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Abstract

Microbial symbionts in the gut are increasingly recognized as having important effects on health 

and disease, but have only recently begun to be linked to diseases of the eye. We review current 

research on the intestinal microbiota’s relationship to ocular disease, focusing on autoimmune 

uveitis, diabetic retinopathy, age-related macular degeneration and primary open angle glaucoma. 

We discuss findings and limitations of this exciting new area of ophthalmology research and 

explore possible future disease-modifying treatments.
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Introduction

The human gut microbiota comprises an estimated 4×1013 bacteria[1] and other 

microorganisms[2] which play important reciprocally regulated roles in host digestion 

and absorption,[3] immune function,[4,5] vitamin and amino acid synthesis,[6] and drug 

metabolism.[7,8] Dysbiosis of the gut has well-supported ties to a host of human 

diseases, including cardiovascular disease,[9,10] metabolic syndrome and diabetes,[11,12] 

gastrointestinal and systemic autoimmune disease,[13] and cancer, as well as chronic and 

inflammatory diseases of the eye.[14] Until recently, the effects of microbiota on ophthalmic 

disease have been less studied than gastrointestinal and systemic diseases. While there 

is ample research on the relationship between microbiota and systemic conditions (for 

example, high blood pressure and diabetes) which affect the incidence and progression 

of eye disease, clinical and basic research on ocular disease specifically has accelerated 

only in the last few years. Recent evidence aimed at elucidating the relationship between 

the human eye and gut microbiota supports the presence of a gut-eye axis, i.e. effects 
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of gut microorganism-derived mediators on structures within the eye (Fig. 1).[15,16] In 

support of the gut-eye axis, many studies have uncovered an association between alterations 

in gut microbial composition and ocular disease, as well as possible therapeutic effects 

of manipulating the microbiome with dietary interventions and antibiotic treatment. This 

review will focus on gut microbiota and intraocular diseases; we will review current research 

on association of gut microbiota with autoimmune uveitis, diabetic retinopathy, age-related 

macular degeneration (AMD), and primary open-angle glaucoma (POAG).

Autoimmune uveitis

Uveitis is a disease characterized by inflammation of the uvea, a structure in the eye 

composed of the choroid, iris, and ciliary body, as well as the neural retina; clinical 

manifestations vary with the involved anatomy but include redness, pain, photophobia, 

and loss of visual acuity. Uveitis affects 115.3 per 100,000 people in the United States, 

with a similar lifetime incidence worldwide, and is reportedly more common in females 

than in males.[17,18] Inflammation in uveitis can be triggered through either non-infectious 

or infectious mechanisms, though this article will focus on non-infectious or autoimmune 

uveitis due to its well-studied relationship to gut microbial dysbiosis. Autoimmune uveitis 

may be isolated or associated with a wide range of systemic inflammatory conditions; it 

is a clinically and mechanistically heterogeneous group of diseases. We will discuss the 

association between gut microbial composition and uveitis and then review the hypothetical 

mechanisms by which gut dysbiosis may contribute to intraocular inflammation..

In studies on human fecal samples, gut microbial diversity was decreased in the 

uveitis condition; one study found differences in within-group (alpha) diversity[19] while 

another found differences in between-group (beta) diversity.[20] Principal component 

analysis of 16S rRNA sequences of gut microbes in uveitis patients and healthy 

controls found significantly divergent bacterial communities. Closer analysis of microbial 

composition found decreased abundance of the genera Ruminococcus and Oscillospora 
in uveitis patients,[20] while another study did not find a significant difference in gut 

microbiota composition between uveitis patients and controls.[19] In one study, the genera 

Faecalibacterium, Bacteroides, Clostridium, and Lachnospira, which are known for their 

anti-inflammatory properties, were found to be reduced in uveitis patients and Prevotella, 

a pro-inflammatory genus, to be enriched.[20] These studies were unable to ascertain if 

observed changes in gut microbial composition were responsible for or a result of disease. 

Interestingly, gas chromatography-mass spectrometry analysis of fecal samples from anterior 

acute uveitis patients yielded a significant difference in fecal metabolic phenotype compared 

to healthy controls.[19] These results suggest that even if changes in microbial composition 

are undetectable or inconsistent, there could be functional differences in the guts of uveitis 

patients contributing to disease.

