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ABSTRACT The active isometric force-length relation (FLR) of striated muscle sarcomeres is central to understanding and
modeling muscle function. The mechanistic basis of the descending arm of the FLR is well explained by the decreasing thin:thick
filament overlap that occurs at long sarcomere lengths. The mechanistic basis of the ascending arm of the FLR (the decrease in
force that occurs at short sarcomere lengths), alternatively, has never been well explained. Because muscle is a constant-vol-
ume system, interfilament lattice distances must increase as sarcomere length shortens. This increase would decrease thin and
thick-filament electrostatic interactions independently of thin:thick filament overlap. To examine this effect, we present here a
fundamental, physics-based model of the sarcomere that includes filament molecular properties, calcium binding, sarcomere
geometry including both thin:thick filament overlap and interfilament radial distance, and electrostatics. The model gives
extremely good fits to existing FLR data from a large number of different muscles across their entire range of measured activity
levels, with the optimized parameter values in all cases lying within anatomically and physically reasonable ranges. A local first-
order sensitivity analysis (varying individual parameters while holding the values of all others constant) shows that model output
is most sensitive to a subset of model parameters, most of which are related to sarcomere geometry, with model output being
most sensitive to interfilament radial distance. This conclusion is supported by re-running the fits with only this parameter subset
being allowed to vary, which increases fit errors only moderately. These results show that the model well reproduces existing
experimental data, and indicate that changes in interfilament spacing play as central a role as changes in filament overlap in
determining the FLR, particularly on its ascending arm.
SIGNIFICANCE The entire force-length-activity relation (FLAR) of skeletal muscle sarcomeres is mechanistically
explained for the first time. The key addition is that interfilament spacing, as well as filament overlap, must change as
sarcomere length changes. Our classical-physics model, utilizing volume constancy and electrostatic interaction, well
reproduces the FLARs of multiple muscles. The model explains the rightward shift of lengths at which maximum force
occurs with decreasing activity (calcium concentration). Consistent with interfilament spacing changing as sarcomere
length changes, the model output is most sensitive to changes in geometric parameters.
INTRODUCTION

The active force-length relation (FLR) is a very important
and well-investigated property of striated muscle. Its gen-
eral form has been known for over a century (1, p.93)
(2–4): 1) at very short lengths, muscle fibers exert no force
upon activation; 2) over a range of longer lengths, active
force increases with length (the ascending arm); 3) over a
range of still longer lengths, force is more or less constant
(the ‘‘plateau’’); 4) with further lengthening, force de-
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creases, eventually to zero (the descending arm). Gordon
et al. (1966) (5) proposed a geometric explanation of the de-
scending arm and plateau based on the sliding filament hy-
pothesis of muscle contraction: the descending arm arising
from decreasing thin- and thick-filament overlap as length
increases, and the plateau being the length range where
the leading portions of the thin filaments are in the thick-
filament central bare zone, and length changes thus do not
alter thin-filament overlap with the myosin head-bearing
portion of the thick filaments (see Fig. 1).

This explanation provided no geometrical reason for the
ascending arm. At these short lengths, the thin filaments
have crossed to the far side of the thick-filament central
bare zone. Gordon et al. (1966) ‘‘identified’’ two linear
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FIGURE 1 Relative filament overlap versus half-sarcomere length for the case that false cross-bridges produce a marginal amount of (~Ffalse ¼ 0:1, solid

line), half of (~Ffalse ¼ 0:5, dashed line), or the full (~Ffalse ¼ 1, dotted line) force of a proper cross-bridge. Full (not half-) sarcomere sketches shown for

clarity. Note that actin (red) and myosin (blue-cyan) filament radial spacing decreases at longer lengths (insets). To see this figure in color, go online.
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regions of different slope in the ascending arm. They hy-
pothesized that one corresponded to lengths over which
the thin filaments from the two half-sarcomeres overlap,
and the other to lengths where the thick-filament ends reach
and become increasingly ‘‘squeezed’’ against the Z disk (an
‘‘overlap/collision’’ mechanism). Most textbooks conse-
quently depict the ascending arm as two linear regions
with different slopes as in (5, Fig. 5). However, Gordon
et al. (1966) actually used the word ‘‘linearly’’ only when
referring to prior and their work on the descending arm;
their summary Fig. 12 shows two linear regions connected
by a smooth, not discontinuous, slope change; continuous
functions (see below) fit as well the ascending arm data in
their Fig. 5; and later experiments (e.g., (6, Fig. 4), and
(7)) confirmed the absence of kinks on the ascending arm.

Perhaps the most compelling evidence against the over-
lap/collision mechanism, however, was provided only 3
years after Gordon et al. (1966) by Rack and Westbury
(1969) (8), who showed that the FLR maximum shifted to
longer lengths (moved rightward) with decreasing muscle
activation, i.e., reduced calcium-induced cross-bridge for-
mation, an observation confirmed since multiple times
(9–18). The overlap/collision mechanism cannot explain
this rightward shift, since calcium concentration should
not affect filament overlap or when thick filaments reach
the Z disk. This shift of the FLR peak with decreased activ-
ity shows that both FLR shape and amplitude depend on
muscle activation. We therefore use here the term force-
length-activity relation (FLAR) instead of FLR.

