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Abstract

Introduction: Pregnant women’s daily time-activity and mobility patterns determine their 

environmental exposures and subsequently related health effects. Most studies ignore these and 

assess pregnancy exposures using static residential measures.

Methods: We conducted 4-day continuous geo-location monitoring in 62 pregnant Hispanic 

women, during pregnancy and early post-partum then derived trips by mode and stays, classified 

by context (indoor/outdoor, type). Generalized mixed-effect models were used to examine whether 

these patterns changed over time.

Results: Women spent on average 17.3 h/day at home. Commercial and service locations 

were the most popular non-home destinations, while parks and open spaces were seldom 

visited. Women made 3.5 daily (63.7 min/day and approximately 25% were pedestrian-based). 

Women were less likely to visit commercial and services locations and make vehicle-based trips 

postpartum compared to the 3rd trimester.

Conclusion: Our findings suggest time-activity patterns vary across pregnancy and postpartum, 

thus assessing exposures at stationary locations might introduce measurement error.
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1. Introduction

Chemical and physical environment exposures including air pollution, lack of access to 

parks and green space, and low walkability, have been associated with poorer health 

behaviors and increased risk of health problems in pregnant women and their offspring.1–3 

However, prior studies examining the influence of environmental exposures on health 

behaviors (e.g., physical activity, diet) and disease outcomes (e.g., asthma, obesity, diabetes) 

in pregnant women have mainly applied the residence-based assessment approach (i.e., 

measuring physical environment features and characteristics at or near residences) to 

estimate individual, personal exposures.2,4,5 This approach assumes outdoor environmental 

exposures around home residences are surrogates of daily “true causally relevant contexts” 

(true contextual units or TCUs) that influence behaviors or outcomes of interest.6 

Nonetheless, this assumption has two limitations – it assumes participants stay within their 

residential neighborhoods at all times when they might be highly mobile on a daily basis 

or they may change their residential addresses during and after pregnancy, and that all 

exposures occur in outdoor environments whereas quite often they occur mainly indoors or 

in transit, resulting in exposure misclassification or measurement error.7,8

Indeed, past studies on time-activity and mobility patterns (hereafter referred to as time-

activity patterns) of women during pregnancy have validated these concerns.9–12 For 

example, a study in Shanghai, China, reported that pregnant women on average spent over 

a third of their time in work locations within three-day observation periods during the 2nd 

trimester.9 Another study conducted in France reported a median of almost 12 non-home 

h/day for pregnant women during a 3-week observation period in the 1st trimester.10 As a 

result, the failure to capture or model the non-home contribution to environmental exposures 

in past studies might lead to under- or over-estimation of exposures and therefore mask 

their true relationships with health behaviors or outcomes.13 Nevertheless, very few studies 

of pregnant women have incorporated time-activity patterns into environmental exposure 

assessments largely due to either feasibility or burden-related challenges with tracking or 

capturing these patterns at high spatiotemporal resolutions in large population-based studies.

Moreover, unlike other populations, pregnant women have increased demands to prepare 

for childbirth, increased fatigue, difficulty physically moving around, and poor sleep, 

which might influence or lead to dramatic variations in their time-activity patterns across 

the pregnancy and postpartum periods.14 For example, a Canadian study on time-activity 

patterns of pregnant women has reported that more time was spent at home during the 3rd 

trimester of pregnancy compared to the 1st trimester.15 Another US study has found that 

in-vehicle travel times were longer during the early stages compared to later stages of the 

pregnancy.16 While very few studies have examined changes in time-activity patterns of 

women across pregnancy, to the best of our knowledge, none have extended the investigation 

to the early postpartum period. Given that the timing of the environmental exposures 

during these critical windows of time could have different effects on fetal development, 

early childhood and postpartum maternal health,2,4,5 it is important to better understand 

time-activity patterns and how they might change over pregnancy and early postpartum 

periods.
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Although limited, a small number of studies have implemented various approaches 

to collect mobility data for pregnant women and integrate time-activity patterns into 

exposure assessments. Among them, most have relied on self-reported mobility surveys 

or diaries.9,11,12,15,17,18 This approach is relatively cost-efficient with low technical barriers 

and thus may suit population-based studies with large sample sizes; however, the subjective 

nature of self-reported survey data also makes the approach prone to recall bias and 

measurement error. Additionally, it is difficult to collect highly space- and time-resolved 

data using diaries or surveys. Recently, a growing body of research has started to apply 

Global Positioning Systems (GPS) technology to objectively capture the mobility of 

participants.10,19,20 The geolocation coordinates collected from the GPS device can be 

imported into the Geographic Information System (GIS) software, in which spatial clusters 

and trip detection algorithms can be applied to derive time-activity (i.e., time spent in 

specific contexts, and indoor/outdoor microenvironments) and mobility (i.e., modes and 

durations of trips) patterns of study participants.21,22 Also, GPS data and these derived 

time-activity patterns can be integrated with fine-scale (e.g., 10-s) personal air pollution 

monitoring or other wearables data to construct highly individualized, contextualized, 

and space-time resolved exposure models.10 Finally, activity spaces derived from GPS 

data can be integrated with other geospatial data layers (e.g., crime, parks and open 

spaces, walkability scores) to understand actual exposure to the physical, chemical, or built 

environment.13

To address the above gaps, this study combines GPS technology and geospatial analysis to 

describe time-activity patterns in a subset of 62 low-income, Hispanic women participating 

in the MADRES cohort study, during 4-day observation periods in the 1st and 3rd trimesters 

of pregnancy and at 4 to 6 months postpartum. By analyzing highly time-resolved (i.e., 

10-sec epoch) GPS data from our customized smartphone app (madresGPS), we aimed to 

answer the following questions:

1. What are typical time-activity (i.e., time spent in multiple contexts, and 

indoor/outdoor microenvironments) and mobility patterns (i.e., trips performed, 

their duration, and mode) of women during pregnancy and during the early 

postpartum period?

2. Do daily time-activity and mobility patterns change over time, across pregnancy 

and early postpartum periods?

3. Do temporal (e.g., weekdays vs. weekend days), individual sociodemographic, 

and residential neighborhood factors explain some of the variation in these 

patterns?

We hypothesized that women’s time spent at their home residences would increase, and time 

spent in non-home contexts and in transit would decrease as pregnancy progresses from the 

1st to the 3rd trimesters, and such trends may continue into the postpartum period. Moreover, 

we hypothesized time-activity and mobility patterns may differ by other temporal, individual 

sociodemographic, and residential neighborhood factors.
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2. Methods

2.1. Study design

Data for this study comes from the Real-Time and Personal Sampling sub-study of the 

Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) 

cohort.23 This study uses an intensive longitudinal, observational panel study design and 

examines the daily effects of environmental exposures and social stressors on maternal 

pre- and post-partum obesity-related biobehavioral responses.24 A total of 65 Hispanic, 

women with lower incomes, were drawn from the larger MADRES prospective cohort 

study which recruited participants from prenatal care providers in Los Angeles serving 

predominantly medically-underserved populations.23 To be eligible for the larger MADRES 

study, a participant needed to be 18 years old with a singleton pregnancy, and be at less than 

30 weeks’ gestation at time of recruitment. In addition, participants who were HIV positive, 

had physical, mental, or cognitive disabilities that prevented participation, or were currently 

incarcerated were excluded from the study. Recruitment of Hispanic 65 women occurred 

on a rolling basis between 2016 and 2018 from one county hospital prenatal clinic (N=16) 

and one non-profit community health clinic (N=49). Additional eligibility criteria for this 

sub-study are described in further detail in O’Connor et al.24 The USC Institutional Review 

Board approved all study procedures and participants signed an informed consent before 

enrolling into the study.

2.2. Data collection

2.2.1. Global Positioning Systems (GPS) Based Location Information—GPS 

data were continuously collected from participants at 10-s intervals for four days 

(two weekdays and two weekend days) during the 1st and 3rd trimester of pregnancy 

and at 4-6 months postpartum.24 MADRES researchers designed a custom smartphone 

application (madresGPS app) for Android operating systems to collect highly resolved and 

encrypted GPS data.24 Study coordinators configured the application on dedicated study 

smartphones (Samsung MotoG phone) to gather geographic coordinates and geolocation/

motion metadata.24 The application logged instantaneous GPS location and sensor data 

every 10 s from the smartphone’s multiple built-in location finding features (cell tower 

triangulation, WiFi networks, and GPS) and motion sensors. Along with the timestamp, 

metadata such as the number of satellites in use/view, geolocation accuracy, source of GPS, 

velocity (if GPS source), and network connection status (if network source) were recorded.24

2.2.2. Ecological Momentary Assessment (EMA)—EMA data were self-reported 

through a commercially available application (MovisensXS app) built for Android operation 

systems, which was pre-installed on the same study phone used to collect GPS data. 

