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Malignancy of the brain and CNS is unfortunately a common diagnosis. A large subset of these lesions 
tends to be high grade tumors which portend poor prognoses and low survival rates, and are estimated 
to be the tenth leading cause of death worldwide. The complex nature of the brain tissue environment 
in which these lesions arise offers a rich opportunity for translational research. Magnetic Resonance 
Imaging (MRI) can provide a comprehensive view of the abnormal regions in the brain, therefore, its 
applications in the translational brain cancer research is considered essential for the diagnosis and 
monitoring of disease. Recent years has seen rapid growth in the field of radiogenomics, especially 
in cancer, and scientists have been able to successfully integrate the quantitative data extracted 
from medical images (also known as radiomics) with genomics to answer new and clinically relevant 
questions. In this paper, we took raw MRI scans from the REMBRANDT data collection from public 
domain, and performed volumetric segmentation to identify subregions of the brain. Radiomic features 
were then extracted to represent the MRIs in a quantitative yet summarized format. This resulting 
dataset now enables further biomedical and integrative data analysis, and is being made public via the 
NeuroImaging Tools & Resources Collaboratory (NITRC) repository (https://www.nitrc.org/projects/
rembrandt_brain/).

Introduction
Brain cancer is a deadly disease with a 5-year survival rate of only about 30% (www.seer.cancer.gov). 
According to the Global Cancer Observatory https://gco.iarc.fr/, there were 308,102 cases of cancers of the 
brain and the central nervous system (CNS) in the world as of 20201 (139,756 were women, and over 168,346 
were men1). There are more than 120 identified types of brain tumors, according to the National Brain 
Tumor Society, that are extremely heterogenous in nature, https://braintumor.org/brain-tumor-information/
understanding-brain-tumors/tumor-types/ making it a complex disease to understand and interpret. In spite 
of the progress made in treatments of other cancers over the last 20 years, there continue to be only 5 approved 
drugs to treat brain tumors, and no prognostic advancements for GBM patients have been observed2. https://
braintumor.org/brain-tumor-information/brain-tumor-facts/.

Medical imaging technologies including magnetic resonance imaging (MRI) and computed tomography 
(CT) scans, are one of newer technologies increasingly used in translational imaging research3. Due to its com-
plex nature, the brain tissue environment offers a rich opportunity for translational research. MRI can provide 
a comprehensive view of the abnormal regions in the brain4 therefore, its applications in the translational brain 
cancer research is considered essential for the diagnosis, monitoring, and management of the disease3.
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In recent years, scientists have been able to integrate the data gleaned from medical images with genom-
ics, and this burgeoning field is called radiogenomics5–7. The imaging data is first converted into a quantitative 
summarized format, through extracted measurements (also known as radiomics) that can be both visual and 
sub-visual to the naked eye8. These radiomic features allow further extraction of imaging phenotypes, that can 
be integrated with genomics data using machine learning (ML) and artificial intelligence (AI) based algorithms. 
While many clinical trials are ongoing for new treatments in brain cancer research, there are many opportunities 
for the development novel treatment hypotheses using radiogenomics approaches9.

There are several large-scale national collaborations that utilize either brain cancer data, or medical imaging 
related technologies for translational research including, the Brain Science Foundation https://www.brainsci-
encefoundation.org/; The endbraincancer (EBC) https://endbraincancer.org/end-brain-cancer/; The Children 
Brain Tumor Tissue Consortium (CBTTC) https://www.chop.edu/clinical-trial/cbttc-collection-protocol; The 
Children’s Brain Tumor Network https://cbtn.org/about-us, The Cancer Imaging Archive (TCIA)10, and more. 
However, only a handful of national brain cancer projects include both multi-omics data and medical imaging 
data. These include The Cancer Genome Atlas (TCGA), which is a large collection of multi-omics data from 22 
cancer types including Lower grade gliomas (LGG)11,12 and Glioblastomas (GBM)12,13. The imaging data from 
the TCGA data collection, along with imaging data from other studies are housed at the publicly accessible TCIA 
imaging data repository https://www.cancerimagingarchive.net/. The National Cancer Institute (NCI) Cancer 
Research Data Commons (CRDC) provides access to a cloud-based ecosystem with access, visualization, and 
analysis of multi-modal imaging data through its public portal. It also allows researchers to connect imaging 
data to corresponding genomics and proteomics data within the CRDC collections https://portal.imaging.data-
commons.cancer.gov/.

