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Abstract

Mathematical health policy models, including microsimulation models (MSMs), are widely used 

to simulate complex processes and predict outcomes consistent with available data. Calibration is a 

method to estimate parameter values such that model predictions are similar to observed outcomes 

of interest. Bayesian calibration methods are popular among the available calibration techniques, 

given their strong theoretical basis and flexibility to incorporate prior beliefs and draw values from 

the posterior distribution of model parameters, and hence the ability to characterize and evaluate 

parameter uncertainty in the model outcomes. Approximate Bayesian computation (ABC) is an 

approach to calibrate complex models where the likelihood is intractable, focusing on measuring 

the difference between the simulated model predictions and outcomes of interest in observed 

data. While ABC methods are increasingly being used, there is limited practical guidance in 

the medical decision making literature on approaches to implement ABC to calibrate MSMs. In 

this tutorial we describe the Bayesian calibration framework, introduce the ABC approach, and 

provide a step-by-step guidance for implementing an ABC algorithm to calibrate MSMs, using 

two case examples based on a microsimulation model for dementia. We also provide the R code 

for applying these methods.
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1 INTRODUCTION

Microsimulation models (MSMs) perform simulations at the level of the individual.1 MSMs 

involve numerous parameters which dictate individual trajectories. Some MSM parameters 

can be directly estimated or obtained from the literature; however, often MSMs incorporate 

parameters that can not be directly estimated. Even when parameters are directly estimated 

or obtained from the literature, the MSM may yield predictions that differ from reference 

quantities of interest.2

Calibration is a method to estimate parameter value(s) such that model predictions are 

similar to observed pre-specified outcomes of interest called (calibration targets), with 

similarity defined by a distance function.3,4 Consider a simple model with one parameter 

p, the probability of a patient dying each monthly cycle. Although p is not observed, an 

observational study provides an estimated mean survival time for N patients. Calibration 

methods use the mean survival time from the observational study in conjunction with 

the pre-specified calibration target(s) to find values for the parameter p. The result of 

the calibration procedure is a set of values for p such that the difference between model 

predicted survival time (model output) and the survival time (calibration target) in the 

observational study is minimized.

Bayesian calibration produces a distribution of acceptable values for each calibrated 

parameter by combining prior information with observed data to estimate the posterior 

distributions of calibrated model parameters.5,6 Although Bayesian calibration can be more 

computationally intensive than other calibration methods, it has a strong theoretical basis 

and provides useful information for conveying parameter uncertainty and for conducting 

uncertainty analyses.5,7,8 For MSMs, likelihood functions are often difficult or impossible 

to specify or simulate.9 Approximate Bayesian computation (ABC) is a Bayesian approach 

that avoids computation of the likelihood by instead measuring the difference between 

the simulation model’s predictions and outcomes of interest observed from available 

data.10,11,12

ABC methods are increasingly being used to calibrate health policy models.12 Although 

there are excellent tutorials on Bayesian calibration (e.g., see Menzies et al.)13, there is 

limited practical guidance in the literature on how to implement ABC methods to calibrate 

MSMs. In this tutorial we describe the essential steps for calibrating an MSM using an ABC 

approach. First, we define the model calibration problem within a Bayesian framework. 

Second, we introduce the ABC method and describe in detail two variants: the ABC 

rejection sampler14,15 and an ABC Markov Chain Monte Carlo algorithm.16,15 Third, we 

provide two case examples for implementing an ABC algorithm for MSM calibration, using 

a streamlined version of a dementia MSM. Finally, we provide R code for applying the 

methods.

1.1 Define Calibration Problem

Calibration is the process of finding a point or a distribution of parameter values for which 

the model predicted outcomes are similar to a target outcome (the calibration target).17 
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The calibration process includes identifying calibration targets, selecting the parameters to 

calibrate, and determining the calibration approach.

Calibration targets can be obtained from raw data or summary statistics drawn from the 

literature. Ultimately, the calibration targets should be informed by high quality data, and it 

should be an outcome that the model was intended to predict.18

MSMs usually involve a large number of parameters and outcomes. Certain model 

parameters may not have an effect on the outcome in question, and simultaneous calibration 

of all model parameters can be computationally infeasible. A practical choice is to calibrate 

a parameter if it affects the target outcome, which can be determined by varying the 

parameter and observing the change in the predicted target outcome. Parameters which don’t 

affect the target outcome or for which valid estimates are available can be fixed during the 

calibration process, either to a point estimate or a distribution.