The results of these studies, as well as an extensive literature on associations between 

gut microbiota and systemic autoimmune diseases linked to uveitis,[13] raise the question 

of the mechanism by which gut bacteria may affect the eye. There are four proposed 

mechanisms implicating gut microbial dysbiosis in the pathogenesis of autoimmune uveitis. 

These mechanisms are microbial metabolites, destruction of the intestinal barrier, imbalance 
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of intestinal immune homeostasis, and antigenic mimicry.[21] In the first hypothesized 

mechanism, microbes in the gut are capable of producing a number of metabolites, including 

butyric acid and short-chain fatty acids, which have protective properties in inflammation. 

Alterations in the microbial composition of the gut can decrease levels of beneficial 

microbial metabolites, exacerbating inflammation in uveitis. In the second mechanism, a 

weakened intestinal barrier due to dysbiosis can lead to leakage of pathogenic products 

of microbes into the systemic circulation. These products such as lipopolysaccharides 

(LPS) could land in the uvea and elicit an immune response, leading to uveitis.[22] In 

the third mechanism, an imbalance of T helper 17 (Th17) and T regulatory (Treg) cells 

results in overproduction of IL-17, stimulating an inflammatory pathway and promoting 

uveitis.[23,24] The last mechanism involves antigenic mimicry whereby T cells capable of 

recognizing self-antigens in the uvea are activated in the gut by microbial peptides. One 

study found that T cells activated by an experimental autoimmune mouse model’s intestinal 

extracts induced autoimmune uveitis in naïve wild-type mice, supporting antigenic mimicry 

as an inciting role in autoimmune uveitis[25]. It is likely that more than one of these 

hypothesized mechanisms are at play in the pathogenesis of autoimmune uveitis as they are 

not mutually exclusive and reflect a complex interplay of immune cells and gut microbial 

dysbiosis.

Diabetic retinopathy

Diabetic retinopathy (DR) is one of the cardinal manifestations of microvascular 

compromise in diabetes mellitus. DR is divided into non-proliferative DR, proliferative 

DR, and diabetic macular edema. Retinal changes associated with uncontrolled diabetes are 

typically asymptomatic for years until late stages, when visual compromise may progress 

rapidly due to vitreous hemorrhage, tractional detachment, secondary glaucoma, or macular 

edema. For this reason and because of the high prevalence of diabetes, DR is the leading 

cause of blindness among working adults in developed countries, and is associated with 

significant healthcare costs.[26–28]. Duration and severity of hyperglycemia as well as 

high blood pressure are the primary risk factors for development and progression of DR, 

but patient-specific factors also exist—some people never develop DR despite years of 

hyperglycemia. Many studies have demonstrated effects of gut microbiota on diabetes,[12] 

but relatively few have investigated effects specifically on diabetic retinopathy. In this 

section, we will discuss experimental evidence investigating the relationship between the gut 

microbiota and DR.

Several studies have investigated the differences in gut microbial composition between 

diabetic patients with and without DR; the first, using traditional selective culture media 

techniques, found no significant differences,[29] while the second, using 16S rRNA gene 

sequencing from 25 patients with diabetes, 28 patients with DR and 30 age- and sex-

matched healthy controls,[30] found differences at the genus level, with DR patients’ stool 

having reduced abundance of both anti-inflammatory and pathogenic genera. More than half 

of patients in the diabetes cohort of this study had a new (<4 month) diagnosis, whereas the 

DR patients all had years-long history of diabetes. Treatment with metformin, for example, 

has been shown to have predictable effects on the gut microbiome that may form part of 

its mechanism of action.[31] In an effort to determine if DR-associated microbiota changes 
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exist independently of those induced by years of diabetes or its treatment, Khan et al. 
performed 16S rRNA sequencing on fecal swabs from 37 patients with sight-threatening 

diabetic retinopathy and 21 matched controls, all with greater than 10 years’ history of 

diabetes; they found no significant differences in abundance of measured taxa, though the 

ratio of Bacteroidetes to Firmicutes was found to be significantly different between patients 

and controls. In a similar vein, Huang et al. evaluated 25 patients with DR, 25 patients with 

T2DM without DR matched for duration of disease, and 25 healthy controls.[32] Significant 

differences were found between healthy controls and the DM and DR groups, but few 

differences were found between DM and DR groups. More research is needed to validate 

these results and determine if gut microbiota affect DR independent of DM status.