In considering these issues, we realized that prior hypoth-
eses did not consider the implications of muscle being a
constant-volume system. Length decreases will therefore in-
crease radial interfilament spacing. This increase will
decrease the likelihood of interfilament electrostatic interac-
tions, and thus force, at short muscle lengths, and hence
explain why the ascending arm of the FLAR exists at all.
1824 Biophysical Journal 121, 1823–1855, May 17, 2022
Although not as intuitively obvious why, these changes
could possibly also result in the FLAR peak shifting right
with decreasing activation.

Testing these hypotheses required considering not only
sarcomere geometry but also the fundamental physics of
the system, electrostatics (Debye-H€uckel theory), statistical
physics (Boltzmann statistics), and thermodynamics (reac-
tion kinetics). We present here such a fundamentally based
model, and show it reproduced very well FLAR experi-
mental data of a large number (12) of muscles. A local
first-order sensitivity analysis (measuring the change of
model output induced by changing each parameter individ-
ually while holding the others constant) of the model
showed that model output was highly sensitive to only
half the model’s 16 free parameters. The model was most
sensitive to interfilament spacing, and most of the seven
other most important parameters also involved interfilament
electrostatic interactions. Re-fitting the data with only these
eight most sensitive parameters being allowed to vary
increased model error, but it remained small relative to the
amplitudes present in the data. These results suggest that
the ascending arm of the FLAR, and the rightward shift of
the FLAR peak with decreasing muscle activation, arise
from the increased interfilament lattice spacing that occurs
as muscle fiber length decreases.
CURRENT EXPLANATIONS OF THE ASCENDING
ARM OF THE FLR

The mechanistic basis of the ascending arm is typically ad-
dressed only vaguely in contemporary textbooks. As a rule,
a two-piece-wise linear ascending arm is shown, accompa-
nied with phrases like ‘‘The decrease in tension at sarcomere
lengths below 2.05 mm is due to actin filaments poking into
the other half of the sarcomere.’’ (19, p.11), ‘‘As the muscle
shortens, the cross-bridges overlap and the active tension is
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[.] reduced.’’(20, p.380), or ‘‘Several theories addressing
the force reduction at lengths shorter than optimal are sug-
gested. Detailed discussion of the theories is beyond the
scope of this book.’’ (21, p.175). Even in the primary litera-
ture, concrete explanations for the ascending arm are not
provided (e.g., (22, p.1447)), and we are unaware of a
source that reviews this issue. The following topic organiza-
tion is therefore only our idiosyncratic summary of the ex-
planations we have found in the literature.
Assertion 1: The ascending arm of the FLAR is a
piece-wise linear function

In their Fig. 5, Gordon et al. (5) fit their ascending arm data
with two linear segments with different slopes. Their using
linear functions is understandable because, in the 1960s,
non-linear fitting techniques were difficult to apply. Even
though the data were known to be sigmoidal, in this era
enzyme kinetic data were also commonly analyzed with
linearizing methods (Eadie-Hofstee diagrams, Lineweaver-
Burk plots, or Hanes-Woolf plots (23)). With present
computing abilities, however, the Gordon et al. (1966)
ascending arm data are as well or better fit with non-linear
functions (24, p.329, Fig. 1). Subsequent experimental
data also challenge the existence of a slope discontinuity
in the ascending arm (6,7). The assertion that the ascending
arm is a two-piece linear function is thus very unlikely. This
belief is supported by examining the ascending arm FLAR
data shown in the results (section ‘‘optimization of parame-
ters to fit experimental FLAR’’), in which two-piece linear
ascending arms are not visually apparent for many of the
muscles, and which are well fitted for all muscles with
continuous sigmoidal-like functions.
Assertion 2: Internal extending forces occur at
short lengths

Some papers (5,22) cite early (1940) work (4) showing that
non-stimulated muscle fibers initially held at a short length
and then lengthened tend to lengthen further to support the
conclusion that ‘‘there must exist a force tending to extend
the fiber’’ (5, p.187). However, Ramsey and Street (4) state
that 1) the fibers still contained some pieces of connective
tissue (p.12), 2) the resting fiber ‘‘hung in a large loop’’
(p.23), and 3) a fiber ‘‘shorten[ed] below 65% of its resting
length . no longer relaxed after cessation of the tetanic
stimulus but remained shortened at the length it was al-
lowed to shorten to’’ (p.24). These remarks suggest that
gravity or parallel elastic forces could have served as ex-
tending forces in this particular experiment. Given the alter-
native explanations for these results provided by points 1)
and 2) above; that any internal extending forces would
have to increase as length shortened, not cease as in point
3); and the lack, to our knowledge, of replication of this
work, we believe this single article is insufficient to demon-
strate the existence of intrinsic extending forces that contin-
ually increase as length decreases so as to give rise to the
ascending arm.
Assertion 3: Force falls because thin filaments
from opposite Z disks overlap on the far side of
the M-line