1.2 Methods of Calibration

An empirical or ad hoc calibration method finds values for each calibrated parameter such 

that the model produces outcomes similar to the calibration target by running the model at 

a set of points in the parameter space. Exploration of the parameter space can be performed 

using a grid search, or testing parameters using Latin hypercube sampling. These methods 

are easy to implement and can quickly find parameter values that solve the calibration 

problem. However, these approaches do not have a strong theoretical basis, and there are no 

formal rules for conducting the analysis.19,20,21

Another method is to apply an optimization algorithm (such as the Nelder-Mead algorithm) 

to find parameter values that minimize the difference between model predictions and the 

calibration target. This method can be more efficient than an empirical approach, since it 

employs a structured search to find an optimal set of parameters. However, calibration via 

optimization yields a single best performing set of parameters and it can be challenging to 

quantify parameter uncertainty without introducing additional assumptions.22,23

1.3 Bayesian Calibration

Another alternative is to implement a Bayesian calibration, a method employing Bayes 

theorem:

P(θ ∣ D) = L(D ∣ θ)π(θ)
P(D) (1)

to estimate the posterior distribution (P(θ|D)) of each calibrated parameter by combining 

observed data (D) with prior beliefs. π(θ) is the prior distribution for the calibration 

parameters θ, and is based on available information about the distribution of θ. L(D|θ) is the 

likelihood function; which is the conditional probability distribution of the data D given a 

fixed set of model parameters θ. The likelihood function therefore summarizes the statistical 

model which generates data, what is known about the distribution of model parameters θ, 

and the observed data D.13,24

Shewmaker et al. Page 3

Med Decis Making. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The results of a Bayesian calibration represent a sample from the joint posterior distribution 

of the parameters being calibrated. A recent simulation study showed that compared to other 

calibration approaches Bayesian calibration is more effective at predicting rare events.21

2 APPROXIMATE BAYESIAN COMPUTATION (ABC)

Likelihood based calibration techniques are often inapplicable when calibrating complex 

models (i.e. MSMs) because it can be difficult or impossible to derive a closed form for 

the likelihood function in terms of the model parameters.21 Simulation of the likelihood 

of MSMs is often infeasible due to the large number of microsimulations that must be 

performed. In this setting, likelihood-free methods are preferred, because they do not require 

evaluation or simulation of the likelihood function.15

Approximate Bayesian computation (ABC) is a class of likelihood-free methods that use the 

difference between observed and simulated data rather than evaluation of the likelihood 

function.10 The ABC calibration algorithm proceeds as follows: parameter values are 

sampled from the prior distribution, the model is run with these sampled parameters, and 

the parameters are either accepted or rejected depending on how similar (using a distance 

measure) the model outputs are to the calibration target. The set of accepted values for the 

model parameters provides an approximation of their joint posterior distribution.

Before implementing an ABC calibration algorithm for an MSM, it is necessary to specify 

a prior distribution π(θ) for each of the model parameters to be calibrated, the number ns 

of individual trajectories to be simulated for each step of the algorithm, the desired size of 

the sample from the posterior distribution (N), and the distance function. that compares the 

MSM predictions and the calibration target. The choice of a distance function should be 

appropriate for the type of data (e.g., continuous or discrete). Each individual simulated in 

an MSM has their own characteristics (i.e. age, sex, race), and a given individual’s trajectory 

is their model predicted disease progression.

The prior distribution of the calibration parameters π(θ) incorporates what is currently 

known about the distribution of the parameters θ. When there is little information available 

on the distribution of θ a diffuse prior can be used. A diffuse prior has a distribution with 

a large amount of uncertainty about the parameter.25,24 A preliminary empirical calibration 

analysis can be performed to guide the choice of a diffuse prior.21

There are two considerations for determining the number of microsimulations to perform 

at each step of the ABC algorithm: i) how many individuals n should be simulated and 

ii) how many times M the n individuals should be simulated, for a total of ns = n×M 
simulations.21 Larger values of n reduce between-individual variation, while larger values 

of M reduce within-individual variation. The decision on the optimal n,M combination is a 

trade off between computational efficiency and variance in the model predictions. If there 

is too much variance in the model predictions then it will be difficult to find parameter 

values that consistently result in predictions that are similar to the calibration target. Since 

ABC requires many repeated simulations at each step of the algorithm, the choice of n and 

M must be small enough that the simulations can be performed in a reasonable amount 
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of time. The rule-of-thumb is to perform simulations until model estimates and projections 

become stable (i.e., they do not vary meaningfully with additional simulation runs). Potential 

values of n and M can be tested by repeatedly performing the ns = n×M simulations to 

obtain samples from the distribution of the predicted calibration target given a fixed set of 

parameters θ drawn from the prior distribution. The distribution of the predictions from 

different n,M combinations can be compared by a method that measures the difference 

between two distributions, such as Kullback-Leibler divergence. These results and the 

average computation time to perform the simulations are combined to choose appropriate 

values for n and M.

Finally, it is generally desirable to obtain a large sample N from the posterior distribution, 

but the computation time of the MSM often limits the possible size of this sample. Different 

sized samples (e.g., N=50, N=75, and N=100) from the posterior distribution can be 

compared to determine whether the distribution has stabilized (i.e. the mean and standard 

deviation do not continue to change).