In animal models, several studies have discovered a relationship between a favorable 

gut microbial environment and improved DR outcomes in diabetic rodent models.[33,34] 

Intermittent fasting (IF) was found to both induce a shift from bacterial species of 

Bacteroidetes to Firmicutes in the gut, to decrease the activation of retinal microglia and 

infiltration of peripheral immune cells into the retina, and to improve overall survival in a 

type 2 diabetic mouse model.[33] Species belonging to Firmicutes can metabolize primary 

bile acids to secondary bile acids such as tauroursodeoxycholic acid (TUDCA), a compound 

found to have protective properties in rat retinal neurons.[34,35] The authors hypothesized 

that an increased proportion of Firmicutes in the gut could improve DR outcomes through 

the protective effects of TUDCA, a byproduct of Firmicutes bile acid metabolism. The 

mechanism by which TUDCA improves DR outcomes was explored in experiments on rat 

retinas exposed to a diabetic condition.[34–36] TUDCA was found to decrease expression 

of immune mediators and angiogenic factors such as nitric oxide synthase, ICAM-1, NF-κB 

p65, and VEGF in diabetic mouse models. In cultured rat retinal neurons exposed to 

elevated glucose concentrations, TUDCA decreased cell death by attenuating the release 

of apoptosis-inducing factor (AIF) in mitochondria and reducing oxidative damage.[34] 

TGR5, a receptor of TUDCA, has been shown to play a role in DR pathology in mouse 

models.[37] These results suggest that TUDCA may play a number of roles in preventing 

DR progression such as alleviating inflammation and preventing retinal cell death in DR.

Overall, these studies also propose that dietary modifications such as IF and administration 

of TUDCA could be used as treatments for DR and other retinal diseases. IF was 

found to shift the gut microbial community towards larger proportions of Firmicutes, thus 

increasing bile acid metabolism and TUDCA production.[33] Future research points towards 

elucidating a more specific gut microbial profile associated with DR and tailoring treatments 

of retinal diseases involving TUDCA.[38]

Age-related macular degeneration

Age-related macular degeneration (AMD), the leading cause of adult blindness in high-

income countries, is a multifactorial disease with incompletely understood pathogenesis, 

but epidemiologic studies have implicated genetic differences, innate immunity,[39,40] 

inflammatory markers,[41] diet,[42,43] and specific vitamin[44] intake in AMD incidence 

and progression. Given that microbiota shape both host immune response and metabolism,

[45,46] and that diet shapes gut microbial communities,[47] recently researchers have 
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sought to find effects of microbiota on AMD. Two case-control studies from the same group 

found that the feces of AMD patients were enriched in bacterial taxa associated with high-fat 

diet and inflammation, such as Anaerotruncus, and reduced in Bacteroides spp., which 

are associated with protection from autoimmune disease and fermentation of indigestible 

carbohydrates.[48,49] The authors found associations between the complement system 

and gut microbiome changes in C3−/− mice--a genetic background that negatively affects 

aged retinas—including increases in Firmicutes-to-Bacteroidetes ratio and the abundance 

of order Clostridiales. In humans, similar gut microbiome changes were correlated with 

single nucleotide polymorphisms (SNPs) in the complement factor H gene, suggesting a 

relationship between complement deficiency, specific gut microbiome changes, and AMD. 

Metabolic pathway inferences suggested that gut bacteria of AMD patients have reduced 

fatty acid elongation and increased L-alanine fermentation, glutamate degradation and 

arginine biosynthesis, which may plausibly affect retinal health.[50,51] Corroborating these 

studies, Andriessen and coworkers found that wild-type mice fed a high-fat diet have 

both greater choroidal neovascularization in response to experimental laser injury and an 

increased ratio of gut bacteria in phylum Firmicutes at the expense of Bacteroidetes, as well 

as increased gut dye permeability and measures of systemic and choroidal inflammation.