This argument is found in many textbooks and research ar-
ticles, e.g., (5, p.187, Fig. 14), (25, p.1466), (26, p.3), (19,
p.11), (27, p.122). However, no mechanistic explanation is
provided of why or how doubling the number of thin fila-
ments around each thick filament would decrease force pro-
duction. Gordon et al. (1966) (5, p.187) hypothesize that the
‘‘invading’’ actin filaments would have repelling ‘‘colli-
sions’’ with the original half-sarcomere thin filaments. In
the above references, only (26) refers to primary literature,
namely, Trombitas and Tigyi-Sebes (1989) (28). These
workers stretched glycerinated insect flight muscle in rigor
solution to detach the actin filaments from the Z disk.
Upon addition of ATP, some detached filaments (asymmet-
rically broken filaments) slid through the M-line into the
adjoining ‘‘intact’’ half-sarcomere while others (symmetri-
cally broken filaments) gathered at the M-line, only half-
way penetrating the adjoining half-sarcomere, in each case
forming a zone of actin filament double overlap. The authors
concluded from these data that ‘‘only . bridges . located
in the normal overlap zone can generate effective force’’.
However, this interpretation assumed that myosin does not
generate force on wrongly oriented actin filaments. Later
work disproved this assumption (29–31), see also assertion
4, thus throwing the (28) conclusions into question. As to
the more general idea, we know of no experimental evi-
dence or mechanistic explanations that thin-filament double
overlap should reduce force production or have repelling
interactions.
Assertion 4: Oppositely polarized cross-bridges
push the actin back

A recent attempt by (26) to explain the shape of the
ascending arm made several assumptions about the nature
of properly and oppositely polarized (‘‘swiveled’’) cross-
bridges (see also Fig. 1 and its surrounding text). One
assumption was that, in oppositely polarized cross-bridges,
the myosin head pushes actin back to its own half-sarco-
mere, with half the force magnitude of properly polarized
cross-bridges. On closer inspection, flaws become evident
in this estimation of a swiveled cross-bridge’s force. First,
part of its estimation was made from work by Kaya and Hi-
guchi (32), who pulled and pushed a single myosin S2
within an optical trap in order to estimate its direction-
dependent passive stiffness response. Hence, nothing can
be immediately learned from this experiment about inter-
nally generated forces of an active myosin head.
Biophysical Journal 121, 1823–1855, May 17, 2022 1825
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Second, as they themselves acknowledge (26, Fig. 4), the
S2 part of the myosin molecule, which connects the myosin
head to the molecule’s backbone, is two orders of magnitude
more compliant, and thus prone to buckle, when the head
would exert a push (32, Fig. 1 c). Consequently, even
presuming a head can push back, the force and movement
it would transmit to the thin filament cannot be calculated
from present data. Moreover, when different portions of a
single thin filament are exposed to different forces, the inter-
vening portion of the thin-filament loops, bends, and curls
(29, Fig. 3 c), (33, Fig. 1 a), and (31, Fig. 2 d). Thin fila-
ments thus have rope-like rather than rod-like mechanical
properties, particularly in the activated state when tropomy-
osin is moved aside (34), and thus could not in any case
transmit a localized push back from myosin to the entirety
of the thin filament.

Third, and most important, as already mentioned in asser-
tion 3, actin polarization, not myosin head orientation, dic-
tates movement direction (33) (a reference included in (26)).
As such, thin-filament portions that have crossed the bare
zone are not pushed by the thick filament in the opposite di-
rection, but instead continue to be pulled in the same direc-
tion as if they were located on their original side of the
central bare zone. This fact is also shown in (26, Fig. 4 c).

Conclusively, actin that crosses over the thick-filament
central bare zone is not pushed back by the myosin on
that side, and thin filaments are in any case too compliant
to transmit pushes. We believe assertion 4 is therefore
untenable.
Assertion 5: The myosin filament folds upon
collision with the Z disk

Sketches of sarcomere geometries next to the piece-wise
linear FLR usually suggest the steeper force decrease at
very short lengths arises from a ‘‘collision of ends of thick
filaments with the Z lines. This would be expected to cause
added resistance to shortening’’ (5, p.187). This explanation
assumes that the Z disk is impenetrable. However, the Z disk
is actually a loose net (35,36) that widens to a lattice spacing
of approximately 26 nm when the half-sarcomere is short-
ened to the length of the myosin backbone (37, Fig. 2),
wide enough to allow thick-filament penetration (38). We
are also unaware of any verification of such a collision state
in imaging work. Taken together, the plausibility of this
assertion is therefore poor.
Assertion 6: It has something to do with lattice
spacing