2.1 ABC Rejection Sampler Algorithm

In the ABC rejection sampler algorithm (Figure 1), the decision to accept or reject values 

for the model parameters depends on a pre-specified threshold ε ≥ 0.11 If for a given set 

of parameter values the distance between the model prediction of the calibration target 

and the calibration target is less than ε then that set is accepted. A higher proportion 

of proposed parameter values will be accepted by increasing the tolerance ε, but this 

reduces the accuracy of the approximation.16 As ε approaches 0, both computation time and 

predictive accuracy increase. An approach for choosing the tolerance is to use the results 

of an empirical calibration to find the smallest distance between the model predictions and 

calibration targets, and then choose a value for ε slightly larger than this distance. The 

choice of tolerance may also be based on the observed variance in the data - for example, the 

bounds of a confidence interval may be used to determine the tolerance.

The ABC rejection sampler (Figure 1) begins by sampling a parameter vector θ(i) from 

the prior distribution π(θ). Next, the MSM simulates M trajectories for the n individuals 

to generate data D(i) given the parameter vector θ(i) - these data are then summarized via 

the summary statistic S. Third, the distance ||S(D(i))−S(D)|| between the model predictions 

S(D(i)) and calibration target S(D) is calculated, and if this distance is less than ε the 

proposed parameter vector is accepted. Steps 1–3 are repeated until N sets of parameters 

have been accepted. The resulting sets of parameter values are an independent sample from 

the approximate posterior distribution.26

2.2 ABC Markov Chain Monte Carlo algorithm

A variant of the ABC algorithm combines ABC with Markov Chain Monte Carlo (MCMC) 

algorithms (Figure 2).16 MCMC algorithms (e.g., Metropolis and Gibbs samplers) sample 

from an arbitrary probability distribution, and are widely applied in Bayesian inference.27

The ABC MCMC algorithm is initialized by randomly sampling a proposed parameter 

vector θ(0) from the prior distribution π(θ). Second, the MSM generates data D(0) by 

simulating individual trajectories of patients given the newly proposed set of parameters 
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θ(0) and the data are summarized via the summary statistic S. The distance between the 

predictions and the observed target ||S(D(0) −S(D)|| is re-scaled using a kernel smoothing 

function Kh with a scale parameter h > 0, with Kℎ(x) = 1
ℎKℎ

x
ℎ . This kernel function 

discriminates between predictions that are close to the target and predictions that are further 

from the target, unlike the use of a tolerance in the ABC rejection sampler algorithm, where 

a parameter set is always accepted if the distance between the predictions and the target are 

less than the tolerance. The use of a Gaussian kernel function K(x) = 1
2π e− 1

2x2
 decreases the 

time needed for the chain to converge.28,15 The initialization process stops when the scaled 

distance is greater than 0 and this scaled distance value is stored.

Following the initialization procedure, the algorithm generates a new vector of parameter 

values θ(i) from the proposal density q(θ′|θ). The proposal density is a function which 

determines the next proposed parameter value in the MCMC chain conditional on the current 

accepted parameter value. Next, the MSM simulates patients to generate data D given the 

parameter vector θ(i). These data are then summarized via the summary statistic S(D), and 

the distance between the summarized model predictions and observed data ||S(D(i))–S(D)|| 

is re-scaled using the kernel smoothing function. The probability of accepting the proposed 

parameter value is then calculated as:

min Kℎ S D′ − S(D ) π θ′
Kℎ ‖S(D((i − 1)) − S(D)‖)π(θ(i − 1))

q θ′ ∣ θ(i − 1)

q θ(i − 1) ∣ θ′
, 1 (2)

Smaller values of h decrease the overall acceptance rate of the algorithm, whereas larger 

values of h increase the acceptance rate. If h is too small, the accuracy of the posterior 

approximation will improve, but the algorithm will take longer to converge. If h is too 

large, the accuracy of the posterior approximation decreases, but the algorithm will converge 

faster.15 A range of h values can be determined where the acceptance rate is greater than 

0 and less than 1. Parameters from this range should be tested to observe the effect on the 

approximate posterior as well as the effect on the acceptance rate of the algorithm runs. 

These results can then be used to choose a final value for the scale parameter.

If the newly proposed value is accepted, the chain then moves to the new value θ(i), 

otherwise it stays at the previous position θ(i−1). The sampling then repeats for N steps.

A common choice for the proposal distribution q(θ′|θ) is to use a random walk, e.g., to add 

a (multivariate) normal random variable with mean 0 and a chosen standard deviation to the 

previously accepted parameter value(s). In this case the proposal distribution is symmetric, 

and therefore the acceptance probability formula reduces to:

min Kℎ S D′ − S(D ) P θ′
Kℎ ‖S D((i − 1) − S(D)‖ P θ(i − 1) , 1 (3)
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If the chosen standard deviation is too small, the chain will move too slowly, whereas if the 

chosen standard deviation is too large, the chain will reject too large a number of proposed 

parameters.29 Inspecting the plot of parameter values of the chain (the trace plot) can help 

determine if the choice of scale parameter and proposal function are acceptable. If values 

are proposed that have a prior probability of 0, they will be rejected because the prior 

distribution evaluated at the current parameter set in the chain is in the numerator of the 

Metropolis acceptance formula.