Another initiative that included both omics data and medical images was the REMBRANDT project 
(REpository for Molecular BRAin Neoplasia DaTa), a joint initiative of the NCI and National Institute of 
Neurological Disorders and Stroke (NINDS). This project consisted of a large brain cancer patient-derived 
dataset that contained clinically annotated data generated through the Glioma Molecular Diagnostic Initiative 
(GDMI) from 874 glioma specimens comprising 566 gene expression arrays, 834 copy number arrays, and 
13,472 clinical phenotype data points. In 2015, the molecular data including microarray gene expression, copy 
number, and clinical data were migrated to the Georgetown Database of Cancer (G-DOC)14,15. This project 
was managed by our team at Georgetown University, and this dataset was made public in 2018 through the 
publication Gusev et al.16, and the data made available via the NCBI Gene Expression Omnibus (GEO) data 
repository GSE10847617. Among the patients in this REMBRANDT collection, pre-surgical magnetic resonance 
(MR) multi-sequence images was obtained from 130 patients and is hosted at TCIA18 https://wiki.cancerimagin-
garchive.net/display/Public/REMBRANDT.

In this paper, we obtained the raw MRI scans from the publicly available REMBRANDT collection, and pro-
cessed them through a well-known image processing pipeline that is specialized for the brain cancer MRI scans. 
The workflow included automated volumetric segmentation of the MRIs that identified various subregions of 
the brain including necrotic core, edema, non-enhancing tumor (NET) and enhancing tumor (ET), Gray Matter 
(GM), White Matter (WM), and Cerebrospinal Fluid (CSF). A Board-Certified radiologist then performed ver-
ification and refinements of the segmented labels that included extracted radiomic features as well. This allowed 
the representation of the MRI scans in a quantitative format, with the intention of enabling further biomedical 
and integrative data analyses.

This dataset is being made public in the NeuroImaging Tools & Resources Collaboratory (NITRC) reposi-
tory through this link (https://www.nitrc.org/projects/rembrandt_brain/)19 to allow researchers perform radiog-
enomics based analysis, integrate with gene expression and copy number data, and enable new discoveries and 
hypotheses. Table 1 shows a summary of the REMBRANDT brain cancer collection.

Materials and Methods
Data download.  We first downloaded the pre-operative raw MRI scans from the TCIA imaging archive10,20 
for all the 130 patients including multiple series for each patient in DICOM file format21. The board-certified radi-
ologist performed labeling of the MRI scans of the all modalities in the dataset that included MRIs from different 
modalities, including T1-weighted, T2-weighted, post-contrast T1-weighted (T1-C), and T2 Fluid-Attenuated 
Inversion Recovery (FLAIR) volumes22.

Data formatting.  Some scans had mixed PD and T2 modalities, and had to be separated based on the 
meta-data in the DICOM file. Only patients that had available MRI data for all four modalities (T1, T2, T1-C and 
FLAIR) were selected for the next step, which resulted in a set of 72 patients. Figure 1 shows an example of four 
modalities from the same brain cancer patient.

Source Protocol 1 Samples Protocol 2 Data

Rembrandt glioma samples RNA extraction 671 patients Microarray hybridization GSE10847417

Rembrandt glioma samples DNA extraction 263 patients SNP array hybridization GSE10847517

Rembrandt glioma samples MRI scans 130 patients Raw MRIs in DICOM format TCIA18

Rembrandt glioma samples MRI scans 64 patients Segmented labels in NIFTI format NITRC19

Table 1.  Details of the REMBRANDT brain cancer collection.
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We then applied two different pipelines for the processing of these scans, comprising two popular 
brain cancer segmentation tools: (a) The first pipeline used the BraTumIA23 tool (Fig. 2A), and (b) the sec-
ond pipeline used the GLISTRboost24,25 tool (Fig. 2B). Notably, the GLISTRboost based pipeline was top 
ranked in the International Multimodal Brain Tumor Segmentation challenge 2015 (BraTS’15)26 and uses an 
Expectation-Maximization (EM)27 framework to automatically map the various sub-regions of the brain scans 
while accounting for brain deformations caused by the tumor through biophysical growth modelling28. The 
runner-up for this challenge was the BraTumIA tool which uses a machine learning algorithm23.