[52] Normalization of gut bacterial phyla via fecal transplant restored normal-diet levels of 

laser-induced choroidal neovascularization, regardless of diet, indicating that gut microbiota 

are a necessary intermediary for diet-induced increases in choroidal angiogenesis. Rowan 

and co-workers found that mice fed a high-glycemic index diet develop features similar 

to dry AMD, including retinal pigmented epithelium depigmentation and atrophy, as 

well as changes in gut bacteria. As in prior studies, both the high-glycemic-index 

diet and worse retinal pathology were associated with increased abundance of phylum 

Firmicutes (including Clostridia) and reduced abundance of phylum Bacteroidetes; the 

authors identified reduced bacteria-derived serotonin as a diet-independent factor in retinal 

damage.[53] It is challenging to generalize to human disease from animal models of AMD 

since only the primate eye has a macula,[54] but these results suggest that a shift in 

gut microbes may be a factor in AMD pathogenesis. Mechanisms may include increased 

systemic inflammation by permeation of antigens through a compromised intestinal mucosal 

barrier, bacterial metabolism of lipids or neurotransmitters, or bioavailability of dietary 

vitamins or micronutrients. This work merits further validation in human patients with 

AMD.

Finally, a role for oral dysbiosis in AMD has also been investigated in two case-control 

studies. In a cohort of 311 mixed AMD patients and 421 healthy controls in Singapore, 

Ho and co-workers found that pharyngeal microbiota were similar in overall structure 

and diversity between AMD and control patients, with differences in the abundance of 

specific genera.[55] Prevotella spp. was found to be relatively reduced, and Gemella and 

Streptococcus spp. relatively enriched, in AMD; this difference was found to be larger and 

Leptotrichia spp. also reduced when stratifying for late AMD. Prevotella spp. being less 

common in AMD is surprising, since members of genus cause periodontal disease[56] and 

are associated with autoimmune arthritis.[57] In a small case-control study of oral and 

nasal microbiota, Rullo and co-workers found large differences in many taxonomic units of 

bacteria, including some linked to atherosclerosis, and recapitulated the prior study’s finding 
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of enrichment of Gemella spp. in AMD.[58] Both studies suffered from a lack of baseline 

matching between the AMD and control cohorts. More work needs to be done to establish a 

role for oral or nasal microbiota in AMD.

In summary, multiple studies in mice and humans have identified changes in gut bacteria, 

specifically an increased fecal Firmicutes:Bacteroidetes ratio, as a possible factor in both 

neovascular and dry AMD. More work needs to be done to validate these findings in wider 

groups of patients, and to elucidate whether these changes are a diet-dependent. Studies of 

oral microbiota in AMD have not produced convincing evidence of an association.

Glaucoma

Glaucoma is a group of neurodegenerative diseases of the optic nerve head associated 

with increased intraocular pressure (IOP); together they are the world’s leading cause 

of irreversible blindness. Many theories have been promulgated to explain the observed 

patterns of neurodegeneration in patients with glaucoma and their relationship with 

elevated IOP, but none have prevailed. Since autoantibodies to retinal[59] and optic 

nerve antigens[60] were discovered in glaucoma patients in the 1990’s, autoimmunity 

has been hypothesized to play various roles (including protective ones) in glaucomatous 

neurodegeneration. In addition to circulating antibodies, abnormal T-cell repertoires have 

been identified in glaucoma patients.[61] Recently, work on the effects of microbiota on 

the intraocular pathology of glaucoma has accelerated, often focused on autoimmune or 

inflammatory aspects. Some of this work on glaucoma has been reviewed previously,[14,62–

64] and may be divided into studies of oral microbiota and studies of gut microbiota, 

including gastric H. pylori colonization and gut microbiota-mediated autoimmunity to heat 

shock proteins. The one study that does not fit into these categories, interestingly, performed 

stool 16S RNA sequencing and serum GC-MS metabolomics to explore differences in 

microbiota-mediated metabolism in 30 POAG and 30 matched controls.[65] The authors 

found that stool samples of POAG patients were relatively enriched in E. coli and 

Prevotellaceae and relatively reduced in Bacteroides plebeius and Megamonas spp and 

linked these taxa to specific metabolites that may play a role in glaucoma pathogenesis.