Common issues with MCMC algorithms are that the chain takes time to converge, samples 

drawn prior to convergence are not from the posterior distribution, and that the resulting 

sample is not independent, but is autocorrelated due to the sequential nature of the MCMC 

algorithm. It is common to determine when the chain has converged and to eliminate the first 

N samples of the algorithm that were drawn prior to convergence. This technique is called 

burn-in. Autocorrelation is corrected for by the use of thinning, which is the acceptance of 

only one of every T samples from the posterior.

2.3 Other ABC Algorithms

Computing time is a challenge when implementing Bayesian calibration.15 Vectorization, 

which simultaneously moves patients in the model from state to state in a discrete time 

MSM, can improve efficiency.30 Paralellization reduces the computation time of the ABC 

rejection sampler, but has a smaller benefit for ABC-MCMC as it can only be applied to 

a restricted portion of the entire process (e.g., simulating individual trajectories in parallel) 

due to the sequential nature of the algorithm. Even with these improvements, the ABC 

rejection sampler and ABC-MCMC algorithms may not be efficient enough to calibrate a 

large number of model parameters.

Variants of the ABC algorithm have been developed to reduce computation time. One 

popular ABC algorithm is Sequential Monte Carlo ABC (ABC-SMC).31 ABC-SMC 

improves efficiency by ensuring that a larger proportion of proposed parameters come from 

a region of high posterior density. This is achieved by creating a sequence of sampling 

distributions f0(θ), f1(θ),... that converge to the posterior distribution.15 Incremental Mixture 

Approximate Bayesian Computation (IMABC) is another ABC variant. IMABC begins 

with a ABC rejection sampler step, and then draws additional samples from a mixture of 

multivariate distributions centered at points accepted by the ABC rejection sampler. This 

algorithm was developed for the purpose of calibrating microsimulation models.12 Both the 

ABC-SMC and IMABC algorithms can be parallelized.

Software is available to implement the different ABC algorithms in many different 

programming environments. The R package ”EasyABC” implements the ABC rejection 

sampler, ABC-MCMC, and ABC-SMC.26 The recent R package ”imabc” implements the 

IMABC algorithm. Both of these packages are available on CRAN.

2.4 Calibration Diagnostics and Reporting of Results

To assess the results from an ABC calibration procedure, the posterior predictive distribution 
should be calculated. The posterior predictive distribution is the distribution of model 

predictions conditioned on the observed data. The output of the ABC algorithms is a set of 
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parameters drawn from the approximate posterior distribution, together with the predictions 

simulated from the set of parameters. These predictions are a sample from the approximate 

posterior predictive distribution. The posterior predictive distribution can be visualized and 

compared to the calibration targets, in a method known as predictive visual checks.32

The posterior and posterior predictive distributions can also be used to calculate a ”credible 

interval” - the Bayesian analogue of a confidence interval. A (100)(1−α)% credible interval 

for a single dimensional posterior distribution is defined as an interval [a,b] in the parameter 

space such that:

∫a
b

P(θ ∣ D)dθ = 1 − α

There are multiple methods of calculating credible intervals which can produce different 

results.33 In our examples, we use the equal tailed interval (ETI) method of calculating 

credible intervals. For example, the 90% equal tailed credible interval for a given single 

dimension posterior distribution contains the central portion of the posterior distribution, 

excluding the values that are less than the 5th percentile and greater than the 95th percentile. 

No assumption of normality on the posterior distribution is necessary to calculate a credible 

interval. Credible intervals for the posterior predictive distribution that do not contain the 

calibration target indicate poor fit.

Final reporting of the calibration procedure should graphically present the prior distribution, 

approximate posterior distribution, approximate posterior predictive distribution, calibration 

target, and credible interval. Pairwise plots of accepted parameters can help to identify 

relationships between calibrated parameters.

3 APPLICATION OF ABC FOR MSM CALIBRATION

3.1 Dementia Microsimulation Model

We illustrate the implementation of ABC calibration using a streamlined version of a 

published dementia model (R Code: Appendix 1),34 that predicts transitions between the 

community and nursing home. This streamlined version consists of three states: living in 

the community, living in a nursing home, and deceased. An individual enters the model 

as a community-dwelling incident case, and at each cycle (month) can transition to any of 

the three states. The monthly probability of transitioning from the community to nursing 

home is derived from a Weibull proportional hazards regression estimated using data 

from the National Alzheimer’s Coordinating Center Uniform Data Set.34 Another Weibull 

proportional hazards regression predicts the monthly probability of leaving a nursing home. 