The EMA survey was prompted at random times during each five pre-specified sampling 

windows (i.e., wake-up to 10 a.m.; 11 a.m. to 1 p.m.; 2 p.m. to 4 p.m.; 5 p.m. to 7 p.m., 

and 8 p.m. to bedtime) within the same four-day time GPS data collection windows during 

the three study periods.24 Survey questions included physical and social contexts at the 

prompt time, current affective and physical feeling states, current perceived stress, and past 

two-hour exposure to a list of daily stressors. The complete list of EMA survey questions are 

described in further detail in O’Connor et al.24
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2.2.3. Retrospective surveys and medical record abstraction—
Sociodemographic data including maternal height and weight race/ethnicity, enrollment age, 

education, parity, and country of origin were assessed in prenatal interviewer-administered 

questionaries with the women. Weight and height were also measured at study visits. 

Retrospective surveys were completed at various study timepoints to gather residential 

and occupational histories and assessed psychosocial stressors. Working status was also 

collected via questionnaire in the 1st trimester, 3rd trimester, and 6 months postpartum and 

perceived neighborhood cohesion and safety score was gathered in the 2nd trimester (chosen 

to represent pregnancy) and 6 months postpartum questionnaires. Additionally, residential 

locations at screening were geocoded and used to generate residential neighborhood 

characteristics in this work.

2.3. Data processing

2.3.1. GPS processing—The major processing steps of raw GPS data are described in 

Fig. 1. In total, we collected 6,948,118 GPS observations for 62 of the 65 participants. 

Raw observations collected outside of the 4-day designated monitoring period (during 

device set up and return) were dropped (Ndropped=1,893,013). Then, we dropped a small 

number of observations with erroneously logged zero values of latitude and longitude 

(Ndropped=28,848). After that, we devised a logic to drop the least accurate source of 

geolocation data for every 10-s epoch when two sources of data (GPS/Network) were 

available as follows. This logic was informed by comparing the time-series of GPS vs. 

network source coordinates in relation to the participants’ potential movement in space 

and time. Based on preliminary analyses, the GPS source usually exhibited the fastest 

update frequency compared to the network especially when individuals were mobile. 

Whereas, when individuals appeared to be stationary (i.e., at home), both sources seemed 

to be frequently updating, but the network source generally exhibited higher accuracy. Of 

particular note, participants were asked to connect study smartphones to their home WiFi 

networks when possible to complete study-related EMA surveys on the same smartphones, 

resulting in a high likelihood of phones connecting to home WiFi networks (and thus 

network source geolocation data being available often when stationary/at home) during this 

study (averaging 12.8% per observation day). When both GPS and network sources were 

available were examined and the less accurate source was dropped (Ndropped=542,213).

In circumstances when the signal from either GPS or network source was lost for ≥1 min 

(i.e., signal loss scenario), the app was designed to log the latest known position for that 

source along with the latest update (or confirmation) time, both of which will be repeated 

and will not change for the duration of time the signal was lost. Once signal loss scenarios 

were identified (per source of data), the update frequency and positional accuracy of the 

geolocation data from both sources were compared and the less accurate source was dropped 

(Ndropped=81,987). For time windows when either the GPS or network source was updating 

(real sensor data logging timestamp changed) but the other was not because of signal loss, 

the connected source was kept. Then, under circumstances when both sources lost signal, the 

one that indicated no movement (no change in latitude and longitude) from the previous to 

the next interval of time when signal was available was dropped.
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Next, we rounded timestamps to the nearest 10 s and retained the first-observation within a 

10-s window (Ndropped=53,530). This step was performed to allow us to align and integrate 

GPS data with other simultaneously collected accelerometry and personal air pollution 

exposure monitoring data (in subsequent, ongoing analyses). In addition, it also ensures 

roughly similar temporal spacing and density of GPS data per participant to enable between-

person comparisons of environmental exposures derived using this GPS data and the kernel 

density algorithm.25

Finally, a moving median filter was applied to remove outliers in windows of approximately 

1-min duration (7 observations at a 10-s epoch) to correct extreme outliers that might 

occasionally be present in the data.26 Outliers were defined as observations with a distance 

>450 m from the median latitude/longitude coordinates (corresponding to the maximum 

realistically possible distance moved in 10 s based on a speed of 45 m/s or 100 mph) and 

were replaced with the median coordinates within the moving window. The final processed 

dataset consisted of 4,375,774 observations across 552 person-days.

Throughout the GPS data processing, we created flags to indicate data quality or identify 

records affected by any assumptions or decisions made, which were used to inform 

sensitivity analyses. For example, we created day-level GPS data completeness flags (i.e., 

≤6 h, ≤10 h, ≤16 h), which were then used to evaluate whether time-activity and daily 

mobility patterns were sensitive to day-level GPS data completeness. We also created flags 

indicating confidence in whether an individual likely stayed at the logged location or moved 

during signal loss windows (see Table S1). These flags were based on the plausibility of 

the distance moved within the window and total duration of the window. More specifically, 

higher confidence levels were assigned to signal loss windows with shorter duration (e.g., 

≤120 min) and more reasonable distances traveled (e.g., ≤45 m/s times the time elapsed 

between the last known location before signal loss and the new location after signal loss). 

For our analyses, we removed signal loss windows (Ndropped=523,112) that we either could 

not make a judgement on (i.e., with no distance/duration data) or had extremely low 

confidence (e.g., distance traveled >45 m/s times the time elapsed, >120 mins in duration) 

on whether a participant likely remained in the same position when the signal was lost.

2.3.2. Stay-trip detection—We imported the processed 10-s GPS data into geographic 

information system software ArcGIS 10.8 (Esri, 2020) to first identify trips and stays and 

then classify stays based on their spatial contexts and indoor/outdoor microenvironment. Fig. 

2 describes the steps to process GPS tracks for each person and study period combination 

(i.e., 4-day GPS tracks were treated as one sequential time-series). In order to identify trips 

and stays, we used the “Activity Place Detection Algorithm” ArcGIS toolbox developed by 

Thierry et al.,21 which builds a kernel density surface (50 m bandwidth or search radius) 

from GPS points and extracts local maxima from the surface as candidates for classification 

as stays. In comparison to methods that analyze data points sequentially, the kernel-based 

method has been shown to have better global performance (i.e., better agreement between 

number of stops detected vs. true stops), higher spatial accuracy (i.e., shorter Euclidean 

distance between a detected stop and the true stop), and lower sensitivity to bandwidth 

choices (e.g., 50 m, 100 m). 21 Minimum duration for a stay candidate to become a stay 

was ≥5 min, and two consecutive stay candidates within proximity to each other needed to 
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be separated by at least ≥5 min timespan to be kept as separate stays. After stays and their 

respective start and stop times were detected, GPS points recorded between two consecutive 

stays were connected into trips (path trajectories) by sequences of timestamp and smoothed 

(snapped to road networks), and their start and stop times were recorded. This essentially 

means that stays also act as trip origin and destination points when trips occur. A minimum 

duration of ≥5 min was needed for a loop path trajectory (started and ended at the same 

location) to be kept as a trip.

2.3.3. Context classification of stays—We then classified the stays (i.e., trip origins 

and destinations) into one of seven spatial contexts (i.e., home residential, non-home 

residential, commercial and services, parks and open spaces, schools and public facilities, 

industrial and office spaces, and other). The stay with the longest duration in a study 

period (4-day monitoring period in 1st and 3rd trimesters, and at 4-6 months postpartum) 

was designated as at the residential home context given participants might have changed 

residence or lived with family or relatives across study periods. Non-home contexts were 

classified based on their spatial relationships with Southern California Association of 

Governments existing land use (2016) data (see Table S2). A 15 m buffer was applied 

to existing land use boundaries to account for potential combinations of indoor/outdoor 

activities within a stay and considering the average width of sidewalks in urban Los 

Angeles. Additionally, we also assigned an indoor/outdoor microenvironment to each stay 

point by examining its spatial relationship with Los Angeles County building footprints 

(2014). Aim buffer was applied to existing building footprints to account for scenarios when 

indoor activities occurred mainly in the corners of the building (i.e., corner apartments, 

stairwells, laundry rooms), resulting in a detected stay point that fell outside the building 

footprint polygon, which could then be misclassified as outdoor. Spatial parameters and data 

sources used in context classification are fully documented in Table S2.

2.3.4. Missing GPS data imputation using home context—Home residential 

locations detected via the stay-trip detection algorithm were then used to impute some of 

the missing records in the processed GPS data. More specifically, participants self-reported 

their sleep and waking times prior to each study period to help configure suitable timing 

and frequencies for the EMA survey. We used this sleep and wake time data to divide each 

four-day study period into day (from waking to sleep time in a data collection day) and night 

(from sleep time in a data collection day to the waking time on the next day) windows. For 

night windows, we used the identified visit-level home location to impute missing data if we 

had ≥ 60 mins of GPS logged data that was within ≤100 m of the home location. If this rule 

was not met, we used the median coordinates logged during the night to fill in any remaining 

missingness that night. If no GPS data was available during the night, then imputation was 

not attempted. As for day windows, we filled in missing records with home coordinates 

when available if the day was identified as a home day (i.e., all EMA survey prompts within 

the day reported current physical context as either “Home-Indoor” or “Home-Outdoor”). 