Brain tumor segmentation using BraTumIA.  After the raw data was downloaded and formatted, we 
ended up with MRI scans from 72 patients with four modalities - T1-weighted, T2-weighted, T1-C, and FLAIR. 
The images were then used as input into the BraTumIA23 tool which internally performed all processing steps. 
Skull stripping was performed using the Insight Toolkit ITK29 as a first step to generate a brain mask, and in the 
second step, the images were registered i.e. spatially transformed using the ITK toolkit, so that the voxels of the 
various images will correspond to one another. The images were segmented into tumor and healthy images using 
a joint classification-regularization based algorithm. The segmented output labels were in a meta image format 
(.mha) file format (Fig. 2A).

The Board-Certified radiologist performed verification of the predicted segmented labels. Example seg-
mented labels for a brain cancer patient obtained using the BraTumIA pipeline is shown in Fig. 3

Brain tumor segmentation using GLISTRboost.  The raw data was downloaded and cleaned in a similar 
order as the previous pipeline to get MRI scans from 72 patients with four modalities - T1-weighted, T2-weighted, 
T1-C, and FLAIR. Then, several pre-processing steps were applied. The MRI scans were first re-oriented so that all 

Fig. 1  An example of four modalities (T1-weighted, T2-weighted, post-contrast T1-weighted (T1-C), and 
FLAIR) from the same brain cancer patient (patient# HF1702).

Fig. 2  (A) Segmentation pipeline using the Bratumia segmentation tool. (B) Segmentation pipeline using the 
GLISTRboost segmentation tool.
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the images would be transformed into the same Left-Post-Superior (LPS) coordinate system https://www.slicer.
org/wiki/Coordinate_systems, a necessary step in order to be able to compare or integrate data obtained from dif-
ferent modalities. The images were then co-registered to the same T1 anatomic template using “Greedy” (github.
com/pyushkevich/greedy)30, a CPU-based C++ implementation of the greedy diffeomorphic registration algo-
rithm31. Greedy is integrated into the ITK-SNAP (itksnap.org) segmentation software32,33, as well as the Cancer 
Imaging Phenomics Toolkit (CaPTk - www.cbica.upenn.edu/captk)34–37. After the co-registration, brain extrac-
tion (also known as skull-stripping) was performed using the Brain Mask Generator (BrainMaGe)38,39, which is 
based on a deep learning segmentation architecture (namely U-Net40) and uses a novel framework introducing 
the brain’s shape as a prior and hence allowing it to be agnostic to the input MRI sequence. BrainMaGe38,39 was 
used to remove non-cerebral tissues like the skull, scalp, and dura from brain images.

A step called seeding was then performed by the radiologist. Seeding involved manual tagging of the 
sub-regions of the brain MRI including tumor regions namely ET, NET and ED; and healthy regions including 
white matter, gray matter, CSF, vessels and cerebellum. Seed points included center and radius of the tumor, 
and sample seed points in each sub-region of the brain image. This seeding step enabled the segmentation 
algorithm to accurately model the intensity distribution (mean and variance), for each tissue class. This allowed 
the segmentation tool to perform with higher accuracy compared to other segmentation tools. This step was 
performed using the Cancer Imaging Phenomics Toolkit (CaPTk) software platform34–37. The output of this step 
included two text files - one with information about the tumor, and another regarding the sample points in each 
sub-region. These two files were used as input to the next step in the pipeline.