This model was fit using Medicare data. Each Weibull regression has coefficients for an 

individual’s age of dementia onset, sex, and race. In this parameterization, the Weibull 

cumulative hazard function is given by

H(t) = exp(Xβ)ta (4)
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where a is the shape of the Weibull distribution, X is the covariates and β are the 

coefficients.

The difference of the cumulative hazard between two months is calculated and transformed 

into a monthly probability of transitioning to or from the nursing home. Mortality is 

predicted using age and race stratified published survival estimates for people living with 

dementia.35

3.2 Example 1: Single Parameter and Single Target

Prior to calibration (see eTable 1 for original model parameters), the streamlined dementia 

MSM predicts 6.4% of people die in the nursing home. In comparison, a published study 

reports 48.8% of Medicare beneficiaries living with dementia die in the nursing home.36 We 

applied ABC to calibrate the dementia MSM predicted place of death towards the proportion 

reported in the literature. We calibrated the intercept of the Weibull regression β0 predicting 

transition to a nursing home, which can be thought as an adjustment of the baseline risk of 

transition to a nursing home. We fixed the coefficients of age, sex, race, and shape to their 

point estimates from the model prior to calibration.

We do not have information to inform the prior distribution of the Weibull intercept, 

and have therefore opted to use a diffuse prior. To inform the choice of a diffuse prior 

distribution of the Weibull intercept, we conducted an empirical calibration using a search of 

a Unif(−20,0) distribution, and ultimately a prior distribution of Unif(−10,−5) was selected.

Using the age, sex, and race distribution observed in the target data, we sampled a cohort 

of n = 100 individuals and the cohort was repeatedly simulated M = 10 times for a total 

of 1,000 microsimulations per parameter tested. Our summary statistic S summarizes the 

microsimulation results by calculating the proportion of simulated patients who die in a 

nursing home. We chose values for n,M that were large enough to reduce variation and could 

be conducted in a reasonable amount of time. This cohort is saved and new trajectories for 

the cohort are simulated for each set of parameter values tested.

We aimed to complete analyses within 3 hours, which allowed us to obtain N = 100 samples 

from the approximate posterior distribution. We set the maximum computing time to three 

hours so that it is easy to recreate our example. Additional computation would be needed 

in a more complex analysis. We compared the mean and standard deviation of the first 25, 

50, 75, and 100 parameters accepted by the ABC algorithms, to observe how the distribution 

changes as new samples are drawn (eFigures 1 and 2). The mean and standard deviation 

of the approximate posterior distribution did not substantially change when the size of the 

sample increased from 75 to 100.

We used root mean squared error (RMSE)

RMSE =
∑i = 1

N yi − xi
2

N
(5)
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where y = (y1,...,yn) is the vector of predicted summary statistics and x = (x1,...,xn) is 

the vector of observed summary statistics, to calculate the distance between the model 

predictions and the calibration target. In this 1-dimensional case, RMSE is equivalent to 

absolute value, since the formula reduces to y1 − x1
2 = y1 − x1 .

For the ABC rejection sampler (R Code: Appendix 2), we evaluated a range of values of ε (ε 
= 0.5%,1%,2.5%,5%) to examine how the approximation changed with varying tolerances. 

We tested parameter values until 100 (i.e., our predefined target sample size approximate 

posterior distribution) were accepted for each of the tested tolerance values.

For the ABC-MCMC algorithm (R Code: Appendix 3), we used a Gaussian kernel and 

random-walk Metropolis algorithm. The Gaussian kernel has been empirically observed to 

decrease the convergence time of the algorithm, and the random-walk Metropolis algorithm 

was chosen to simplify the calculation of the Metropolis acceptance probability.14 We tested 

different values of h (h = 0.01,0.025,0.05,0.1) to examine how the approximation changed 

as the scale parameter was varied. These values were chosen because the algorithm had too 

high of a rejection rate for values of h < 0.01 and too low of a rejection rate for values of h 
> 0.1. We ran the chain with a length of 2,500, a burn in period of 500 and a thinning of 20, 

producing a sample of exactly 100 values. The burn-in period was chosen based on visual 

inspection of the trace plot of accepted parameter values to determine convergence (eFigure 

3). We tested different possible thinning values and observed how the autocorrelation plot of 

the posterior sample was affected (eFigure 4).

Both the ABC rejection Sampler (Figure 3) and the ABC MCMC algorithm (Figure 4) 

identified similar posterior distributions for the calibration parameter. The mean predicted 

value and 90% credible interval of the posterior predictive distribution obtained by the ABC 

rejection sampler (ε = 0.5%, 0.488 90% CI: [0.484, 0.492]) and ABC MCMC (h = 0.01, 

0.489 90% CI: [0.469, 0.505]) both overlapped with the calibration target (0.488) indicating 

good fit (Figures 3B and 4B). The posterior distribution of the ABC rejection sampler and 

ABC MCMC algorithm narrowed as ε and scale parameter h decreased and the predictive 

means remained close to the calibration target (eTable 2).