The entire workflow of the missingness imputation process is documented in Fig. S1. The 

imputed GPS records (N=306,915) were classified as “home-residential” and merged with 

processed epoch-level GPS data to produce a final time-activity pattern dataset that records 

location coordinates and contexts of each stay, its start and stop time, as well as method 
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of classification (i.e., via algorithm or imputation). In addition, flags were created which 

labelled days with < 6 h of GPS data (post-imputation) as invalid days.

2.3.5. Trip mode detection—We also applied a trip mode classification algorithm (Fig. 

3) to classify all trips into either a walking- or vehicle-based mode. Both distance-based 

trip speed (i.e., sum of Euclidean distances of consecutive GPS records in a trip divided 

by duration of time elapsed) and total distance traveled (i.e., sum of Euclidean distances of 

consecutive GPS records in a trip) were considered in the decision-making process. Previous 

studies have reported a walking speed range of 1.0–1.8 m/s for women during pre- and 

post-pregnancy periods.27–29 In this study, a relatively high threshold of 2 m/s (4.5 mph) was 

treated as the theoretically possible maximum walking speed for women to account for GPS 

data noise in areas that might obstruct or interfere with GPS signals (e.g., neighborhoods 

with multi-level residences or abundant and dense tree canopies). Given similarities in 

average speed between a true walking scenario and a slow driving one that could occur 

during Los Angeles rush hours or when passing through areas with frequent traffic lights, a 

condition was added such that a trip required a standard deviation of speed that was smaller 

than 1 m/s to be classified as walking-based. This criterion was based on observed patterns 

in the data showing that walking trips typically have a much smaller standard deviation 

in speed than slow driving trips comprising sudden acceleration, deceleration, and frequent 

stops. Furthermore, for a trip to be vehicle-based, it also needed to exceed the maximum 

possible distance a human can travel via walking (i.e., 3 m/s*trip duration). Lastly, for a 

limited number of trips (N=99) that exhibited patterns with multiple modes (e.g., walking 

to the parking lot, driving, riding the metro and walking), we relaxed the criteria and 

only used the mean speed to determine the primary trip mode (i.e., vehicle-based: ≥2 m/s; 

walking-based: <2 m/s). For these trips, we assigned lower confidence to their detected trip 

modes so that they could be excluded for sensitivity analyses purposes.

2.4. Statistical Analysis

2.4.1. Descriptive analysis—Mean, medians, proportions, or standard deviations for 

covariates and time-activity and daily mobility outcomes were calculated by 1st and 3rd 

trimesters of pregnancy and 4-6 months postpartum. The number of stays were summarized 

by context and microenvironment and aggregated into day-level time-activity patterns (min/d 

at each spatial context and within indoor/outdoor microenvironments). Meanwhile, the 

number of trips were summarized by trip modes and aggregated into day-level mobility 

patterns (min/d and N/d in trip of vehicular or pedestrian mode). Non-valid days (<6 h of 

GPS data) were eliminated to reduce potential biases of estimating day-level outcomes.

2.4.2. Generalized mixed effects models—To account for the interdependency of 

the nested data structure in the current study (Level 1-days nested within Level 2-persons), 

generalized linear mixed-effects models (GLMMs) with participant-level random intercepts 

were used. Additionally, negative binomial family functions were fitted because outcomes 

had over-dispersed distributions, which log-transformed the outcome during analyses. 

Lastly, a zero-inflated portion was added to all models due to the presence of excessive 

zero values except for the model that examined min/d at home residential context. These 
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zero-inflated models estimated a participant’s probability of having zero min/d at a given 

context (not visiting the context) or at a given trip mode (not performing the trip).

2.4.3. Model building strategy—For each outcome, we first fit GLMM models to test 

whether the derived time-activity and mobility patterns changed over time during pregnancy 

and postpartum (hereinafter referred to as the Base GLMM model). Then, we further 

included individual sociodemographic, neighborhood, and additional temporal factors to 

explore whether these factors can further explain these time-activity and mobility patterns. 

This was done by first entering all other covariates to construct the fully-adjusted model 

if the univariate analysis (one covariate at a time) reported a p<.1 (hereinafter referred to 

as the Fully-adjusted GLMM model). Lastly, covariates with reduced explanatory power 

(i.e., p-value became >.05 in the fully adjusted model) were dropped in the final model 

to ensure model parsimony (hereinafter referred to as the Final GLMM model). Following 

the recommended practice, covariates were kept the same for the count and zero parts of 

each zero-inflated GLMM.30 Additionally, the day-level total GPS data collection hours 

were always included as a covariate to adjust for the varying amount of GPS data collected 

possibly due to individual device wearing behaviors or other factors.

2.4.4. Model covariates selection—A list of temporal factors, individual-level 

sociodemographic, and neighborhood-level characteristics were included as covariates in 

the models. Past studies have associated these covariates with time-activity patterns of 

pregnant women.9,11,12,16,19,30–33 Temporal factors included weekend versus weekday 

(weekend=1), daily average temperature in degrees Celsius, and study period (1st trimester, 

3rd trimester [reference group], and 4-6 months postpartum). We chose the 3rd trimester 

as the reference group since most prior pregnancy studies examining the relationship 

between environmental exposures and maternal or birth outcomes usually characterize 

environmental exposure based on location at a single point in time late in pregnancy or 

at delivery.2,34,35 Since the 3rd trimester is closest to infant delivery, we wanted to contrast 

changes in time-activity and mobility patterns over time relative to this commonly used 

assumption. Individual sociodemographic characteristics from MADRES questionnaires 

were included, including age, education (less than or equal to high school diploma), marital 

status (married/living together, single/divorced/separated/widowed, or declined to answer/

missing response), birth country (foreign- vs. US-born), parity (first born vs. second or 

greater birth) as well as employment status at each time period. We also calculated Body 

Mass Index (BMI) categories (recoded as normal vs. overweight/obese) determined based 

on height and weight measured during pre-natal visits. Additionally, we included individual-

level neighborhood cohesion and safety scores from questionnaires administered during 

pregnancy and postpartum.36 We assigned neighborhood characteristics to participants’ 

residences based on the 2010 census block group boundary within which their home 

residences were situated. These included the National Walkability Index Score from the 

Environmental Protection Agency (EPA) EnviroAtlas and the Deprivation Index Score from 

the Neighborhood Atlas.37,38 A full list of covariates measures and corresponding data 

sources is documented in Table S3.
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2.4.5. Sensitivity analysis—Finally, sensitivity analyses were run by excluding days 

with <10 h or <16 h of GPS data to examine the influence of GPS completeness on observed 

associations, and by replacing study periods with binary (pregnancy vs. postpartum) and 

continuous time (continuous week from conception to post-birth) variables, and by testing 

non-linear (quadratic) terms. The R 4.0.2 (R Core Team, 2020) and glmmTMB package 

(version 1.0.2.1) were used for generalized mixed-effects modeling.30 Exponentiated effect 

estimates which are interpreted on a multiplicative scale were reported for all models. 

Reversed odds ratios (i.e., odds to accumulate any minutes at a given time activity or 

mobility pattern outcome) of zero-inflated models were calculated for easier interpretation.

3. Results

3.1. Data completeness

A total of 65 participants were initially enrolled in the study, of which, 62 provided at 

least one valid GPS observation day (≥6 h of data) across three study periods. Within 

these 62 participants, 35 had at least one valid day in all three study periods; 17 in two 

of three periods; and 10 in one of three periods. The final analytical sample comprised a 

total of 552 valid days of GPS data from 62 participants across the 1st (N=205 person-days) 

and 3rd trimesters (N=180 person-days) of pregnancy and 4–6 months postpartum (N=167 

person-days). Each participant provided an average of 8.9 (SD=3.0; Range: 3.0-12.0) valid 

GPS days across the three periods. The average number of hours of GPS observations 

collected on valid days was 21.7 h (SD= 5.0; Range: 6.2-24.0). The average number of hours 

was highest in the 3rd trimester (Mean=22.3h; SD=4.4; Range: 6.5-24.0) followed by the 

4-6 months postpartum period (Mean=21.8h; SD=4.7; Range: 7.0-24.0) and the 1st trimester 

(Mean=21.1; SD=5.6; Range: 6.2-24.0). Almost half of the valid person-days (49.3%) were 

weekend days across the three periods.

3.2. Descriptive statistics of covariates

Descriptive statistics for the participant- and day-level covariates are shown in Tables 1a and 

1b. Participants’ mean age at study entry was 29 years (SD=6.1; Range: 18-45). All of the 

participants were Hispanic and more than half were born outside of the U.S. (53.2%). About 

one-third (32.3%) had some college or above education, and 80.6% were either married 

or living together with their partners at study entry. 36.4% were employed during the 1st 

trimester compared to 39.6% during the 3rd trimester, and 19.6% at 4-6 months postpartum. 