After these steps were completed, automated volumetric segmentation and registration was performed using 
GLISTRboost24,25. During the segmentation process, MRI scans from 8 patients had to be filtered out for several 
reasons including low quality and very limited coverage, or unreliable results due to irregularities in the input 
MRI scans. At the end of this pipeline (Fig. 2B), complete segmentation results were successfully obtained for 64 
patients. Table 2 shows a summary of the original 130 patients in the REMBRANDT patient cohort before start 
of analysis, and the 64-patient cohort after completion of the segmentation step.

The output files from this pipeline were in the form of NIfTI files https://nifti.nimh.nih.gov. Figure 4 shows 
the segmented labels for a brain cancer patient obtained using the GLISTRboost pipeline.

Radiomics analysis.  Our Board-Certified radiologist discovered that the BraTumIA algorithm was only 
effective in the segmentation of one type of cancer, i.e., GBM patients; whereas the GLISTRboost pipeline pro-
duced more accurate segmented labels for all the brain cancer sub-types in this data collection. For this reason, 
we chose the segmented labels from the GLISTRboost pipeline for the radiomics analysis.

Pyradiomics41, an open-source python package was used to extract radiomics features from the segmented 
labels of the MRI brain scans. It included a total of 120 features, which describes various properties related 
to the medical image pixels, including two- and three-dimensional shape, texture, energy and entropy, size 
and co-occurrence, gray tone differences and more41. Table 3 shows a summary of the different classes of fea-
tures characterized by pyradiomics42. Supplementary File 1 shows the radiomics features extracted from the 
REMBRANDT segmented labels from the GLISTRboost pipeline.

Applications.  Applications for multi-omics analysis.  The gene expression and copy number data from this 
same dataset was made public in 2018 through the publication Gusev et al.16, and the data made available the 
NCBI Gene Expression Omnibus (GEO) data repository GSE10847617. The medical imaging data in the form of 
segmented labels, along with numerical output from radiomics will now be made public through this publication. 
This would allow researchers to integrate gene expression, copy number and medical imaging data from the same 
set of patients. Such a multi-omics based radiogenomics analyses would allow for research and development of 
novel biomarkers, and treatment hypotheses for precision medicine.

Applications for meta-analysis of brain cancer imaging studies.  The GLISTRboost segmentation pipeline used 
in this paper has been applied to the MRI scans from TCGA brain cancer (TCGA-GBM and TCGA-LGG) 

Fig. 3  Segmented labels for a brain cancer patient (patient# HF1708) obtained using the BraTumIA pipeline. It 
shows how the MRI scans look across all four modalities.
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patients as demonstrated in the Bakas et al.12 publication. Since the same GLISTRboost segmentation pipeline 
was applied to the REMBRANDT and TCGA brain cancer (TCGA-GBM and TCGA-LGG), we can now use 
them for meta-analyses. For instance, the open source radiomics PyRadiomics tool can be used on both datasets 
to obtain quantitative radiomics output. This means that these two data collections could be used together in 
a meta-analysis approach to provide a better sample size for machine learning and AI applications. We believe 
this is very valuable and enables further biomedical and integrative data analysis. The radiomics output from 
PyRadiomics from the REMBRANDT; and the TCGA-GBM and TCGA-LGG collections have been made avail-
able through this publication as Supplementary File 1 and Supplementary File 2 respectively.

Applications for federated learning approaches in brain cancer imaging studies.  Another application is the Federated 
Tumor Segmentation (FeTS) platform43 that allows training specific machine learning models by leveraging infor-
mation gathered from brain cancer datasets residing in collaborating sites without ever exchanging the data. The 
segmented labels from our REMBRANDT MRI scans are part of this world-wide federation https://www.fets.ai/, and 
has enabled very large multi-site machine learning models in an effort to accelerate discovery.

Summary.  In this publication, we took the raw MRI scans from the REMBRANDT data collection from 
public domain, and performed volumetric segmentation to identify various subregions of the brain. Radiomic 
features were then extracted to represent the MRI scans in numerical format. The gene expression and copy num-
ber data from the same Rembrandt dataset was made public in 2018 through the publication Gusev et al.16, and 
the data made available the NCBI Gene Expression Omnibus (GEO) data repository GSE10847617. This dataset 
now enables researchers to further translational research using not only the medical image data, but also in con-
junction with the genomics and clinical data.