In the sarcomere cross-section, myosin and actin filaments
are ordered in a regular two-dimensional finite lattice. In
vertebrate skeletal muscle, the filaments form a hexagonal
lattice in which the myosins themselves form a coarse hex-
agonal lattice and the actins fill the remaining two triangular
1826 Biophysical Journal 121, 1823–1855, May 17, 2022
lattices. In invertebrates, a wide variety of lattices is present,
cf. (39, Fig. 10), which will not be considered here (the stick
insect muscles are likely to have arrangements similar to
vertebrate skeletal muscles). Center-to-center distances be-
tween actin and myosin filaments, the lattice spacing, can
be determined by crystallographic measurements, e.g.,
X-ray diffraction. As expected from the volume constancy
of muscles (40–49), lattice spacing changes when muscle
length changes (44,50,51). It has been argued that these
changes in lattice spacing affect actin-myosin interactions
(52–54). However, unlike the hypothesis we present here,
this work assumes that the changes in force with changing
lattice spacing are due to the angular orientations of the
S1 parts in the cross-bridges systematically shifting with lat-
tice spacing. Schoenberg et al. (1980) (52) consider the FLR
at only plateau and longer sarcomere lengths (descending
arm), and is thus not relevant here. The model calculations
in (54) may suffer from three faults. First, if the presentation
of the mechanical core of their model, the force equilibria
according to Fig. S1(c) in their supplementary material,
correctly reflects their model code, then an erroneous sign
of the contribution of the driving cross-bridge torque makes
the quantitative predictions of the FLR in (54, Fig. 2) unre-
liable. Second, the rationale in the caption of their Fig. S1(c)
about the axial force acting at the M-line is confusing, leav-
ing doubt about which force is plotted in the figure. Third,
their idea of the lever geometry, particularly where the
driving torque is generated within a cross-bridge, is odd.
They assume the drive’s pivot to be on or close to the myosin
backbone. The angular head orientation at attachment is,
therefore, altered with spacing, and the lever arm (distance
between pivot axis and the attachment point on the actin)
correspondingly increases with spacing, see (53, Fig. 1 B)
and (54, Suppl., Fig. S1(c)). However, it seems established
that the torque-driving pivot in a cross-bridge is located in
the S1 part of the myosin head, at the connection between
the S1’s catalytic domain (CD), which attaches to the actin,
and the S1’s light chain domain (LCD), which acts as an 11–
14-nm-long, deformable (55) lever arm (56, Fig. 2), (57,
Fig. 1), and (58, Figs. 1, 2, and 4). At its pivot-opposite ter-
minal, the LCD connects to the myosin filament backbone
via its S2 part, with the LCD making a hinge connection
(59) with S2, and S2 potentially acting as an almost friction-
less swing-out cantilever (60, Fig. 2).

Regardless, another very important characteristic of
the ascending arm, the rightward shift of the peak of the
FLAR with decreasing activity, is not explainable by the
spacing affecting lever geometry interaction of the myosin
head and actin. A further difficulty with much of this
work is the use of the polysaccharide dextran to reverse
the swelling of skinned fibers by increasing the osmotic
pressure on the lattice (40). Although dextran-induced alter-
ation of lattice spacing alters isometric force production
(51), the evidence is contradictory on whether (61, Fig. 1)
or not (62, Fig. 4) dextran affects calcium sensitivity (see
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Interfilament spacing explains FL curve
also section ‘‘calcium sensitivity’’). Dextran also alters
sarcomere physiological properties; e.g., it induces inverted
changes in spacing when ATP is removed to generate tran-
sitions from the relaxed to the rigor state (63). This is not a
surprising effect as dextran replaces the water in the muscle
and thus changes the physical properties of the muscle
cytoplasm.

Thus, although it is plausible that assertion 6 plays some
role in the ascending arm, it has not yet been used to develop
a convincing mechanistic FLR model, much less a mecha-
nistic explanation of the entire FLAR.
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Assertion 7: It has something to do with
electrostatic forces

Electrostatic forces unambiguously play a crucial role in
actin-myosin interactions (64), stabilizing the filament lat-
tice (65–67), modulating actin affinity for myosin heads
and the subsequent ATPase reaction, varying with changes
in cytoplasm ionic strength (68), and generating the driving
force for the work stroke of the myosin head (60,69–71),
although the exact mechanism of electrostatic force action
in the work stroke remains unresolved (69–71). Electrostatic
mechanisms have also been used (60) to explain contractile
steady states and to reproduce the hyperbolic force-velocity
relation (72) as well as non-steady-state responses to rapid
steps in length or force. Other electrostatics-based models
of muscle contraction have been proposed, but, as with the
above, either no predictions about the FLR were made
(73), or cross-bridge interactions and volume constancy
(i.e., spacing effects) were not taken into account (74).

Thus, similar to assertion 6, it is very likely that assertion
7 plays a role in the ascending arm of the FLAR. However,
again, a convincing explanatory model of the FLAR using
electrostatics alone has not been advanced. In the following,
we present a model combining aspects of assertion 6 and
assertion 7 that does so.
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MATERIALS AND METHODS: MUSCLE DATASETS
AND MODEL PARAMETER ESTIMATION
PROCEDURE

Muscle datasets

Finding data in the literature that simultaneously covered wide ranges of

both sarcomere length and activity was difficult. With respect to calcium

activity, typically only a few sarcomere lengths are examined (75–78).