At recruitment, 25.8% were pregnant with their first child, 74.2% were overweight or obese 

according to their pre-pregnancy BMI. The recruited participants lived in neighborhoods 

with an average walkability index score (on 1-20 scale; where 1=least walkable) of 14.4 

(SD=2.0, Range: 9.3-19) and average deprivation index score (on 1-10 scale; where 1=least 

deprived) of 6.5 (SD=1.7, Range: 2.0-9.0). The average neighborhood safety and cohesion 

score (on 1-5 scale; where 1=least safe and cohesive) self-reported by women was 3.1 

(SD=0.7, Range: 1.0-4.4) at the 1st and 3rd (SD=0.7; Range: 1.0-5.0) trimesters, and 3.3 

(SD=0.9, Range: 1.4-4.8) at 4-6 months postpartum.

Yi et al. Page 10

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Descriptive statistics for time-activity and daily mobility patterns

3.3.1. Time-activity patterns—The descriptive statistics for derived time-activity 

patterns (N stays and min/day by context and indoor/outdoor microenvironment) are shown 

in Tables 2 and 3. Overall, 2,621 stays were detected from 552 valid GPS person-days 

across three study periods (Table 2). The 1st trimester (N=947 stays) had larger numbers 

of different stays detected compared to the 3rd trimester (N=914 stays) and 4-6 months 

postpartum (N=760 stays). Among all stays, 42.4% (N=1,112) were at home, with an 

average duration of 17.3 h/day (SD=6.6 h/day). Commercial and services locations were the 

most popular destinations (28.9% of all stays; N=757 stays; Mean=1.1 h/day; SD=1.8 h/day) 

among all non-home contexts, followed by non-home residential locations, industrial and 

office spaces, and schools and public facilities, each of which constituted 5~10% of all stays 

(Table 2). Lastly, women in this panel study rarely visited parks and open spaces (1.9% of all 

stays; N=51 stays; Mean=8.73 min/day; SD=48.3 min/day).

In terms of descriptive trends across the three study periods, the number of visits to 

industrial and office spaces, and to commercial and services locations increased from the 

1st trimester to the 3rd trimester but decreased at 4-6 months postpartum. However, women’s 

visits to non-home residential places increased at 4-6 months postpartum compared to the 

3rd trimester (10.4 vs. 6.6% of all stays). Additionally, women’s visits to parks and open 

spaces showed a decreasing trend from the 1st to the 3rd trimester of pregnancy and onto the 

4-6 months postpartum (2.3, 1.9, and 1.6%, respectively of all stays in these time periods).

Approximately one in three (35.1%) of stays detected across the three study periods 

occurred in outdoor microenvironments including locations outside of the home (e.g., porch, 

lawns, sidewalks) (4.2% of all stays; Mean=2.1 h/day; SD=3.4 h/d) and at non-home 

outdoor locations (e.g., parks, sports venues, sidewalks) (30.9% of all stays; Mean=1.9 

h/day; SD=4.3 h/day). Overall, the 3rd trimester had the lowest fraction of stays (39.8%) 

at home (both indoor and outdoor) and the highest fraction of stays (27.7%) at non-home 

indoor microenvironments (Table 3).

3.3.2. Daily Mobility Patterns—The summary statistics for derived mobility patterns 

(N and min/d for trips, and N/d by trip mode) are also shown in Tables 2 and 3. Overall, 

participants took 1,925 trips over the duration of the study spread across 552 person-days, 

one in four of these trips (24.9%) was pedestrian-based (N=489; Mean=16.4 min; SD=30.8 

min). The number of trips made varied slightly between the 1st and 3rd trimesters (N=682 

vs. N=692) and decreased at 4-6 months postpartum (N=551). This pattern was replicated 

across all trip modes.

Fig. 4 shows the most popular trip origins and destinations by mode and purpose. For 

pedestrian-based trips (N=489), around 1 in 5 (21.7%, N=103) were between different 

commercial and services locations, followed by walking within the same commercial and 

services locations (14.5%; N=71). For vehicle-based trips (N=1445), about 2 in 5 (37.8%; 

N=546) were between home and commercial and services locations, followed by commuting 

between different commercial and services locations (18.5%; N=268) and between home 

and non-home residential locations (9.0%, N=130).
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3.4. Base GLMM results

The base GLMM results examining whether day-level time-activity and mobility patterns 

varied across the three study periods are illustrated in Fig. 5. The odds of visiting 

commercial and services locations were 58% lower at 4-6 months postpartum compared to 

the 3rd trimester (OR=0.42, 95%CI: 0.23–0.76) (Fig. 5). No other stay contexts (in terms of 

frequency or duration of time spent within them) were significantly different across the three 

time periods. These results did not change in sensitivity analyses restricting to days with 

≥10 h or ≥16 h of GPS data, using binary (pregnancy vs. postpartum) and continuous (week 

number from conception to post-birth) time variables, and using non-linear (quadratic) 

time terms. Moreover, the odds of staying outdoors and time spent outdoors did not vary 

significantly across the three study periods (Fig. 5). Lastly, in terms of mobility patterns, the 

odds of performing a vehicular trip were 56% lower at 4-6 months postpartum compared 

to the 3rd trimester at the day level (OR=0.44, 95%CI: 0.21–0.92) (Fig. 5). These results 

did not change in sensitivity analyses restricting trips to those with ≥ 5% of epoch-level 

GPS data within trip segments detected. The odds of performing any trips overall or in 

pedestrian-mode did not vary by study period in these base models using min/d spent in trips 

or N/d trips taken. The full model results of base GLMM can be found in Table S4.

3.5. Final GLMM results

3.5.1. Three study periods—The results of the final GLMM exploring whether 

individual sociodemographic, neighborhood, and other temporal factors such as weekdays vs 

weekend days additionally explained the women’s time-activity and daily mobility patterns 

are summarized in Table 4. All significant results found in the base models examining 

variation over time remained in the fully adjusted models (see Tables 4a for odds of 

visiting commercial and services locations, and 4c for odds of performing any vehicle-based 

trip). Additionally, the final GLMM results showed that when women visited non-home 

residential locations in the 4-6 months postpartum period, their mean min/day spent there 

increased by 83% (Incidence Rate Ratio or IRR=1.83, 95%CI: 1.03-3.25) compared to when 

they visited this same context in the 3rd trimester (Table 4b).

3.5.2. Weekdays vs. weekends—Other temporally varying factors including 

weekdays vs. weekend days and daily temperature were not significantly associated with 

duration of time (min/day) spent at the home residence (when participants were there). 

Results remained unchanged in sensitivity analyses excluding days with <10 h or <16 h of 

GPS observations, or self-reported sleeping hours. As for non-home contexts, when women 

visited non-home residential locations or parks and open spaces during weekend days, 

they spent 64% (IRR=1.64, 95%CI: 1.05-2.56) and 202% (IRR=3.02, 95%CI: 1.32-6.92) 

more min/day at each context, respectively, as compared to weekdays. Additionally, during 

weekend days, the odds (OR=0.48; 95%CI: 0.35–0.82) of accumulating any minutes in trips 

decreased by 52%.

3.5.3. Individual sociodemographic and residential neighborhood 
characteristics—Other than weekdays vs weekend days, individual sociodemographic 

and residential neighborhood characteristics, including employment status, maternal 

education, and self-reported neighborhood cohesion and safety scores, were also 
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significantly associated with time-activity (Table 4b) and mobility (Table 4c) patterns. 

Specifically, those employed spent on average 48% more min/d (IRR=1.48, 95%CI: 
1.10-1.99) when they visited non-home contexts and had 133% higher odds (OR=2.33, 

95%CI: 1.10-5.00) of visiting industrial and office spaces compared to non-employed 

counterparts. In addition, women who already had at least one child (IRR=0.65; 95%CI: 
0.45-0.93) spent 35% fewer min/day visiting commercial and services locations compared to 

women experiencing their first pregnancy.

In terms of mobility patterns, maternal education was significantly associated with longer 

duration of time spent in trips when they were taken. Specifically, women with post high 

school education had 223% greater odds (OR=3.33, 95%CI: 1.41-7.69) of accumulating 

minutes on vehicle-based trips and 113% greater odds (OR=2.13, 95%CI: 1.05-4.35) of 

accumulating minutes on all trips regardless of mode (Table 4c) compared to women with 

high school diploma and below. Moreover, women living in safer neighborhoods (based on 

reported safety and cohesion score) took 14% fewer vehicle-based trips per day (IRR=0.86; 

95%CI: 0.76-0.97) overall.

4. Discussion

The overarching goal of this analysis was to examine how dynamic time-activity and 

mobility patterns vary for both the pregnant woman and the fetus, and how these might 

differ across levels of personal, socioeconomic, or neighborhood level disadvantage. In this 

work, we developed a data processing and analysis pipeline for highly resolved GPS data 

in a panel study of Hispanic pregnant women who were continuously monitored for 4 days 

during each of the 1st and 3rd trimesters of pregnancy and at 4-6 months postpartum. We 

identified stays and trips and classified their spatial and indoor/outdoor microenvironmental 

contexts (for stays) and modes (for trips). We then tested whether time-activity and mobility 

patterns varied over time during pregnancy and the early postpartum period, and by 

individual sociodemographic, residential neighborhood, and other temporal factors. This 

work also highlights the inadequacy of assuming individuals are stationary when assessing 

environmental exposures during pregnancy and their effects on maternal and child health.