3.3 Example 2: Multiple Parameters and Multiple Targets

Prior to calibration, the dementia MSM predicted time in the nursing home deviates from 

values observed in Medicare data (Table 2; eTable 1 for model parameters). As an example 

of a multidimensional calibration, we applied ABC to calibrate the dementia MSM towards 

the average time a person with dementia spends in a nursing home, stratified by sex, race, 

and life expectancy (3–7 years following diagnosis) as reported in Medicare data (see Target 

column in Table 2).

We calibrated the sex, race, intercept, and shape parameters of the Weibull regression 

predicting transition to a nursing home. We conducted an empirical calibration using Latin 

hypercube sampling to identify a space of plausible values for the model parameters to 

inform their respective prior distributions. The intercept was highly correlated with the 

shape which causes nonidentifiability (where multiple parameter sets solve the calibration 

problem) (eFigure 5). To eliminate this issue, we propose new intercept values as a linear 
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function of the shape. Identifying relationships between parameters can help reduce the total 

number of parameters that need to be calibrated. Parameter values that produced a prediction 

with an RMSE within 5 of the calibration target were accepted in our empirical calibration 

(eTable 3).

For each of the 24 stratifications (Table 2) we sampled 100 individuals, for a total of 

n = 2,400 individuals. This cohort was then simulated M = 5 times for a total of ns = 

12,000 microsimulations. As before, we found that this value was large enough to reduce 

variation, and could be conducted in a reasonable amount of time. The microsimulations are 

summarized by calculating the average time in a nursing home within each stratification. 

We aimed to complete analyses within 24 hours which allowed us to obtain a sample of at 

least 1,000 values from the approximate posterior distribution. We compared the mean and 

standard deviation of the first 250, 500, 750, and 1,000 parameters accepted by the ABC 

algorithm. The approximate posterior distribution did not substantially change the mean and 

standard deviation when the size of the sample was increased from 750 to 1,000. We used 

the RMSE distance function between the model predicted and target observed time in the 

nursing home for both the ABC rejection sampler and ABC MCMC.

For the ABC rejection sampler (R Code: Appendix 4), we selected a tolerance of ε = 2, and 

tested values until the predictions of at least 1,000 sets of parameters met the acceptance 

criteria.

In implementing the ABC MCMC algorithm (R Code: Appendix 5), we used a Gaussian 

kernel, random-walk Metropolis algorithm, and a scale h parameter of 0.5. To obtain 1,000 

samples from the approximate posterior distribution, we ran the chain with a length of 

25,000, a burn in period of 5,000 and a thinning of 20. The choice of burn-in and thinning 

values were determined with the same method as the previous example.

The ABC rejection sampler and ABC MCMC algorithm identified similar posterior 

distributions for each of the parameters (eFigures 6, 7). The predictions from the ABC 

rejection algorithm were less accurate with our chosen threshold than those generated by 

the ABC MCMC algorithm. While the mean and 90% credible interval of the posterior 

predictive distribution obtained from the ABC rejection sampler and MCMC algorithm 

overlapped with most of the target data (eFigures 8, 9), the credible intervals for the 

predictions obtained from the rejection sampler are wider than those obtained from the 

MCMC algorithm.

Neither algorithm fit perfectly to the calibration targets, as can be seen in (eFigures 8,9), 

though there was an improvement from the predictions of the model prior to calibration 

(eTable1, Table 2). The accuracy of the predictions could potentially be improved by 

reducing the value of the threshold/scale parameter, which will necessarily lead to an 

increase in computation time to achieve the same sized sample. If a model fails to achieve 

a desired similarity to the calibration target, adjustment of the model structure may be 

necessary.
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4 DISCUSSION

We provide a tutorial for implementing an ABC rejection sampler and ABC-MCMC for 

calibrating MSMs. These algorithms are relatively easy to implement, can be applied to 

any simulation model, account for parameter uncertainty, and do not require calculation of 

the likelihood function. However, ABC algorithms are time consuming, the posteriors are 

an approximation, and there is limited guidance on how to choose algorithm inputs (e.g. 

the distance function, threshold). Our tutorial provides a basic conceptual framework to 

understand calibration and focuses on the application of approximate Bayesian calibration 

to MSMs. Detailed descriptions of calibration and approximate Bayesian methods can be 

found elsewhere.13,3,4,15

In our analyses, computation time was considerably greater in the example with multiple 

targets than the example with a single target. We also saw that the introduction of multiple 

calibration targets makes it more difficult to fit to each target. The ABC rejection sampler 

is easier to implement than other ABC algorithms, but it is also less efficient. The ABC-

MCMC algorithm is more likely to propose parameters that will be accepted because 

every value accepted by the chain after it has converged to the stationary distribution is 

a random draw from the target posterior distribution. However, ABC-MCMC has other 

challenges including: autocorrelation of the sample, the algorithm cannot be parallelized, 

and convergence of the chain can be difficult to ascertain. Other MCMC methods can 

potentially be integrated into ABC-MCMC to help mitigate these concerns (e.g., burn-in).15 

In our first example, both algorithms were easily able to fit to one calibration target when 

calibrating one parameter. In the example with multiple calibration targets, the ABC-MCMC 

algorithm predictions were closer to the target than the ABC rejection sampler, when both 

algorithms were given the same prior distributions and amount of computing time. By 

reducing the tolerance of the ABC rejection sampler algorithm, we could match the results 

of the ABC-MCMC algorithm, but this requires an increase in computing time.