With respect to FLR calcium dependency, typically only one FLR sub-re-

gion, i.e., ascending arm (79–83), plateau (84,85), or descending arm

(86), are examined. Table 1 summarizes datasets we identified that fulfilled

all the following criteria:

1) At least three activity levels were considered (exception: (5))

2) Sufficient (at least the number of parameters plus the number of activity

levels) data points were available to perform the optimization (excep-

tion: (9), see below)

3) Length changes of more than 50% were present

4) Data from both the ascending and descending arms were available
Biophysical Journal 121, 1823–1855, May 17, 2022 1827
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Vertebrate muscles were from frog (two) (5,17), mouse (9), rat (three)

(15,16,18), rabbit (11), cat (two) (10,14), and human (12). Data from a stri-

ated insect leg muscle (13) were also used. Data points were extracted from

the figures given in Table 1 by a graph digitizer software, cf. (24). Table 1

lists species, muscle type and preparation, temperature, activity measure,

estimated optimal sarcomere length, maximum tension of the specimen,

its cross-sectional area, and, for skinned fibers, the ionic strength of the

bathing saline.
Parameter estimation procedure

We aimed to find, individually for each muscle dataset, starting always from

the same set u0 of initial parameter values, parameter values that optimally

reproduced the data (see section ‘‘results’’). For each literature source (LS),

we define the tuple of extracted force-length-activity data as ðFLS; ‘hs;LSÞ.
The bold notation emphasizes the two-dimensional nature of the data, as

the FL curves were extracted at n‘ different lengths and for nc different acti-

vation levels. The optimization problem was posed in a least-squares sense

to find for each LS the optimized parameter set u* and the corresponding

vector of optimized values of the initially unspecified activity levels ~C
�
:¼

ð~c�1;.;~c�nC Þ that minimized the deviation of the data from the model output

F (see results)

ðu�; ~C
�Þ ¼ argmin

u˛U; ~C˛ ½0;1�nc
kFð‘hs;LS; ~C;uÞ � FLSk22 : (1)

Optimization was performed in MatLab (version R2021b, The

MathWorks, Natick, MA, USA) using the pre-implemented routine lsqcur-

vefit, which deploys a trust-region reflective algorithm (87). Advantages of

this method are the derivative-free initialization and the ability to set

bounds on parameter values. Disadvantages include the need for at least

as many equations (data points) as there are parameters and non-insurance

of global optima (88). In the case of the data from (9), for example, we had

to count the maximum force data points twice to ‘‘artificially’’ obtain suffi-

cient (number of parameters plus number of activity levels: 17 þ 4 ¼ 21)

equations. Algorithms for finding global optima (simulated annealing, par-

ticle swarm, Bayesian optimization) were generally found not to produce

better results. The residual, i.e., the least-squares error (LSE), at the optimal

parameter set was defined as

LSE ¼ ����Fð‘hs;LS; ~C�
;u�Þ � FLS

��j22 (2)

and, for better comparison, divided by the number of data points in the

experiment, n‘,nc, to give the relative residual ~LSE.
RESULTS

We describe here the model (section ‘‘model introduction’’),
show that it well fits multiple experimental datasets (section
‘‘optimization of parameters to fit experimental FLAR’’),
and present a simplified, five-parameter model that retains
the central intellectual components of the model and repro-
duces the real muscle data as well or better than the original
model, with its larger (17) number of fitted parameters (sec-
tion ‘‘a simpler descriptive model that fits as well as the
complete model’’). In the appendices, we use very simple
functions to give an intuitive understanding of how the
model reproduces the rightward FLAR shifts that occur in
real data as activity (calcium concentration) decreases
(Appendix A), perform a sensitivity analysis to identify
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which parameters are most important for model output,
and confirm this analysis by showing that, when the fits
are limited to these most important parameters, the model
still gives very to moderately good fits (Appendix B), elab-
orate on the role of physical parameters (Appendix C), and
finally test for correlation among the model parameters
(Appendix D).
Model introduction

Our aim was to derive a reductionist yet mechanistic model
F based on filament geometry, chemical reaction kinetics,
and myosin-actin electrostatic interactions that well repro-
duced real muscle FLARs. To form a cross-bridge and pro-
duce force, a myosin head needs an active actin site within
its reach. This requires simultaneously fulfilling three condi-
tions: 1) Axially, both filaments have to overlap. 2) Radially,
the head and an active actin site have to be located close
enough for the head to be (electrostatically) attracted to
the actin site. 3) For a myosin head to be attracted, the actin
site has to be cleared from tropomyosin, i.e., be available
(active), which depends on [Ca2þ]. These conditions
multiply to give the following product,

FðinputÞ ¼ sarcomere force

max sarcomere force
¼ 2 ,Povl ,Paas ,Pesa :

(3)

The proportionality factor 2 and the probabilities of exist-
ing filament overlap (Povl, Eq. (5)), of active sites being
available (Paas, Eq. (6)), and of sufficient electrostatic attrac-
tion occurring (Pesa, Eq. (14)) are derived and explained in
detail below, together with the required states, controls, and
parameters of the model F. The end result is a model of the
striated muscle FLAR based on sarcomere geometry and
physico-chemical considerations that maps the control
states (half-sarcomere length ‘hs and relative calcium ion
concentration ~c), together with the set u˛U3R17

þ of the
model’s 17 parameters, to the corresponding relative iso-
metric half-sarcomere force ~Fhs:

F : Rþ � ½0; 1� � U/½0; 1�; with ð‘hs;~c;uÞ1~Fhs:

(4)

Note that the model is formulated in terms of normalized
rather than absolute sarcomere force, as the number of
myosin heads, and thus the maximum exertable force per
half-sarcomere, varies across muscles and species.