4.1. Time-activity and mobility patterns of pregnant women

To start, we found that participants on average spent nearly 70% (17.3 h/day) of their 

time at their home residences during pregnancy and the early postpartum period, a finding 

that is consistent with several studies examining the time-activity and mobility patterns of 

pregnant women.10,16,19 For instance, Nethery et al. reported a cohort of Canadian pregnant 

women spent 16.2 h/day at/near home during pregnancy while Zhu et al. reported a cohort 

of Chinese pregnant women spent 15 h/day at/near home.9,19 Moreover, although we could 

not directly compare our findings with other pregnancy studies among Hispanic women in 

the U.S., our finding that this group of Hispanic women rarely visited parks and open spaces 

indicates a potential public health concern since multiple studies have shown that exposure 

to greenness is associated with lower exposure to environmental hazards and decreased 

risk of adverse pregnancy outcomes.1,12,39 Past studies have indicated that minority and 

low socioeconomic status (SES) populations have lower parks and open spaces availability 
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(e.g., no park within walking distance) and quality (e.g., crime, lack of maintenance), which 

might help explain the low utilization of parks and open spaces in our cohort. Consistently, 

because urban Los Angeles has limited parks and green infrastructure in general and higher 

quality parks and open spaces occur in the more expensive areas of the city, the low-income 

participants in our study may have had less access to parks and open spaces.40,41 We 

plan to examine greenness exposure and parks and open spaces access in participants’ 

residential neighborhoods, as well as interactions with individual health characteristics to 

further understand the reasons behind this finding in the future.

The daily mobility patterns of participants in our study differed from results reported by 

Wu et al. in the other GPS-based Southern California study that also examined mobility 

patterns of pregnant women.16 Specifically, our participants spent 1.7 times more min/day 

on average in vehicle-based trips compared to the prior study. However, Wu et al.’s study 

participants were from different counties with a more diverse racial and ethnic composition 

and wider SES range compared to our study that focused on predominantly low income, 

Hispanic participants from Central, East, and South Los Angeles. A study by MacLeod et 

al. found low-income, pregnant women in another urban cohort in Los Angeles reported 

significantly more time in vehicle-based trips in a cross-sectional survey, which might 

explain this discrepancy since low SES groups may have longer commuting times and make 

more frequent use of public transit than higher SES groups.42

4.2. Changes in time-activity and mobility patterns during pregnancy and postpartum

Longitudinally, we did not find women’s time spent at home differed significantly across 

pregnancy and early postpartum. This finding differs from the results of other studies 

examining time-activity patterns of women across pregnancy.9,19 Nethery et al. reported 

that increasing weeks of pregnancy until the 3rd trimester were associated with increased 

time spent at home in a sample of 62 pregnant women living in Vancouver, BC, Canada. 

The authors hypothesized this might be due to the decrease in physical activity in later 

trimesters of pregnancy.19 However, our study focused on a group of Hispanic women that 

were primarily low SES. Consequently, they might not be able to afford or have time to 

engage in leisure activities due to increased home or work responsibilities.43

In terms of time spent in non-home contexts, we found women’s odds of visiting 

commercial and services locations decreased at 4-6 months postpartum compared to the 3rd 

trimester of pregnancy. This change may be explained by increasing stays at home residence 

due to childcare responsibilities or the fact that women permanently or temporarily left their 

jobs at these times since the employment rate dropped from 39.6 to 19.6% between the 3rd 

trimester and the 4-6 months postpartum. We did not find any difference between women’s 

time spent in commercial and services locations between the 1st and 3rd trimesters. However, 

a similar study in Shanghai, China reported women’s time spent working decreased by 

two hours in the 3rd trimester compared to the 1st trimester.39 We were able to disentangle 

whether the purpose of visiting commercial and service locations was for work or fulfilling 

daily life needs such as visiting hospitals, schools, and supermarkets, which might explain 

why our results differed from the Shanghai study above.
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Regarding daily mobility patterns, our finding of no meaningful changes in time spent in 

vehicle- or pedestrian-based trips between the 1st and 3rd trimesters of pregnancy adds 

to the mixed results reported in the literature. Our results were consistent with the study 

by Nethery et al. that reported no longitudinal changes in time spent in transit across the 

1st, 2nd, and 3rd trimesters of pregnancy,19 but inconsistent with Zhu et al. who reported 

pregnant women’s time spent in vehicles increased between the 1st and 3rd trimester.9 

However, the latter study was located in Shanghai, China, a city with an urban planning 

system that heavily incorporates pedestrian-oriented street networks and public transit 

systems in contrast to the Los Angeles metropolitan area, which may result in different 

travel behaviors. Until now, there are few studies that have examined daily mobility patterns 

of pregnant women and more are needed to understand how mobility patterns change across 

pregnancy and postpartum periods.

4.3. Additional predictors of time-activity and mobility patterns

Our findings that pregnant women’s time-activity and daily mobility patterns vary with 

additional temporal, individual sociodemographic, and residential neighborhood factors 

suggest that there may be highly variable patterns even among a primarily low-income, 

Hispanic population. We found that those who were employed spent more time at industrial 

and office spaces during the week and more time at parks and open spaces during weekends. 

Participants with higher educational attainment were more likely to take vehicle-based 

trips, a fact that was consistent with study results of Wu et al. and might be explained 

different employment status.44 We also found that women living in safer neighborhoods 

performed fewer vehicle-based trips daily, which might be explained by their preference to 

take more walking trips given safer streets, although we did not find a statistically significant 

relationship between neighborhood safety and numbers and durations of pedestrian-based 

trips.

4.4. Implications for future studies

Our results found pregnant and early postpartum women spent a substantial portion of 

their time at indoor locations, visited several locations and took several trips per day—

approximately a quarter of which were pedestrian trips. These patterns also differed over 

the course of the pregnancy and the postpartum period. Our findings have important 

implications for future studies that aim to investigate the association between environmental 

exposures of pregnant women and maternal or child health outcomes. The residential-based 

approach used by most studies in the past may under- or over-estimate physical, built, and 

social environment exposures of interest (e.g., PM2.5, greenspace, crime). Consequently, 

the true relationships between environmental exposures and targeted health behaviors (e.g., 

physical activity) and outcomes (e.g., respiratory diseases) may be masked, especially 

when investigating acute or short-term dose-response relationships (e.g., daily, weekly, 

monthly). In addition, our findings of variations in time-activity patterns across pregnancy 

and postpartum periods suggest the need for more longitudinal studies to complement 

cross-sectional studies.

Kwan argues that spatial and temporal mismatches and uncertainties make it difficult to 

clarify the influence of contextual variables on health behaviors or outcomes.45 Given the 
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need to prepare for child birth, infant care, and other responsibilities during pregnancy and 

early postpartum, women’s day-to-day time-activity and daily mobility patterns may vary 

more than those of the general population.14 As a result, future studies should move from 

“snapshot” to activity space based approaches to assess environmental exposures of pregnant 

women.13 Mobile sensing technologies, such as GPS, can provide fine-grained mobility 

trajectories that can be used to assess environmental exposures that reflect time-activity 

patterns. As a result, these technologies can reduce the uncertainties in contextual exposures 

(i.e., the disparities between the true contextual and measured contextual units).6,46,47 Lastly, 

our findings that pregnant and early postpartum women’s time-activity and mobility patterns 

varied across weekend days vs. weekdays, employment status, education attainment, 

and neighborhood cohesion and safety suggests that these might be important exposure 

determinants to account for in future studies.

4.5. Study limitations and strengths

To the best of our knowledge, this is the first study that examines time-activity and daily 

mobility patterns of pregnant women across pregnancy and early postpartum periods. A 

major strength is the application of GPS to repeatedly collect highly resolved geospatial 

location data across the 1st and 3rd trimesters of pregnancy and at 4-6 months postpartum. 

As a result, we overcame recall biases inherent in self-reported time-activity or mobility 

surveys and provided insights into longitudinal changes in these patterns. Additionally, the 

study applies a kernel density-based algorithm to classify stay contexts and trip modes, 

achieving higher accuracy and better sensitivity than the point-by-point classification 

approach. Compared to computationally intensive methods, our GPS processing and stay/

trip detection workflow may offer a lower technical difficulty threshold for future studies 

that aim at utilizing mobile-phone collected location-tracking data to generate time-activity 

patterns We collected highly time-resolved (10-s epoch) GPS data, based upon which we 

detected stays and trips and classified spatial context, indoor/outdoor microenvironments, 

and trip modes in GIS. These fine-grained data and advanced GIS analytical tools helped us 

to examine the time-activity and mobility patterns during pregnancy and early postpartum 

at various temporal spacings. The longitudinal design used for this study allowed us to 

examine both the variations in time-activity patterns between women and the day-to-day 

variations for each woman.

Our study also has a few limitations. First, the GPS data we collected had some missingness. 