Based on a well-tread hypothesis that innate or adaptive immune response to the oral 

biofilm may mediate neurodegenerative changes,[66] as well as evidence of a role for 

both complement cascade[67] and the TLR4 receptor[68,69] in glaucoma, several authors 

have pursued a link between oral microbiota and glaucoma. Promising initial results[69] 

of almost 2-fold differences in oral bacterial counts in POAG patients vs matched controls 

were not replicated in a prospective follow-up study.[70] Prospective data from the Health 

Professionals Follow-up Study[71] and a large retrospective cohort study in Taiwan[72] 

found inconsistent connections between oral health and risk of glaucoma, with the former 

study finding that only recent tooth loss alone or tooth loss and periodontal disease was 

associated with POAG, while the second study found that only periodontal disease was 

associated with POAG. The link between oral health and glaucoma remains unclear.

Glaucoma was first associated with gut microbiota in 2000, when histologically confirmed 

gastric H. pylori infection was found in 88% of glaucoma patients vs 47% of anemic 

controls by Kountouras and co-workers.[73] Subsequent studies using serology and/or 
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[13C]urea breath testing found mixed results,[74] but the most recent meta-analyses overall 

found evidence of an association between active H. pylori infection and POAG.[75,76] 

H. pylori infection has been hypothesized to worsen glaucoma via systemic inflammation 

and increased vasoactive and reactive oxygen species[68] or antibody-dependent responses 

to cross-reactive ocular antigens.[77] One study even found H. pylori coccoid forms in 

trabecular and iris specimens from POAG patients,[78] a surprising but likely artifactual 

finding given that H. pylori is an obligate colonizer of gastric mucosa.[79] Successful 

eradiation of H. pylori infection in small trials of POAG patients has been found to improve 

both IOP[80] and visual fields,[81] but eradication in patients with peptic ulcer disease 

without glaucoma, however, did not change the risk of developing POAG.[82] There remains 

insufficient evidence to determine if a causative relationship exists, or if the observed 

association arises from shared susceptibility; subsequent studies on gut microbiota in POAG 

have taken the observed association with H. pylori infection as an indication that intestinal 

dysbiosis is a risk factor for both diseases.[64]

The third and final line of investigation into microbiota and glaucoma concerns gut 

microbiota-mediated immune responses to heat shock proteins (HSPs), which are a large 

family of molecular chaperones that play diverse roles in signaling and stress response. 

Autoantibodies to small HSPs were identified in the serum of patients with POAG in 

1998,[83] quickly followed by attempts to determine their role in glaucoma pathogenesis.

[84,85] HSPs are both immunogenic and highly conserved, and loss of tolerance to 

commensal bacterial HSP homologs has been proposed to contribute to many autoimmune 

and neurodegenerative diseases.[86] In 2018, Chen and co-workers provided compelling 

evidence for this model, showing that transient IOP elevation in mice causes HSP-specific 

T-cells to infiltrate the retina and contribute to RGC and axon loss, and that this process 

is attenuated in a low-diversity gnotobiotic mouse model and abolished in germ-free mice.

[87] They then generated a germ-free version of the DBA/2J mouse model of hereditary 

glaucoma and found that while those animals developed the expected elevation in IOP, 

they had no RGC and minimal axon loss by 12 months of age. Furthermore, the authors 

identified HSP-reactive T-cells in the peripheral blood of glaucomatous patients but not 

healthy patients or those with other diseases. The authors integrated these findings into a 

two-hit model of glaucoma pathogenesis: first, exposure to commensal bacteria in some 

way primes a T-cell response against self-antigens; second, elevated IOP (or another insult) 

allows T-cell infiltration into the retina and stimulates retinal cells to express stress factors 

that become the target of a sustained immune response that drives neurodegeneration and 

vision loss. These striking results raise several questions. First, Rag1−/− and TCRβ−/− mice 

subjected to transient IOP elevation still developed RGC and axon loss, while otherwise 

immunocompetent GF mice did not, indicating that classical αβ T-cell responses are not 

responsible for the bulk of neurodegeneration. Second, the timing and nature of immune 

priming by gut microbiota, or how they may differ between individuals with glaucoma, 

remains unknown. More work remains to be done to elucidate other roles for microbiota in 

glaucoma, and to characterize differences in microbiota among patients with glaucomatous 

disease.