Model parameters and parameter initial values

Table 2 lists the model’s 17 parameters, grouped by whether
they involve anatomical constraints (‘act; ‘mbb; ‘mbz, ract,
rmbb, RZS1

, d10,ref), calcium kinetics (K
~c
;n), physical bound-

ary conditions (T,er, I; jZactj; jZmbbj; jZS1j), or cross-bridge
dynamics (~Ffalse; 2). Table 2 also lists the basis set u0 of



TABLE 2 Symbols and meaning for occurring model parameters

Part Symbol Unit Initial guess value Source Meaning

Actin filament ‘act [mm] 1.1 (91) length of actin (half) filament

ract [nm] 5.5 (92) radius of actin filament

9act [nm] 5.5 (91) repetition of active sites

9TnC [nm] 37.5 (91) repetition of TnC terminals

nTnC [ ] 4,‘act=9TnC ¼ 117 – number of TnC terminals per half-sarcomere

primitive (two actin filaments and two

tropomyosin helices)

nact [ ] 7 , nTnCz820 – number of active sites per half-sarcomere primitive

Myosin filament ‘mbb [mm] 0.8 (91) length of half-myosin filament (backbone)

‘mbz [mm] 0:1,‘mbb ¼ 0:08 (91) half-myosin bare zone width

rmbb [nm] 7.5 (19) inner myosin backbone (rod) radius

RZS1
[nm] 13 (60) charge location on myosin head

9S1 [nm] 14.3 (91) repetition of myosin crowns (each three double-

heads)

nS1 [ ] 3,ð‘mbb � ‘mbzÞ=9S1z150 – number of myosin double-heads per half-sarcomere

cact,mbb [ ] 2:1 –

ratio actin to myosin filaments

ncb,max [ ] 1=2,nMz100 (93,94) maximum number of possible cross-bridges

2 [ ] 1.8 (93,94) reciprocal of ratio of maximally formed

cross-bridges
~Ffalse [ ] 0.1 (95), Table 1 ratio of force between false and proper cross-bridges

Hill equation ~c [ ] state [0 . 1] – relative concentration of calcium ions

n [ ] 2.5 (96) Hill exponent

K
~c

[ ] 1/40 (96) Hill coefficient

Half-sarcomere

geometry (all

values here for

hexagonal

lattice)

‘hs [mm] state [0.4 . 2.2] – half-sarcomere length

‘hs;ref [mm] ‘act ¼ 1:1 – half-sarcomere reference length

k10 [ ] 2=
ffiffiffi
3

p
– lattice constant

d10ð‘hsÞ [nm] 2=3,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d210;ref,‘hs;ref=‘hs

q
(50) lattice spacing as function of ‘hs

d10,ref [nm] 37 (51), Table 1 lattice spacing at ‘hs;ref
dact;actð‘hsÞ [nm] 2

3
,d10ð‘hsÞ – (center) distance actin-to-actin filament

dact;mbbð‘hsÞ [nm] dact;actð‘hsÞ – (center) distance actin-to-myosin backbone

dmbb;mbbð‘hsÞ [nm] k10,d10ð‘hsÞ – (center) distance myosin-to-myosin backbonebdact;mbbð‘hsÞ [nm] dact;mbbð‘hsÞ � ract � rmbb – surface distance actin-to-myosin backbone

CSAhsp ð‘hsÞ [mm2] dmbb;mbbð‘hsÞ,d10ð‘hsÞ – cross-sectional area of half-sarcomere primitive

CSAhsp,ref [mm2] k10,d210;ref ¼ 1:6,10� 3 – reference cross-sectional area of half-sarcomere

primitive

Vhspð‘hsÞ [mm3] CSAspð‘hsÞ,‘hs ¼ Vhsp;ref – constant half-sarcomere primitive volume

Vhsp,ref [mm3] CSAsp;ref,‘hs;ref ¼ 1:7,10� 3 – half-sarcomere primitive reference volume

Electrostatics,

Debye-H€uckel
theory

T [K] 280 . 310 – temperature of 7 . 37�C
kB [N , m , K�1] 1.381 , 10�23 – Boltzmann constant

e0 [C] 1.602 , 10�19 elementary charge

Zi [ ] integer – charge number (valence) of ion i

Zact;Zmbb;ZS1 [ ] integer – charges on actin/myosin backbone and the head (S1)

qi [C] jZij,e0 – absolute electric charge of ion i

ci [mol/L] solution-dependent – molar concentration of ion i

I [mol/L] 1

2

Xn
i¼ 1

ci,Z2
i z0:17

(97) ionic strength of a solution with n sorts of ions

NA [mol�1] 6.02214 , 1023 – Avogadro constant

l [nm]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0,er,kB,T

2,103,NA,e20,I

s
(19,98) Debye length in electrolyte solution

e0 [C2 $ N�1 $ m�2] 8.854 , 10�12 – vacuum permittivity

er [ ] z80 for water (99) dielectric constant (relative permittivity) of the

solvent

K0(x),K1(x) [ ] function – modified Bessel functions of second kind

FDHcylðdÞ [J] � qi,qj,l,K0ðd=lÞ
2,p,Rc,‘c,e0,er,K1ðRc=lÞ

(100,101) Debye-H€uckel potential energy of cylindrical ion i

of radius Rc and length ‘c, attracting charge qj
FDHcyl(d) [N] qi,qj,K1ðd=lÞ

2,p,Rc,‘c,e0,er,K1ðRc=lÞ
– Debye-H€uckel force of cylindrical ions

Which of these are optimizer-fitted parameters is given in Table 3. Activation ~c and half-sarcomere length ‘hs are state variables. Twas set to the temperature

at which the experiment was performed. The other entries are either physical constants or auxiliary values/functions.