We did not explore the effect of changing the choice of summary statistic or distance 

measure on the approximation of the posterior distribution. Finally, our example calibration 

fits only to outcomes on the same scale. A possible method for calibrating to multiple targets 

with different types of outcomes (i.e. discrete or continuous or across multiple scales) is to 

use a weighted distance function (such as weighted RMSE), with weights assigned to the 

different types of targets.

In conclusion, the ABC rejection sampler and ABC-MCMC are two powerful approaches 

to implement calibration procedures in the context of microsimulation modelling. Both 

methods successfully find a posterior distribution that produces outcomes similar to 

the calibration target. The implementation of calibration ultimately supports the goal of 

modeling which is to improve decision making by using models that can accurately replicate 

observed data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ABC Rejection Sampler Algorithm
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Figure 2. 
ABC-MCMC Algorithm
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Figure 3. 
ABC Rejection Sampler Results: Place of Death Calibration Target *

* Boxplot whiskers represent the 90% credible interval for the distribution, instead of the 

common usage of 1.5 times the interquartile range.
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Figure 4. 
ABC MCMC Results: Place of Death Calibration Target *

* Boxplot whiskers represent the 90% credible interval for the distribution, instead of the 

common usage of 1.5 times the interquartile range.
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Table 1.

Considerations for Approximate Bayesian Computation Algorithms

Description Recommendation Notation

Step 1: Establish 
Calibration Problem

Define Calibration 
Problem and Identify 
Calibration Target

Identify calibration targets, model 
predicted outcome(s) that should be 
similar to outcome(s) from an external 
source. Generally, these consists of 
summary measures such as means or 
proportions.

Target outcomes should be meaningful for 
decision makers or model end users.

D: target data 
S(D): summary of 
target data D: 
model prediction 
of target data

Identify Model 
Parameters to 
Calibrate

Identify model parameters to calibrate. Parameters should be selected based on whether 
or not they affect the calibration target outcome, 
and whether or not a good estimate for the 
parameter in question exists.

θ: Set of 
parameters being 
calibrated.

Determine Prior 
Distribution of 
Parameters to be 
Calibrated

Describes what is known about the 
distribution of the parameters to be 
calibrated. The calibration procedure 
samples from this distribution.

If possible, incorporate known information about 
the distribution of a target parameter. Otherwise, 
a uniform prior or other uninformative prior 
can be chosen. Posterior predictive checks 
can eliminate unlikely parameter values from 
consideration.

π(θ): prior 
distribution for 
model parameters 
to be calibrated

Determine Number 
of Simulations

Determine how many patients are 
simulated and how many times at each 
step of the calibration algorithm. The 
simulation process can be computationally 
taxing, and there is a trade-off between 
computation time and variance of the 
distribution of predicted outcome P(D|θ).

Use a sufficiently large number of simulations 
to ensure reasonable computation time and small 
enough variance. Or, conduct simulations with 
varying levels of n and k to determine optimal 
combination.

n: number of 
patients k: number 
of times the n 
patients are 
simulated

Determine Sample 
Size of the Posterior 
Distribution

The size of the sample drawn from 
the posterior distribution P(θ|D) in the 
calibration procedure.

Limited guidance in the literature in the 
application of approximate Bayesian calibration, 
but in practice the sample size should be 
sufficiently large that the researcher can 
obtain summary measures from the posterior 
distribution with minimal error. Size of the 
sample may also be limited by the computational 
budget of the researcher.

N: size of the 
sample drawn 
from the posterior 
distribution
P(θ|D): posterior 
distribution of 
new model 
parameter 
conditioned on the 
calibration target 
data.

Distance Measure Calculates how far the model predicted 
outcomes S(S(D) are from the target 
outcomes S(D) given a sampled parameter 

set (θ ).

A measure appropriate for the data type and 
how the predictions are expected to fit the 
observed data. There many possible distance 
measures, including Euclidean distance, (root) 
mean squared error, Mahalanobis distance.

||·||

Step 2: Implement 
ABC Approach

ABC Rejection 
Sampler 
Considerations

Threshold Determines if a parameter value is 
likely to be sampled from the posterior 
distribution of target outcome P(θ|D)

When calibration is only used for prediction than 
ε ≥ 0 should be as close to 0 as feasible. When 
calibration is used for prediction and uncertainty 
analysis, then an ε ≥ 0 should be chosen that
replicates the uncertainty observed in the target 
outcome.

