are highly dependent

on the PDB template: choosing one that is not well represented in the dataset can lead to

much worse results. Zhou et al120 reported the test results of their template-based virtual

screening models (FINDSITEcomb2.0 and FRAGSITE), which also showed comparable

screening performance (FRAGSITE’s average EF1%= 4.78). Sunseri et al121 assessed the

built-in CNN models of GNINA122 compared to 4 other scoring functions (RFScore-4,123

RFScore-VS,49 Vina,45 Vinardo124). Their CNN default (Affinity) also achieved comparable

performance (average EF1%= 4.64). It is interesting to note that, the early enrichment

performance of Vina (average EF1%= 2.78) in our test is better than their Vina result

(average EF1%= 1.71), despite the average AUC values of Vina are the same (average

AUC = 0.57 in both our and their tests). We find that the docking protocols are somewhat

different: (I) they used one conformer per ligand for docking, while we used maximum

10 conformers per ligand for docking; (II) they used --autobox_add 16 to define docking

box, while we used the default --autobox_add 4; (III) they used all the PDB templates for

docking, while we used less PDB templates for some targets. One comparable target is

ESR1_ago, since all 15 PDB templates are used in our docking. Our Vina test result is

15.38, while their Vina test result is 7.69. This target could contribute most of the Vina

performance difference. The results suggest that LIT-PCBA benchmark early hit enrichment

performance is not only dependent on the protein-ligand scoring function, but also is

influenced by docking protocols and parameters.

Moreover, target-specific scoring functions developed based on LIT-PCBA dataset (split into

training set and validation set with ratio 3:1) show better performance over the generic

scoring functions summarized in Table 6. Shen et al125 reported their finding that ligand-

based target-specific models (2D fingerprint-based QSAR models, best model performance

EF1% = 14.59) and structure-based target-specific models (descriptor-based XGBoost

models, best model performance EF1% = 8.93) outperform classical scoring function (Glide

SP, EF1% = 3.37) on 7 targets of LIT-PCBA validation set. With the abundant specific target

training samples, target-specific scoring functions (both ligand-based and structure-based)

can outperform current generic ML scoring functions as a promising alternative. However, it

should be noted that the target-specific scoring function approach will not be applicable for a

novel target with little experimental data available.

CONCLUSION

In order to develop a robust protein-ligand scoring function that can perform well for

a variety of docking tasks, we have explored our previous developed Lin_F9 scoring

function as the baseline and via Δ-Learning XGBoost approach to correct Lin_F9 score.

The training set is enlarged to include docked poses, and physically meaningful features are

explored. Our new scoring function ΔLin_F9XGB can not only perform consistently among

the top compared to traditional scoring functions for scoring-ranking-screening powers of

CASF-2016 benchmark, but also achieves superior scoring and ranking powers on real

docked poses, including flexible re-docking, E2E docking and ensemble docking. Also,

compared with Vina and ΔVinaRF20 and ΔVinaXGB, ΔLin_F9XGB achieves better ranking
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power for target-specific cases (BACE1 and CatS) of D3R GC4. Large-scale docking-based

virtual screening test on LIT-PCBA dataset demonstrates the reliability and robustness of

ΔLin_F9XGB in virtual screening application. In summary, although there remains substantial

room for virtual screening performance improvement, our extensive test results suggest that

ΔLin_F9XGB has improved both robustness and applicability of machine-learning scoring

functions in real docking application, and can serve as a very useful re-scoring tool for

structure-based inhibitor design.
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Figure 1.
Performances of scoring functions on CASF-2016 benchmark. (A) Scoring power evaluated

by Pearson correlation coefficient, (B) ranking power measured by Spearman correlation

coefficient, (C) docking power calculated by success rate for top1 poses (include crystal

structures), screening power measured by (D) enhancement factor and (E) success rate at top

1% level. Performances of ΔLin_F9XGB are colored red, performances of Lin_F9 are colored

orange and all other scoring functions are colored cyan. All scoring functions are ranked in a

descending order.
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Figure 2.
Scoring power comparison of several state-of-the-art ML scoring functions on CASF-2016

benchmark. The Pearson correlation coefficients of other ML scoring functions are taken

from refs 12–19, 22–24, 66–67, 95–96.
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Figure 3.
Scoring and ranking performances of ΔLin_F9XGB, ΔVinaXGB, ΔVinaRF20, Lin_F9 and

Vina on LocalOpt pose, as well as crystal pose. (A) Pearson correlation coefficient used

to measure scoring power. (B) Spearman correlation coefficient used for ranking power.