We believe that by making this dataset available to the research community via a public repository provides a 
unique data science research opportunity to the biomedical and data science research communities. Such com-
bined datasets would provide researchers with a unique opportunity to conduct integrative analysis of quantita-
tive data from medical images, gene expression and copy number changes, alongside clinical outcomes (overall 
survival) in this large brain cancer study published to date.

Technical Validation - Radiologist Manual Verification
Our Board-Certified radiologist confirmed that the BraTumIA algorithm was only effective in the segmentation 
of one type of cancer – GBM patients. This is mentioned in the BraTumIA manual (https://www.nitrc.org/pro-
jects/bratumia), and is due to the fact that the morphology is very different for each cancer subtype, and hence 
the tool worked well only for GBM patients

Select clinical features of 
the REMBRANT dataset Summary of 130 patient cohort before filtering Summary of 64 patient cohort after filtering

Clinical Feature Category Patient count % Category Patient count %

Age range

10–14 1 1% 10–14 1 2%

15–19 2 2% 15–19 1 2%

20–24 3 2% 20–24 0 0%

25–29 4 3% 25–29 3 5%

30–34 7 5% 30–34 5 8%

35–39 13 10% 35–39 4 6%

40–44 7 5% 40–44 3 5%

45–49 8 6% 45–49 5 8%

50–54 11 8% 50–54 6 9%

55–59 6 5% 55–59 3 5%

60–64 6 5% 60–64 1 2%

65–69 3 2% 65–69 2 3%

70–74 6 5% 70–74 3 5%

75–79 3 2% 75–79 2 3%

85–89 1 1% 85–89 1 2%

NA or blank 49 38% NA or blank 24 38%

Gender

FEMALE 37 28% FEMALE 16 25%

MALE 43 33% MALE 24 38%

NA or Blank 50 38% NA or Blank 24 38%

Disease Type

ASTROCYTOMA 47 36% ASTROCYTOMA 28 44%

GBM 41 32% GBM 18 28%

MIXED 1 1% OLIGODENDROGLIOMA 12 19%

OLIGODENDROGLIOMA 22 17% NA or Blank 6 9%

UNCLASSIFIED 1 1%

NA or Blank 18 14%

Table 2.  Summary of the patient cohort in the REMBRANDT brain cancer collection.
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The radiologist found that the GLISTRboost algorithm was more effective in the segmentation of the various 
sub-types of brain cancers in this dataset – Astrocytoma, Oligodendroglioma, and GBM. Manual verification 
and correction were performed on the segmented labeled output files. By using an additional manual seeding 
step which provided sample sub-regions as a reference for the algorithm, the GLISTRboost pipeline was able to 
overcome morphology and other differences in the various sub-types of brain cancers in this dataset.

This verification and corrections were performed using an MRI viewer software MITK44 https://www.mitk.org/. 
Figure 5 shows an example image of how the manual verification performed.

Data Records
We first downloaded the pre-operative raw MRI scans from the TCIA imaging archive for 130 patients. After 
cleaning, MRI scans from 72 patients with complete data from four modalities were chosen for further process-
ing. Two well-known brain cancer segmentation pipelines were applied to the cleaned dataset – BraTumIA23 and 
GLISTRboost24. The GLISTRboost24 algorithm was top ranked in the International Multimodal Brain Tumor 
Image Segmentation challenge 2015 (BraTS’15), and the BraTumIA23 algorithm was the runner up. After run-
ning both the BraTumIA23 and GLISTRboost24 pipelines, it was discovered that BraTumIA23 tool was only effec-
tive in the segmentation of one type of cancer – GBM patients. GLISTRboost24 pipeline was more effective in 
the segmentation of the various sub-types of brain cancers in this dataset – Astrocytoma, Oligodendroglioma, 
and GBM.