ε

MCMC Rejection 
Sampler 
Considerations

Kernel function Is a weighted function of the difference 
between model predicted D and target 
data D. The function gives greater 

A Gaussian kernel has been recommended over 
kernel functions with compact support, since they 
have been shown in an empirical study to reduce 
the convergence time of the algorithm.28

K
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Description Recommendation Notation

importance to predicted D values that are 
closer to D. Kernel smoothing functions 
are often applied in statistics.

Scale parameter Scales the curve of the kernel function 
and helps determine the acceptance 
probability. Larger scale parameter values 
cause a higher proportion of tested 
values being accepted, while small 
scale parameter values cause a smaller 
proportion of tested values to be accepted.

Empirically test different values until a 
reasonable proportion of tested parameter values 
are accepted.

h

Proposal density Determines the next proposed parameter 
value in the MCMC chain conditional on 
the current sampled parameter value.

Random normal variable (mean = 0 and SD = 
scaled to the parameters magnitude) added to the 
previous value.

q(θ′|θ)

Step 3: 
Final Reporting 
Considerations

Compare Posterior 
Predictive 
Distribution With 
Calibration Target

Visually compare the posterior predictive 
distribution with the calibration targets. 
Targets lying outside of the distribution 
indicate poor fit.

Use boxplot to visualize the posterior predictive 
distribution and include calibration targets in the 
plot.

Other Considerations Comprehensively report all elements of 
the calibration procedure.

Graphically present approximate posterior and 
posterior predictive distributions. Include choices 
of distance function, number of simulations, 
sample size of posterior distribution, and other 
necessary algorithm inputs.
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Table 2.

Multidimensional Calibration Example Results

Race Sex Months to Death Post 
Diagnosis

Target Original Model 
Predictions 
(Mean)

ABC Rejection (ε = 
2) Calibrated Model 
Predictions (Mean, 90% 
Credible Interval)

ABC MCMC (h = 
0.5) Calibrated Model 
Predictions (Mean, 90% 
Credible Interval)

White Men

25–36 Months 3.90 0.48 2.69 [1.68, 4.01] 2.92 [2.08, 3.86]

37–48 Months 5.43 1.15 4.88 [3.34, 6.88] 5.14 [3.86, 6.52]

49–60 Months 6.74 1.75 7.33 [5.13, 9.75] 7.48 [5.77, 9.11]

61–72 Months 8.47 2.65 9.75 [6.85, 12.94] 9.71 [7.59, 11.85]

Women

25–36 Months 5.04 0.52 3.32 [2.15, 4.71] 3.60 [2.62, 4.72]

37–48 Months 7.24 1.11 5.85 [4.24, 7.90] 6.11 [4.65, 7.54]

49–60 Months 9.81 1.93 8.70 [6.39, 11.22] 8.80 [6.87, 10.66]

61–72 Months 12.64 2.96 12.17 [8.96, 15.55] 12.01 [9.59, 14.51]

Black Men

25–36 Months 4.79 0.24 2.78 [1.72, 4.22] 3.07 [2.08, 4.08]

37–48 Months 6.16 0.54 4.71 [3.17, 6.76] 5.03 [3.67, 6.40]

49–60 Months 8.61 0.83 7.28 [5.06, 9.82] 7.56 [5.65, 9.46]

61–72 Months 10.29 1.36 10.56 [7.38, 13.86] 10.65 [8.10, 13.19]

Women

25–36 Months 4.34 0.28 3.58 [2.36, 5.06] 3.87 [2.81, 4.92]

37–48 Months 6.85 0.51 6.02 [4.31, 8.06] 6.31 [4.91, 7.80]

49–60 Months 9.04 1.03 8.90 [6.51, 11.46] 9.03 [7.16, 11.03]

61–72 Months 11.31 1.46 12.59 [9.20, 16.01] 12.45 [10.19, 15.01]

Other Men

25–36 Months 3.42 0.24 2.05 [1.15, 3.36] 2.34 [1.54, 3.20]

37–48 Months 5.20 0.62 3.48 [2.14, 5.28] 3.87 [2.70, 5.08]

49–60 Months 6.59 1.15 5.54 [3.51, 8.01] 5.88 [4.18, 7.57]

61–72 Months 7.14 1.46 7.87 [4.86, 11.16] 8.14 [5.86, 10.46]

Women

25–36 Months 3.40 0.39 2.54 [1.51, 3.86] 2.86 [1.95, 3.84]

37–48 Months 4.83 0.62 4.43 [2.85, 6.33] 4.80 [3.30, 6.27]

49–60 Months 6.74 1.11 6.48 [4.28, 9.09] 6.78 [4.81, 8.63]

61–72 Months 8.64 1.61 8.79 [5.73, 12.14] 9.00 [6.42, 11.52]
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