To mitigate its impacts on analyses, we made efforts to impute GPS data using existing 

information and re-run the analysis with stricter thresholds of daily observation hours or 

excluding data collected during sleep hours. Our study results remained largely unchanged. 

Additionally, missing data did not demonstrate diurnal patterns (i.e., it was roughly invariant 

throughout the day). However, there are other factors that may still potentially affect our 

study outcomes. For instance, missingness patterns of GPS data may be correlated with 

spatial contexts (e.g., tall buildings, trees) that could obstruct receiver signals. Second, 

although we tackled the signal loss issue by flagging signal loss scenarios with confidence 

levels and excluded those with extremely low confidence, we still could not be sure that 

the locations recorded by the device during signal loss matched the true location. Third, 

we could not distinguish a trip to and from work locations from other trips, which might 
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inform the interpretation of results of time-activity patterns for certain respondents and the 

types of contexts in play. Fourth, we had a relatively small sample size and only collected 

4-day GPS data in two weekdays and two weekend days during each study period. Thus, 

the time-activity and mobility patterns detected from our samples may not capture some 

infrequently activities that tend to occur on a weekly basis or on other days of the week 

such as grocery shopping. Lastly, we focused on a health disparity group of low-income, 

Hispanic women, a population that has been understudied and disproportionally exposed to 

various environmental hazards. Thus, our results may not generalize to pregnant women in 

other regions or SES or racial/ethnic groups; nevertheless, they shed light on an important 

population, and they may pave the way for future studies to examine pregnant women’s 

environmental exposures within their everyday activity spaces.

5. Conclusions

Pregnancy and early postpartum are critical periods for women’s health, and we have shown 

that time-activity and mobility patterns of women will likely vary over this journey for 

many women. Time-activity and mobility patterns can also be used to directly determine 

environmental exposures that may affect both short- and long-term maternal and infant 

health outcomes. Therefore, future studies examining the impacts of environmental or 

contextual exposures on maternal or fetal health should consider the dynamics of these 

patterns as they will directly influence exposure measurement error and the ability to detect 

meaningful relationships.
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Highlights

• We analyzed time-activity and mobility patterns in pregnancy and postpartum

• Higher neighborhood safety was associated with less daily vehicular trips

• Parks were rarely visited during pregnancy and early postpartum

• Vehicular trips and visits to commercial/service locations decreased 

postpartum

• Dynamic changes in time-activity patterns have implications for exposure 

assessment
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Fig. 1. 
GPS pre-processing steps of MADRES real-time and personal sampling study GPS data.

Notes. MADRES = Maternal And Developmental Risks from Environmental and Social 

stressors. GPS = Global Positioning System.
1 Data collection dates included two weekdays and two weekend days.
2 Three periods were first trimester, third trimester, and four-to-six months postpartum.
3 Network source included observations recorded by WiFi and cellular networks.
4 Signal loss scenarios were defined as ≥ 1 min time windows with same timestamps.
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5 Outliers were defined as observations with a distance > 450 m from the median latitude/

longitude coordinates (corresponding to the maximum realistically possible distance moved 

in 10 s based on a speed of 45 m/s or 100 mph) and replaced with the median coordinates 

within the moving window.
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Fig. 2. 
Geoprocessing steps to detect stays, classify their contexts based on land use, and their 

indoor/outdoor microenvironments based on building footprints.

Note. GPS = global positioning system.
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Fig. 3. 
Geoprocessing steps to detect trips and classify their modes based on mean and SD of GPS 

observations in trips.

Notes. SD = Standard deviation. GPS = Global Positioning System.

1 Trips start time was identified as the end of previous stay and trip end time was identified 

as the start of the next consecutive stay.

2 Epoch-level distance-based speed (vtrip) was calculated by dividing the Euclidean distance 

traveled (dtrip) between two consecutive epochs with time elapsed (ttrip).
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Fig. 4. 
Distributions of top five origin-destination combinations by pedestrian- and vehicle-based 

trip modes.
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Fig. 5. 
Base generalized mixed-effects model (GLMM) results of variations in time-activity and 

daily mobility patterns by 1st and 3rd trimesters of pregnancy and 4-6 months postpartum 

using 3rd trimester as the reference group.

Notes. IRR = Incidence Rate Ratio. OR = Odds Ratio. Variations of time-activity and daily 

mobility patterns by pregnancy and postpartum periods were tested using zero-inflated 

GLMM with the 3rd trimester as the reference group and controlling for day GPS 

observation hours.

1. IRR can be interpreted as: if mothers visit a particular context or perform trips with a 

particular mode, their min/d spent increase (if IRR>1) or decrease (if IRR<1), compared to 

the reference time point (i.e., 3rd trimester). For example, if mothers visit commercial and 

service locations at 4-6 months postpartum, their min/d spent at the locations decrease by 

18% (1-0.82) compared to 3rd trimester, this is statistically insignificant (p ≥0.05).

2. OR can be interpreted as: mothers in a time point decrease (if OR<1) or increase (if 

OR>1) the odds of visiting a particular context or performing trips with a particular mode, 

compared to the reference time point (i.e., 3rd trimester). For example, mothers at 4-6 

months postpartum decrease the odds of visiting commercial and services locations by 58% 

(1-0.42), this is statistically significant (p<0.05)
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Table 1a.

Descriptive statistics of participant characteristics at baseline.

Overall (N=62 Participants)

Age at consent (years)

 Mean (SD) 29 (6.1)

 Median [Min, Max] 28 [18, 45]

Education

 High school or less 42 (67.7%)

 Some college/Graduate 20 (32.3%)

Marital status

 Married/Living together 50 (80.6%)

 Single/Divorced/Separated/Widowed 10 (16.1%)

 Missing 2 (3.2%)

Acculturation

 US-Born Hispanic 29 (46.8%)

 Foreign-Born Hispanic 33 (53.2%)

Maternal parity

 First-born 16 (25.8%)

 Already had child 46 (74.2%)

Pre-pregnancy BMI category

 Normal 16 (25.8%)

 Overweight/Obesity 46 (74.2%)

Neighborhood Walkability Score

 Mean (SD) 14.4 (2.0)

 Median [Min, Max] 14 [9.3, 19]

Neighborhood Deprivation Score

 Mean (SD) 6.5(1.7)

 Median [Min, Max] 7.0 [2.0, 9.0]

 Missing 2 (3.2%)
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Table 1b.

Descriptive statistics of person-day level temporally varying factors by period (1st trimester, 3rd trimester, and 

4-6 months postpartum) and overall.

1st Trimester (N=205 
person-days)

3rd Trimester (N=180 
person-days)

4-6 Months Postpartum 
(N=167 person-days)

Overall (N=552 
person-days)

Valid GPS observation (h/
day)

 Mean (SD) 21 (5.6) 22 (4.4) 22 (4.7) 22 (5.0)

 Median [Min, Max] 24 [6.2, 24] 24 [6.5, 24] 24 [7.0, 24] 24 [6.2, 24]

Average Daily Temperature 
(°C)

 Mean (SD) 21 (4.2) 21 (4.4) 19 (4.4) 20 (4.4)

 Median [Min, Max] 21 [8.0, 31] 21 [9.0, 31] 20 [5.2, 28] 20 [5.2, 31]

 Missing 19 (9.3%) 0 (0%) 0 (0%) 19 (3.4%)

Type of day

 Weekday 104 (50.7%) 91 (50.6%) 85 (50.9%) 280 (50.7%)

 Weekend 101 (49.3%) 89 (49.4%) 82 (49.1%) 272 (49.3%)

1st Trimester (N=55 
Participants)

3rd Trimester (N=48 
Participants)

4-6 Months Postpartum 
(N=46 Participants)

Overall (N=149 
Participants)

Employment status

 Unemployed 35 (63.6%) 28 (58.3%) 29 (63.0%) 92 (61.7%)

 Employed 20 (36.4%) 19 (39.6%) 9 (19.6%) 48 (32.2%)

 Missing 0 (0%) 1 (2.1%) 8 (17.4%) 9 (6.0%)

Neighborhood Cohesion and 
Safety Score

 Mean (SD) 3.1 (0.7) 3.1 (0.7) 3.3 (0.9) 3.1 (0.8)

 Median [Min, Max] 3.0 [1.0, 4.4] 3.1 [1.0, 5.0] 3.2 [1.4, 4.8] 3.0 [1.0, 5.0]

 Missing 3 (5.5%) 0 (0%) 8 (17.4%) 11 (7.4%)

Notes. BMI = Body Mass Index, GPS = Global Positioning System. SD = Standard deviation.
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Table 2.

Summary of total number of visits to multiple spatial contexts and indoor/outdoor microenviroments and total 

number of pedestrian and vehicular trips made.