Interfilament spacing explains FL curve
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initial parameter values used by the optimizer. To our
knowledge, values of all these parameters have never been
simultaneously measured for any individual muscle. The
u0 values were therefore extracted from multiple literature
sources on striated muscle from different animals. We none-
theless believe these values are likely reasonably representa-
tive, as vertebrate striated muscle sarcomeres do not show
the large variety in filament geometry (89) present in
some invertebrates, particularly molluscs (90). The one set
of invertebrate data we use, stick insect leg tibia extensor,
are not in one of these anomalous groups. That the u0 values
are not extreme is shown by the model giving normal-ap-
pearing FLAR curves with u0 (see Fig. 7). Furthermore,
u0 was used only as the optimizer initial condition. It thus
needed only to be well enough situated in the optimizer
fitness landscape that routes to low error parameter sets
for a wide range of real data existed. The ability of the opti-
mizer to do so (see Fig. 8) demonstrates that u0 fulfills this
requirement.

Filament overlap

Effective filament overlap, Povl in Eq. (3), was quantified by
a dimensionless number between zero and one. The number
of myosin heads in a half-sarcomere that see an active site in
a radial direction were counted, weighted by their force-
generating efficacy, and divided by the total number of
heads anatomically present.

In detail: half-sarcomere reference configuration was
defined as the ‘hs where the actin filaments just touched
Povlð‘hsÞ ¼ ~Fovlð‘hsÞ ¼8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1þ ~Ffalse

2
; if ‘hs %

1

3
ð‘act þ ‘mbbÞ

1þ ~Ffalse

2
þ

1 � 1þ ~Ffalse

2

‘act � ‘mbz � 1

3
ð‘act þ ‘mbbÞ

,

�
‘hs � 1

3
ð‘act þ ‘mbbÞ

�
; if

1

3
ð‘act þ ‘mbbÞ< ‘hs % ‘act � ‘mbz

1 ; if ‘act � ‘mbz < ‘hs % ‘act þ ‘mbz

1 � 1

‘mbb � ‘mbz

, ð‘hs � ð‘act þ ‘mbzÞÞ ; if ‘act þ ‘mbz < ‘hs % ‘act þ ‘mbb

0 ; if ‘act þ ‘mbb < ‘hs

(5)
the M-line (‘hs ¼ ‘hs;ref ¼ ‘act; ‘hs, half-sarcomere length;
‘hs;ref , half-sarcomere reference length; ‘act, length of actin
half filament) (‘hs equal to 1.1 micrometer in Fig. 1), and
hence all myosin heads having an active site in their neigh-
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borhood. Around ‘hs;ref , there existed a plateau region where
filament overlap does not change due to the myosin bare
zone length ‘mbz on each side of the M-line. When ‘hs ex-
ceeded ‘hs;ref by more than ‘mbz, filament overlap decreased
linearly with length reaching zero at length ‘act þ ‘mbb.
Since isometric force monotonically decreases with
decreasing overlap (5), this ‘hs range gives rise to the de-
scending arm. For lengths smaller than ‘hs;ref , the number
of myosin heads that saw an active site in a radial direction
was always the total number of heads anatomically present.
Consequently, at these shorter lengths, a myosin head could
attach to an oppositely polarized actin filament, one origi-
nating from the Z disk of the adjacent half-sarcomere.
Such ‘‘false’’ cross-bridges nevertheless pull the oppositely
polarized actin in the proper direction (i.e., the actin fila-
ment’s Z disk toward the head’s M-line) (29,30,33), but
more slowly (31, Fig. 3). As the fraction of false cross-
bridges rose with further shortening, half-sarcomere force
dropped until ‘hs ¼ 1

3
ð‘act þ‘mbbÞ was reached, where the

number of false and proper cross-bridges were equal, cf.
(26, l5 in their Eq. (A.2)). The force generated by a false
cross-bridge has been measured only once, with a value
one-tenth that of a proper cross-bridge (95, Table 1).
Because of this value being measured only once, we intro-
duced a parameter 0% ~Ffalse % 1, the ratio of forces exerted
by a false and a proper cross-bridge, to allow us to vary false
cross-bridge force. We thus ended up with the following
continuous but not differentiable effective filament overlap
function ~Fovlð‘hsÞ, plotted in Fig. 1.
Availability of active sites: kinetics of calcium binding to
troponin

After being released from the sarcoplasmic reticulum as the
consequence of a muscle action potential, calcium binds to



FIGURE 2 Hill plot: probability of an actin site to be available for

myosin head binding (active) (black line) versus relative calcium concentra-

tion. At ~c ¼ ~c50z0:23, the probability of an actin site to be active was

already 50% (black dot). For explanation and parameters, see text.