Performances of ΔLin_F9XGB, ΔVinaXGB, ΔVinaRF20, Lin_F9 and Vina are colored red,

purple, blue, orange and cyan, respectively. For each scoring function, performance on

crystal pose (C), LocalOpt pose (Co), and local optimized pose with receptor-bound water

molecules Co
rw  are displayed from left to right with gradually changed color.

Yang and Zhang Page 27

J Chem Inf Model. Author manuscript; available in PMC 2023 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4.
Scatter plots between experimental pKd and predicted pKd of different poses re-scored by

ΔLin_F9XGB. (A) Crystal pose, (B) locally optimized pose, (C) flexible re-docking pose and

(D) ensemble E5 docking pose. The absolute error (AE) in pKd larger than 2 are plotted with

marker “x”, and others are plotted with marker “o”. Pearson correlation coefficient (R) and

root-mean-square error (RMSE) between predicted pKd and experimental pKd are shown for

each plot. The solid red line for each plot corresponds to the linear fit between predicted pKd

and experimental pKd, the slope value for this linear fit is shown in the plot.
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Figure 5.
Scoring, ranking and docking powers of ΔLin_F9XGB, ΔVinaXGB, ΔVinaRF20, Lin_F9 and

Vina for different docking tests on CASF-2016 core set. (A) Pearson correlation coefficient

used to measure the scoring power. (B) Spearman correlation coefficient for ranking

power. (C) Docking power measured by success rate of best-scored pose (RMSD < 2

Å). Performances of ΔLin_F9XGB, ΔVinaXGB, ΔVinaRF20, Lin_F9 and Vina are colored red,

purple, blue, orange and cyan, respectively. For each scoring function, performances on

flexible re-docking poses (Cfd and Cfd
rw), E2E docking poses (CE2E and CE2E

rw ), ensemble (E5)

docking poses (CE5 and CE5
rw), ensemble (E4) docking poses (CE4 and CE4

rw) are displayed

from left to right with gradually changed color.
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Figure 6.
Affinity ranking performances of top 20 performers in D3R GC4 as well as five scoring

functions (Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9,ΔLin_F9XGB) for the BACE1 Stage 2.

Ranking power is evaluated by Kendall rank correlation coefficient.
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Figure 7.
Affinity ranking performances of top 20 performers in D3R GC4 as well as five scoring

functions (Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9,ΔLin_F9XGB) for the CatS dataset. Ranking

power is evaluated by Kendall rank correlation coefficient.
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Table 1.

Different docking-scoring tests of CASF-2016 benchmark. The details are described in Ref. 68.

Name Ligand conformation
for each ligand

Protein conformation
for each ligand Docking method

flexible re-docking native ligand pose native protein structure flexible ligand docking

E2E docking Computer-generated maximum 10 conformers
a native protein structure flexible ligand docking

ensemble (E5) docking Computer-generated maximum 10 conformers 5 protein structures
(include native protein structure) flexible ligand docking

ensemble (E4) docking Computer-generated maximum 10 conformers 4 non-native protein structures flexible ligand docking

a
Computer-generated maximum 10 conformers per ligand using OpenBabel.
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Table 2.

CASF-2016 benchmark test results for several ML scoring functions. (The highest values of each column are

shown in bold)

Model

CASF-2016 Metrics

Scoring Ranking Docking Screening

Pearson R Spearman ρ Success Rate at top1 pose EF at top 1% Success Rate at top 1%

ΔVinaRF20 66 0.739 0.635 89.1% 12.36 45.6%

ΔVinaXGB 67 0.796 0.647 91.6% 13.14 36.8%

ΔLin_F9XGB 0.845 0.704 86.7% 12.61 40.4%

Δ − AEScore93 0.740 0.590 85.6% 6.16 19.3%

AEScore93 0.830 0.640 35.8% – –

AK-score (ensemble)94 0.812 0.670 36.0% – –

DeepDock95 – – 87.0% 16.41 43.9%
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Table 3.