1st Trimester 
(Nstav=947; 
Ntrip=682)

3rd Trimester 
(Nstav=914; 
Ntrip=692)

4-6 Months 
Postpartum 

(Nstav=760; NTrip=551)

Overall (Nstav=2,621; 
NTrip=1,925)

N(%) N(%) N(%) N(%)

Spatial contexts

 Home residential 412 (43.5%) 363 (39.7%) 337 (44.3%) 1,112 (42.4%)

 Non-home residential 64 (6.8%) 60 (6.6%) 79 (10.4%) 203 (7.7%)

 Commercial and Services 281 (29.7%) 283 (31.0%) 193 (25.4%) 757 (28.9%)

 Industrial and Office Spaces 84 (8.9%) 105 (11.5%) 64 (8.4%) 253 (9.7%)

 Schools and Public Facilities 52 (5.5%) 61 (6.7%) 57 (7.5%) 170 (6.5%)

 Parks and Open Spaces 22 (2.3%) 17 (1.9%) 12 (1.6%) 51 (1.9%)

 Other 32 (3.4%) 25 (2.7%) 18 (2.4%) 75 (2.9%)

Indoor/outdoor microenvironment

 Home Indoor 363 (38.3%) 336 (36.8%) 302 (39.7%) 1,001 (38.2%)

 Non-Home Indoor 220 (23.2%) 253 (27.7%) 168 (22.1%) 641 (24.5%)

 Home Outdoor 49 (5.2%) 27 (3.0%) 35 (4.6%) 111 (4.2%)

 Non-Home Outdoor 291 (30.7%) 288 (31.5%) 230 (30.3%) 809 (30.9%)

 Out of LA County 24 (2.5%) 10 (1.1%) 25 (3.3%) 59 (2.3%)

Trip modes

 Pedestrian trips 175 (25.7%) 185 (26.7%) 120 (21.8%) 480 (24.9%)

 Vehicular trips 507 (74.3%) 507 (73.3%) 431 (78.2%) 1,445 (75.1%)
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Table 3.

Day-level summary of time spent in spatial contexts, indoor/outdoor microenvironments, and number of 

pedestrian/vehicular trips made.

1st Trimester (N=205 
person-days)

3rd Trimester (N=180 
person-days)

4-6 Months 
Postpartum (N=167 

person-days)

Overall (N=552 
person-days)

Spatial Contexts

Home Residential (h/day)

 Mean (SD) 16.8 (6.6) 17.5 (6.6) 17.6 (6.3) 17.3 (6.6)

 Median [Min, Max] 18.8 [0, 24.0] 19.5 [0, 24.0] 19.4 [0, 24.0] 19.2 [0, 24.0]

 Missing 2 (1.0%) 0 (0%) 1 (0.6%) 3 (0.5%)

All Non-Home Contexts (min/day)

 Mean (SD) 205 (324) 219 (328) 190 (295) 205 (316)

 Median [Min, Max] 58.0 [0, 1440] 81.4 [0, 1440] 73.2 [0, 1440] 73.2 [0, 1440]

Non-Home Residential (min/day)

 Mean (SD) 51.9 (158) 40.8 (139) 68.7 (164) 53.1 (154)

 Median [Min, Max] 0 [0, 1260] 0 [0, 1040] 0 [0, 831] 0 [0, 1260]

 Missing 46 (22.4%) 26 (14.4%) 34 (20.4%) 106 (19.2%)

Commercial and Services (min/day)

 Mean (SD) 68.2 (109) 84.2 (134) 47.7 (68.9) 67.4 (109)

 Median [Min, Max] 16.2 [0, 561] 22.2 [0, 619] 9.50 [0, 349] 16.2 [0, 619]

 Missing 40 (19.5%) 25 (13.9%) 28 (16.8%) 93 (16.8%)

Schools and Public Facilities (min/day)

 Mean (SD) 21.1 (71.8) 26.2 (70.8) 23.4 (66.1) 23.6 (69.7)

 Median [Min, Max] 0 [0, 480] 0 [0, 517] 0 [0, 521] 0 [0, 521]

 Missing 49 (23.9%) 25 (13.9%) 32 (19.2%) 106 (19.2%)

Industrial and Office Spaces (min/day)

 Mean (SD) 103 (304) 93.2 (269) 72.5 (241) 90.4 (274)

 Median [Min, Max] 0 [0, 1440] 0 [0, 1440] 0 [0, 1440] 0 [0, 1440]

 Missing 44 (21.5%) 25 (13.9%) 29 (17.4%) 98 (17.8%)

Parks and Open Spaces (min/day)

 Mean (SD) 11.8 (55.9) 5.57 (30.1) 8.86 (55.4) 8.73 (48.3)

 Median [Min, Max] 0 [0, 384] 0 [0, 275] 0 [0, 517] 0 [0, 517]

 Missing 53 (25.9%) 29 (16.1%) 36 (21.6%) 118 (21.4%)

Indoor/outdoor microenvironment

Home Outdoor (min/day)

 Mean (SD) 150 (389) 129 (389) 138 (391) 139 (389)

 Median [Min, Max] 0 [0, 1440] 0 [0, 1440] 0 [0, 1440] 0 [0, 1440]

 Missing 49 (23.9%) 26 (14.4%) 37 (22.2%) 112 (20.3%)

Non-Home Outdoor (min/day)

 Mean (SD) 109 (248) 117 (272) 112 (253) 113 (257)

 Median [Min, Max] 15.5 [0, 1440] 12.0 [0, 1440] 12.0 [0, 1440] 12.3 [0, 1440]

 Missing 40 (19.5%) 23 (12.8%) 24 (14.4%) 87 (15.8%)
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1st Trimester (N=205 
person-days)

3rd Trimester (N=180 
person-days)

4-6 Months 
Postpartum (N=167 

person-days)

Overall (N=552 
person-days)

Daily Mobility

Trip (min/day)

 Mean (SD) 60.2 (73.3) 66.6 (69.4) 64.7 (76.6) 63.7 (73.0)

 Median [Min, Max] 40.0 [0, 387] 49.6 [0, 363] 37.8 [0, 351] 44.2 [0, 387]

Pedestrian-based Trip (min/day)

 Mean (SD) 16.2 (30.8) 17.9 (31.7) 14.9 (29.8) 16.4 (30.8)

 Median [Min, Max] 0 [0, 205] 0 [0, 186] 0 [0, 166] 0 [0, 205]

 Missing 45 (22.0%) 23 (12.8%) 30 (18.0%) 98 (17.8%)

Vehicular-based Trip (min/day)

 Mean (SD) 57.3 (67.6) 58.1 (63.7) 60.9 (72.0) 58.7 (67.6)

 Median [Min, Max] 36.3 [0, 372] 41.6 [0, 356] 35.3 [0, 351] 39.3 [0, 372]

 Missing 35 (17.1%) 22 (12.2%) 23 (13.8%) 80 (14.5%)

Trip (N/day)

 Mean (SD) 3.33 (3.86) 3.84 (3.97) 3.30 (3.61) 3.49 (3.82)

 Median [Min, Max] 2.00 [0, 18.0] 3.00 [0, 17.0] 2.00 [0, 16.0] 2.00 [0, 18.0]

Pedestrian-based Trip (N/day)

 Mean (SD) 1.09 (1.97) 1.18 (1.75) 0.876 (1.37) 1.06 (1.73)

 Median [Min, Max] 0 [0, 13.0] 0 [0, 8.00] 0 [0, 6.00] 0 [0, 13.0]

 Missing 45 (22.0%) 23 (12.8%) 30 (18.0%) 98 (17.8%)

Vehicular-based Trip (N/day)

 Mean (SD) 2.98 (2.97) 3.21 (3.32) 2.99 (3.31) 3.06 (3.19)

 Median [Min, Max] 2.00 [0, 12.0] 2.00 [0, 15.0] 2.00 [0, 15.0] 2.00 [0, 15.0]

 Missing 35 (17.1%) 22 (12.2%) 23 (13.8%) 80 (14.5%)

Notes. SD = Standard Deviation.
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Table 4a.

Zero-inflated generalized mixed-effects model (GLMM) results for time spent in home and non-home 

contexts and microenvironments adjusted for pregnancy and postpartum period, temporal factors, individual 

sociodemographics, and neighborhood characteristics.

Home 
Residence (h/

day)

Home Residence 
Excluding Sleep 
Hours (min/day)

Home Residence 
Outdoor (min/

day)

All Non-Home 
Contexts (min/day)

All Non-Home 
Contexts Outdoor 

(min/day)

Predictors

Count Model Incidence Rate Ratio (95%CI) 

  Period: 1st Trimester 0.98 (0.93 – 
1.05)

0.95 (0.85 – 1.06) 0.87 (0.74 – 1.02) 1.18 (0.94 – 1.47) 1.15 (0.84 – 1.57)

  Period: 4-6 Months 
Postpartum

1.00 (0.93 – 
1.07)

1.01 (0.90 – 1.13) 0.90 (0.75 – 1.10) 1.08 (0.86 – 1.36) 1.07 (0.78 – 1.47)

  Valid GPS observation 
(h/day)

1.06 *** (1.05 – 
1.07)

1.15 *** (1.13 – 
1.17)

1.06 *** (1.04 – 
1.08)

1.05 ** (1.01 – 1.08) 1.03 (0.98 – 1.07)

  Employment status: 
Employed

0.92 (0.84 – 
1.01)

1.48** (1.10 – 1.99)

  Type of day: Weekend 1.06 (0.89 – 1.27)

  Maternal age at consent 1.00 (0.97 – 1.02) 0.99 (0.95 – 1.03)

Zero-Inflated Model Odds Ratio (95%CI) 

  Period: 1st Trimester 1.14 (0.4 – 3.23) 0.56 (0.15 – 2.13) 0.71 (0.42 – 1.22) 1.05 (0.62 – 1.82)

  Period: 4-6 Months 
Postpartum

1.49 (0.53 – 4.35) 1.02 (0.21 – 5.00) 0.83 (0.45 – 1.54) 0.72 (0.42 – 1.27)

  Valid GPS observation 
(h/day)

1.92 *** (1.67 – 
2.38)

0.20 (0.02 – 1.85) 1.19 *** (1.15 – 1.25) 0.23 * (0.07 – 0.79)

  Employment status: 
Employed

0.59 * (0.38 – 0.93)

  Type of day: Weekend 1.89 (1.00 – 3.70)

  Maternal age at consent 1.10 ** (1.11 – 1.18) 1.10 ** (1.11 – 
1.16)

*
p<0.05.