The segmented labels from the GLISTRboost24 pipeline, along with the manual corrections performed radi-
ologist have been made publicly available through NeuroImaging Tools & Resources Collaboratory (NITRC) 
repository19. The gene expression and copy number data from this same dataset was made public in 2018 
through the publication Gusev et al.16, and the data made available the NCBI Gene Expression Omnibus (GEO) 
data repository GSE10847617. Table 3 shows a high-level summary of the REMBRANDT brain cancer collection.

Usage Notes
The Madhavan45 et al. publication that originally described the Rembrandt portal and dataset has enabled 
numerous analyses and has been cited 366 times so far (as of January 2022). The gene expression and copy num-
ber data from the REMBRANDT dataset was made public in 2018 through the publication Gusev et al.16, and the 
data made available the NCBI Gene Expression Omnibus (GEO) data repository GSE10847617 which has been 
cited 69 times so far (as of January 2022).

In this publication, we took the raw MRI scans from the REMBRANDT data collection and performed 
volumetric segmentation to identify various subregions of the brain. Radiomic features were then extracted to 

Fig. 4  Segmented labels for a brain cancer patient (patient# HF1538) obtained using the GLISTRboost pipeline.

Class of Pyradiomics feature Number of features

First Order Statistics 19

Shape-based (3D) 16

Shape-based (2D) 10

Gray Level Co-occurrence Matrix 24

Gray Level Run Length Matrix 16

Gray Level Size Zone Matrix 16

Neighboring Gray Tone Difference Matrix 5

Gray Level Dependence Matrix 14

Total 120

Table 3.  Summary of the types of features represented in the pyradiomics numerical output.
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represent the MRI scans in a quantitative format. This dataset now enables researchers to integrate gene expres-
sion, copy number and medical imaging data from the same set of patients. Such a multi-omics based radiog-
enomics analyses would allow for research and development of novel biomarkers, and treatment hypotheses for 
precision medicine.

The GLISTRboost segmentation pipeline applied in this manuscript was previously applied to the MRI scans from 
TCGA brain cancer (TCGA-GBM and TCGA-LGG) patients in Bakas et al.12 publication. Since imaging data from 
both REMBRANDT and TCGA brain cancer collection were processed with the same segmentation pipeline, the 
two datasets can now be used in-conjunction in a meta-analyses study. For example, the TCGA brain cancer dataset 
could be used as a training set, and the REMBRADNT dataset could be used as an independent testing set in such an 
analysis. Another example: open source radiomics tool PyRadiomics can be applied to both datasets to obtain quan-
titative radiomics output. Such a meta-analysis approach can provide a better sample size for machine learning and 
AI applications. We believe this would be very valuable and enables further biomedical and integrative data analysis. 
The radiomics output from PyRadiomics from the REMBRANDT; and the TCGA-GBM & TCGA-LGG collections 
have been made available through this publication as Supplementary File 1 and Supplementary File 2 respectively.

Another application is the Federated Tumor Segmentation (FeTS) platform43 that allows training specific 
machine learning models by leveraging information gathered from brain cancer datasets residing in collabo-
rating sites without ever exchanging the data43. The segmented labels from our REMBRANDT MRI scans are 
part of this world-wide federation https://www.fets.ai/. Such a federated model has enabled very large multi-site 
machine learning models in an effort to accelerate discovery, and build new advanced machine learning models.

In summary, we believe that by making this dataset available to the research community via a public repos-
itory provides a unique data science research opportunity to the biomedical and data science research commu-
nities. Such combined datasets would provide researchers with a unique opportunity to conduct integrative 
analysis of numerical data from medical images, gene expression and copy number changes, alongside clinical 
outcomes (overall survival) in this large brain cancer study.

Data Privacy
The segmented medical images generated in this manuscript and made public via NITRC are skull stripped and 
hence do not contain identifiable information.

Code availability
The methods and tools applied in this paper use open-source tools detailed in respective publications Bakas et al.12 
publication. The python code for extracting PyRadiomics features from Rembrandt and the TCGA segmented 
data (Supplementary File 1 and 2 respectively) is provided here. https://github.com/ICBI/rembrandt-mri.
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