In summary, a real association exists between POAG and active H. pylori infection, but 

it remains unclear if eradication provides any ocular benefit. Evidence in mice indicates 
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that intestinal dysbiosis may contribute to glaucoma progression by inducing immune 

intolerance to cross-reactive retinal antigens, but these findings will need to be corroborated 

in humans. Small observational studies have found inconsistent associations between POAG 

and periodontal disease.

Concluding remarks

Many of these studies have significant limitations. Because gut and other microbiota 

are sensitive to diet, environment, and other aspects of the life history, observational 

studies cannot control for all possible confounders. Studies may be inadvertently using gut 

microbiota as a proxy for socioeconomic status, diet quality, or environmental exposures. A 

standardized approach has been proposed, using parallel clinical and translational research 

in both patients and germ-free mice, to better establish causality in microbiota research.[45] 

Successful trials are also a nice way to establish causation, but interventions to modify 

gut flora lag behind the techniques used to characterize them in sophistication and subtlety 

(see Table 1). Probiotics and prebiotics have mixed evidence of efficacy[88,89] and are 

difficult to standardize. Heterologous fecal microbiota transplantation has strong evidence 

of efficacy in certain conditions (e.g. recurrent Clostridoides difficile infection),[90] but is 

even harder to standardize, with high variance in outcomes based on donor stool quality.[91] 

Administration of antibiotics in the absence of specific pathogens can only reduce diversity 

and is not safe. On the horizon are several emerging methods that may provide new ways 

to leverage discoveries about microbial symbionts in disease. Administering postbiotics, i.e. 

microbe-derived products rather than the live organism, may avoid bioavailability issues 

and be easier to standardize; this approach was discussed above in the context of diabetic 

retinopathy. Microbial strains have been engineered both to efficiently colonize the gut and 

to express disease-modifying pathways.[92] Finally, bacteriophage therapy[93] or CRISPR-

Cas9-based methods[94] may allow the microbiome to be edited in situ without needing to 

introduce new species.

Now research on gut microbiota and ocular health faces an exciting prospect. Many 

connections have been uncovered between gut microbiota and several chronic eye diseases, 

but much work remains to be done to elucidate these connections with increasing specificity 

and certainty. Most importantly, prospective studies need to determine if intervening on 

gut dysbiosis has a meaningful effect on the prognosis of ocular diseases. Some of these 

mechanisms may prove to be the foundation of new treatments, and basic and clinical 

research will need to evolve together to realize the potential of these discoveries in this 

rapidly changing field.
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Fig. 1. 
Downstream direct and indirect effects of gut dysbiosis on the eye. Maladaptive changes 

in the microbial communities overlying oral/intestinal mucosa may be induced by diet, 

environmental exposures, illness or drugs, causing diverse effects on eye physiology.
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Table 1.

Interventions proposed to alter gut microbes for disease modification.

Intervention Strengths Limitations

Antibiotics45 Effective in suppressing susceptible organisms Unlikely to promote the growth of desirable 
organisms, reduces diversity, contributes to 
antimicrobial resistance

Probiotics/prebiotics88,89 Widely used, safe Most preparations fail to colonize the intestines, 
hard to standardize

Fecal microbiota transplantation90,91 Proven effective in some conditions Donor-dependent, resource intensive

“Postbiotics” (bacterial 
products)34,35,45

Easier to standardize Unclear efficacy

Engineered bacterial strains92 Possibly more reliable colonization, 
controllable

Complex, untested

Phage/CRISPR-Cas9 
modification93,94

Targeted introduction or ablation of specific 
genes or pathways in situ

Complex, untested
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