**
p<0.01.

***
p<0.001.

Exponentiated parameter estimates are shown. Reversed odds ratio (i.e., odds for an outcome to be non-zero) of zero-inflated models were 
calculated for easier interpretation. Zero-inflated model was not applied to home residence related outcomes given that extremely rare cases of 
having zero min/day spent at home residence.

Notes. GPS = Global Positioning System.
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Table 4b.

Zero-inflated generalized mixed-effects model (GLMM) results for time spent in five non-home spatial 

contexts adjusted for pregnancy and postpartum period, temporal factors, individual sociodemographics and 

neighborhood characteristics.

Non-Home 
Residential (min/d)

Commercial and 
Services (min/d)

Industrial and 
Office Spaces 

(min/d)

Schools and 
Public Facilities 

(min/d)

Parks and 
Open Spaces 

(min/d)

Predictors

Count Model Incidence Rate Ratio (95%CI) 

  Period: 1st Trimester 1.14 (0.65 – 1.98) 1.01 (0.79 – 1.30) 1.37 (0.89 – 2.10) 0.81 (0.49 – 
1.34)

1.07 (0.37 – 
3.11)

  Period: 4-6 Months 
Postpartum 1.83 * (1.03 – 3.25) 0.88 (0.66 – 1.17) 1.51 (0.96 – 2.36) 0.91 (0.56 – 

1.46)
0.45 (0.16 – 

1.31)

  Valid GPS observation (h/
day) 1.01 (0.94 – 1.09) 1.07 ** (1.02 – 1.13) 1.03 (0.97 – 1.09) 1.05 (0.96 – 

1.15)
0.95 (0.80 – 

1.13)

  Type of day: Weekend 1.64 * (1.05 – 2.56) 3.02 ** (1.32 
– 6.92)

  Average air temperature 
(°C) 1.04 (0.99 – 1.10)

  Maternal parity: Already 
had child 0.63 ** (0.46 – 0.86)

  Employment status: 
Employed 1.43 ** (1.11 – 1.85) 2.01 * (1.06 – 

3.79)
2.25 *** (1.40 – 

3.64)

  Maternal age at consent 0.99 (0.97 – 1.01)

  Neighborhood safety and 
cohesion score 0.83 * (0.71 – 0.97)

Zero-Inflated Model Odds Ratio (95%CI) 

  Period: 1st Trimester 0.95 (0.53 – 1.79) 0.60 (0.33 – 1.09) 0.63 (0.34 – 1.18) 0.88 (0.45 – 
1.72)

1.35 (0.50 – 
3.85)

  Period: 4-6 Months 
Postpartum 1.05 (0.59 – 2.00) 0.37 ** (0.19 – 0.72) 0.63 (0.32 – 1.27) 0.96 (0.48 – 

1.96)
1.2 (0.40 – 

3.70)

  Valid GPS observation 
(hay/day) 0.34 * (0.12 – 0.97) 0.28 * (0.10 – 0.85) 0.20 (0.04 – 1.01) 0.14 ** (0.03 – 

0.59)
0.22 (0.02 – 

2.70)

  Type of day: Weekend 0.74 (0.45 – 1.22) 1.37 (0.59 – 
3.23)

  Average air temperature 
(°C) 1.00 (1.00 – 1.06)

  Maternal parity: Already 
had child 0.53 (0.18 – 1.59)

  Employment status: 
Employed 0.62 (0.29 – 1.33) 2.33 * (1.11 – 

5.00)
0.61 (0.28 – 

1.35)

  Maternal age at consent 1.10 * (1.01 – 1.19)

  Neighborhood safety and 
cohesion score 1.16 (0.77 – 1.82)

*
p<0.05.

**
p<0.01.

***
p<0.001.
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Exponentiated parameter estimates are shown. Reversed odds ratio (i.e., odds for an outcome to be non-zero) of zero-inflated models were 
calculated for easier interpretation.

Notes. BMI = Body Mass Index. GPS = Global Positioning System.
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Table 4c.

Zero-inflated generalized mixed-effects model (GLMM) results for time spent in pedestrian and vehicular 

trips and number of pedestrian and vehicular trips performed adjusted for pregnancy and postpartum period, 

temporal factors, individual sociodemographics, and neighborhood characteristics.

All Trip 
(min/d)

Pedestrian-
based Trip 
(min/d)

Vehicular-based 
Trip (min/d)

All Trip 
(N/d)

Pedestrian-
based Trip (N/d)

Vehicular-based 
Trip (N/d)

Predictors

Count Model Incidence Rate Ratio (95%CI) 

  Period: 1st Trimester 1.03 (0.86 – 
1.24)

1.03 (0.75 – 1.41) 1.05 (0.86 – 1.28) 1.00 (0.85 – 
1.18)

1.04 (0.73 – 1.47) 1.04 (0.88 – 1.23)

  Period: 4-6 Months 
Postpartum

1.04 (0.87 – 
1.25)

0.96 (0.69 – 1.32) 1.17 (0.95 – 1.43) 0.90 (0.76 – 
1.06)

0.86 (0.59 – 1.25) 1.00 (0.84 – 1.20)

  Valid GPS observation 
(h/day)

1.05 *** 
(1.02 – 1.08)

1.02 (0.97 – 1.08) 1.05 ** (1.02 – 
1.09)

1.04 ** 
(1.01 – 
1.07)

0.97 (0.92 – 1.03) 1.05 ** (1.02 – 
1.08)

  Type of day: Weekend 0.96 (0.83 – 
1.11)

0.93 (0.82 – 
1.06)

  Maternal age at 
consent

1.01 (0.99 – 
1.03)

0.99 (0.96 – 1.02) 1.01 (0.99 – 1.03) 1.03 * (1.00 
– 1.05)

1.02 (1.00 – 1.04)

  Education: Some 
college/Graduate

1.08 (0.86 – 
1.36)

1.05 (0.82 – 1.35) 1.13 (0.87 – 1.48)

  Neighborhood 
deprivation score

1.12 * (1.01 – 
1.25)

  Neighborhood safety 
and cohesion score

0.86 * (0.76 – 
0.97)

Zero-Inflated Model Odds Ratio (95%CI) 

  Period: 1st Trimester 0.76 (0.45 – 
1.27)

0.74 (0.43 – 1.25) 0.79 (0.45 – 1.41) 0.75 (0.42 – 
1.37)

0.51 (0.21 – 1.27) 0.71 (0.37 – 1.43)

  Period: 4-6 Months 
Postpartum

0.78 (0.45 – 
1.35)

0.6 (0.34 – 1.03) 0.5 * (0.28 – 
0.92)

0.79 (0.42 – 
1.49)

0.48 (0.18 – 1.28) 0.53 (0.24 – 1.18)

  Valid GPS observation 
(h/day)

1.05 *** 
(1.11 – 1.23)

0.2 * (0.05 – 
0.86)

0.36 * (0.14 – 
0.94)

1.18 *** 
(1.11 – 
1.23)

0.21 (0.03 – 1.82) 0.31 (0.08 – 1.18)

  Type of day: Weekend 0.54 ** (0.36 
– 0.82)

0.53 * (0.33 
– 0.87)

  Maternal age at 
consent

1.08 ** (1.01 
– 1.14)

1.06 * (1.01 – 
1.11)

1.10 ** (1.11 – 
1.18)

1.06 * (1.01 
– 1.14)

1.09 * (1.01 – 
1.16)

  Education: Some 
college/Graduate

2.13 * (1.11 
– 4.35)

3.33 ** (1.43 – 
7.69)

3.33 * (1.25 – 
9.09)

  Neighborhood 
deprivation score

0.74 (0.56 – 1.01)

  Neighborhood 
cohesion and safety 
score

1.3 (0.83 – 2.13)

*
p<0.05.

**
p<0.01.

***
p<0.001.
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Exponentiated parameter estimates are shown. Reversed odds ratio (i.e., odds for an outcome to be non-zero) of zero-inflated models were 
calculated for easier interpretation.

Notes. GPS = Global Positioning System.
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