Skip to main content
. 2022 May 31;10(5):e35293. doi: 10.2196/35293

Table 4.

Reported performance measures of the MLa models.

Author and ML model Classification measurements Calibration measurements Other

Specificity PPVb/precision Recall/sensitivity F1 score Accuracy HLc score Brier score Calibration curve
Pirrachio et al [1]

Ensemble SLd-1 N/Ae N/A N/A N/A N/A N/A 0.079 Uf=0.0007 (calibration plot) DSg=0.21

Ensemble SL-2 N/A N/A N/A N/A N/A N/A 0.079 U=0.006 (calibration plot) DS=0.26
Nielsen et al [24]

NNh N/A 0.388 N/A N/A N/A N/A N/A N/A Mathews correlation coefficient
Purushotham et al [27]

NN N/A N/A N/A N/A N/A N/A N/A N/A 0.491 (AUPRCi)

Ensemble N/A N/A N/A N/A N/A N/A N/A N/A 0.435 (AUPRC)
Nimgaonkar et al [25]

NN-15 features N/A N/A N/A N/A N/A 27.7 N/A Calibration plot N/A

NN-22 features N/A N/A N/A N/A N/A 22.4 N/A Calibration plot N/A
Xia et al [26]

Ensemble-LSTMj 0.7503 0.294 0.7758 0.4262 0.7533 N/A N/A N/A N/A

LSTM 0.7746 0.305 0.7384 0.4317 0.7703 N/A N/A N/A N/A

RFk 0.7807 0.306 0.71197 0.4290 0.7734 N/A N/A N/A N/A
Nanayakkara et al [28]

RF 0.79 0.75 0.76 N/A 0.78 N/A 0.156 Calibration plot 0.47 (log loss)

SVCl 0.81 0.77 0.75 N/A 0.78 N/A 0.153 Calibration plot 0.47 (log loss)

GBMm 0.78 0.75 0.8 N/A 0.79 N/A 0.147 Calibration plot 0.45 (log loss)

NN 0.72 0.71 0.82 N/A 0.77 N/A 0.158 Calibration plot 0.48 (log loss)

Ensemble 0.81 0.77 0.77 N/A 0.79 N/A 0.148 Calibration plot 0.45 (log loss)
Meyer et al [29]

RNNn 0.91 0.9 0.85 0.88 0.88 N/A N/A N/A N/A
Meiring et al [7]

DTo, NN, SVMp N/A N/A N/A N/A N/A N/A N/A N/A N/A
Lin et al [30]

RF N/A N/A N/A 0.459 0.728 N/A 0.085 Calibration plot N/A

NN N/A N/A N/A 0.406 0.666 N/A 0.091 Calibration plot N/A

SVM N/A N/A N/A 0.460 0.729 N/A 0.086 Calibration plot N/A
Krishnan et al [31]

ANN-ELMq N/A N/A 0.98 0.98 0.98 N/A N/A N/A Mathews correlation coefficient
Kang et al [32]

k-NNr N/A N/A N/A 0.745 0.673 N/A N/A Calibration plot N/A

SVM N/A N/A N/A 0.752 0.696 N/A N/A Calibration plot N/A

RF N/A N/A N/A 0.762 0.69 N/A N/A Calibration plot N/A

XGBs N/A N/A N/A 0.763 0.711 N/A N/A Calibration plot N/A

NN N/A N/A N/A 0.749
N/A N/A Calibration plot N/A
Johnson et al [33]

LRt univariate N/A N/A N/A N/A N/A 22 0.051 N/A N/A

LR multivariate N/A N/A N/A N/A N/A 19.6 0.048 N/A N/A
Holmgren et al [34]

NN N/A N/A N/A N/A N/A N/A 0.106 Calibration plot N/A
Garcia-Gallo et al [35]

SGBu N/A N/A N/A N/A 0.725 0.0916 N/A Calibration plot N/A

SGB-LASSOv N/A N/A N/A N/A 0.712 0.0916 N/A Calibration plot N/A
El-Rashidy et al [36]

Ensemble 0.94 N/A 0.911 0.937 0.944 N/A N/A N/A N/A
Silva et al [37]

NN 0.79 N/A 0.78 N/A 0.7921 N/A N/A N/A N/A
Caicedo-Torres et al [38]

NN 0.827 N/A 0.75 N/A N/A N/A N/A N/A N/A
Deshmukh et al [39]

XGB 0.27 N/A 1 N/A N/A N/A N/A N/A N/A
Ryan et al [40]

XGB 0.75 N/A 0.801 0.378 0.75 N/A N/A N/A N/A
Mayaud et al [41]

GAw+LR N/A N/A N/A N/A N/A 10.43 N/A Calibration plot N/A

aML: machine learning.

bPPV: positive predictive value.

cHL: Hosmer-Lemeshow.

dSL: super learner.

eN/A: not available.

fU statistics.

gDS: discrimination slope.

hNN: neural network.

iAUPRC: area under the precison-recall curve.

jLSTM: long short-term memory.

kRF: random forest.

lSVC: support vector classifier.

mGBM: gradient boosting machine.

nRNN: recurrent neural network.

oDT: decision tree.

pSVM: support vector machine.

qANN-ELM: artificial neural network extreme learning machine.

rk-NN: k-nearest neighbor.

sXGB: extreme gradient boosting.

tLR: logistic regression.

uSGB: stochastic gradient boosting.

vLASSO: least absolute shrinkage and selection operator.

wGA: genetic algorithm.