Scoring and ranking performances of Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9, ΔLin_F9XGB on BACE1 dataset.

Scoring functions Pearson R Spearman ρ Kendall τ RMSE

Vina 0.334 0.332 0.222 1.842

ΔVinaRF20 0.293 0.299 0.201 2.441

ΔVinaXGB 0.345 0.307 0.211 1.790

Lin_F9 0.481 0.439 0.311 1.950

ΔLin_F9XGB 0.517 0.481 0.349 1.518
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Table 4.

Scoring and ranking performances of Vina, ΔVinaRF20, ΔVinaXGB, Lin_F9, ΔLin_F9XGB on CatS dataset.

Scoring functions Pearson R Spearman ρ Kendall τ RMSE

Vina 0.427 0.430 0.293 0.841

ΔVinaRF20 0.455 0.430 0.296 0.621

ΔVinaXGB 0.441 0.399 0.275 0.657

Lin_F9 0.451 0.446 0.304 0.680

ΔLin_F9XGB 0.464 0.457 0.309 0.611
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Table 5.

Screening performance comparison of Vina, ΔVinaRF20, Lin_F9 and ΔLin_F9XGB on LIT-PCBA dataset.
a

Target set
Scoring Function

PDB
Templates Number of Actives Number of Inactives

Vina ΔVinaRF20 Lin_F9 ΔLin_F9XGB

ADRB2* 0 0 0 11.76 4 17 312,433

ALDH1 1.49 1.66 1.58 6.46 2 7167 137,822

ESR1-ago* 15.38 15.38 0 7.69 15 13 5,582

ESR1-ant* 3.92 2.94 2.94 3.92 15 102 4,947

FEN1 0.54 0.81 1.90 2.17 1 369 355,323

GBA 4.82 6.63 7.23 9.64 3 166 294,202

IDH1 0 0 2.56 5.13 10 39 361,691

KAT2A 0.52 0.52 2.06 7.73 1 194 348,257

MAPK1* 2.92 1.95 1.62 2.60 15 308 62,522

MTORC1* 2.06 3.09 2.06 2.06 11 97 32,972

OPRK1* 0 0 4.17 12.5 1 24 269,776

PKM2 1.65 2.93 0.73 2.56 2 546 245,485

PPARG* 7.41 11.11 3.70 7.41 15 27 5,210

TP53* 0 0 2.53 1.27 6 79 4,168

VDR 1.02 0.68 0.11 0.34 1 882 355,094

Average 2.78 3.18 2.21 5.55

EF1% > 2 6 6 8 13

EF1% > 5 2 3 1 8

EF1% > 10 1 2 0 2

a
Enrichment factor at top 1% (EF1%) is used as the quantitative indicator to evaluate the screening performance for each target set. The average

EF1% over all 15 targets are highlighted in bold. PDB templates same as the original benchmark used are highlighted in green color. The 8 targets
using cell-based phenotypic assays are marked with *.
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Table 6.

Collected LIT-PCBA benchmark test results from different groups.

Model Average EF1% Number of Targets
(EF1% > 2)

Number of Targets
(EF1% > 5)

Number of Targets
(EF1% > 10)

References

FINDSITEcomb2.0 3.04 5 4 1
Zhou et al120

FRAGSITE 4.78 11 5 1

RFScore-4 1.67 4 1 0

Sunseri et al121

RFScore-VS 1.75 5 2 0

Vina 1.71 6 1 0

Vinardo 1.70 4 2 0

CNN Default (Affinity) 4.64 6 6 2

Surflex 2.51 6 3 0

Tran-Nguyen et al90

Pafnucy 5.32 9 7 3

ΔVinaRF20 5.38 10 7 3

IFP 7.46 11 9 4

GRIM 6.87 12 8 5

Vina 2.78 6 2 1

Our test
ΔVinaRF20 3.18 6 3 2

Lin_F9 2.21 8 1 0

ΔLin_F9XGB 5.55 13 8 2
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