Interfilament spacing explains FL curve
troponin C (TnC), resulting in tropomyosin moving
to expose the active sites on the actin filament (Paas in
Eq. (3)). The higher the calcium concentration, the
more active sites are exposed, and the higher the force. In
the model, the number of TnC terminals (nTnC) on an active
filament, and hence the maximum concentration of non-
occupied terminals ([TnC]max), was fixed at 117 TnC
terminals per half-sarcomere primitive (two actin filaments
each with two tropomyosin molecules spaced at a
repetition distance of 37.5 nm (91)). Normalizing to the
constant volume of the half-sarcomere primitive gave
½TnC�maxhnTnC=Vhsp;refz120 mmol=L, the amount esti-
mated from physiological measurements (102, Table 1).

Calcium concentration (muscle activation) was an
experimenter-set model state parameter. Constant electri-
cal stimulation of intact fibers or bathing skinned
fibers with constant pCa ¼ �log([Ca2þ]) solutions yields
an equilibrium concentration of free Ca2þ in the muscle
cell cytoplasm. Rockenfeller and G€unther (2017) (103)
estimated a maximum concentration of free Ca2þ

([Ca2þ]max) as approximately 13 mmol/L, a pCa of
approximately 4.9, based on experiments with frog
skinned fibers (17). This value agrees well with a
½Ca2þ�maxz17 mmol=L from a recent model by (104).
However, since Ca2þ binding sites, e.g., on TnC or
ATP, make muscle cytoplasm a calcium buffer (105),
the total amount of Ca2þ will be substantially higher,
500–1000 mmol/L (106, p.311). To account for the
different calcium concentrations and dynamics among
species (107), fiber types (108), and preparations (81),
we introduced a relative calcium concentration parameter,
~c ¼ : ½Ca2þ�=½Ca2þ�max, as a dimensionless measure of
calcium saturation.

In more detail, the kinetic equilibrium equation between
free TnC terminals and free calcium was

n , Ca2þ þ TnC#
kb

ka
TnC� Ca;

where TnC-Ca is a calcium-bound TnC terminal and n is the
average number of Ca2þ ions bound per terminal. The reac-
tion rate constants ka and kb allowed calculating the equilib-
rium constant KCa:

KCa ¼ ka
kb

¼
�
Ca2þ

�n
, ½TnC�

½TnC� Ca� 5 ½TnC� Ca�

¼
�
Ca2þ

�n
, ½TnC�

KCa

:

Since ½TnC� þ ½TnC� Ca� ¼ ½TnC�max is a constant,
[TnC] could be replaced in the above equation, yielding a
sigmoidal Hill equation (109) relating calcium and cal-
cium-bound TnC:
½TnC� Ca� ¼
�
Ca2þ

�n
,
�½TnC�max � ½TnC� Ca�	

KCa

5
½TnC� Ca�
½TnC�max

¼
�
Ca2þ

�n
KCa þ

�
Ca2þ

�n
¼ ~cn

K
~c
þ ~cn

¼ : Paasð‘hsÞ;

(6)

where K
~c
:¼ KCa=½Ca2þ�max denotes the normalized equi-

librium constant. Hence, the quotient ½TnC� Ca�=
½TnC�max, the probability of an active site being available
(Paas), could be directly calculated from the relative calcium
concentration ~c. Note that n can be interpreted not only as
the number of calcium ions bound to TnC but also as a
degree of cooperativity of calcium binding; see (110–113)
for reviews. Fig. 2 shows a Hill plot with parameters n ¼
2.5 and K

~c
¼ 1=40 (17,103). Note that K

~c
¼ ~cn50, where

~c50 marks the relative calcium concentration at which half
the actin sites are cleared, and thus active (available for
myosin head binding). Assuming [Ca2þ]max ¼ 13 mmol/L,
a ~c50 of 1=40ð1=2:5Þz0:23 corresponded to approximately
2.97 mmol/L or a pCa of around 5.7.
Volume constancy and geometric consequences

Because of muscle volume constancy (43,51), the thin and
thick filaments move radially apart as muscles shorten,
reducing the probability of myosin heads attaching to avail-
able active sites on the actin filaments (see section ‘‘avail-
ability of active sites: kinetics of calcium binding to
troponin,’’), and thus force generation. The cross-sectional
area (CSAhsp) of a single, constant-volume (VhsphVhsp;ref ),
hexagonally arranged lattice (39) half-sarcomere primitive
cell (index: hsp) changes as follows as sarcomere length
changes:
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Vhspð‘hsÞhVhsp;ref ¼ CSAhsp , ‘hs ¼ k10 , d
2
10ð‘hsÞ , ‘hs

¼ k10 , d
2
10;ref , ‘hs;ref

¼ CSAhsp;ref , ‘hs;refz1:7 , 10� 3mm3

(7)

where the final number was obtained by substituting the
following Miller-indexed vertebrate sarcomere parameter
values: ‘hs;ref ¼ 1:1 mm, k10 ¼ 2=

ffiffiffi
3

p
, and d10;ref ¼

d10ð‘hs;refÞ ¼ 37 nm (51, Table 1). Rearranging the
middle equation in Eq. (7), gives an inversely proportional
relation between lattice constant d210 and half-sarcomere
length ‘hs:

d210ð‘hsÞ ¼ ‘hs;ref , d210;ref
‘hs

f
1

‘hs
: (8)

To show the effect of length changes on lattice spacing
(Fig. 3), we used these lattice parameter values to calculate
the actin and myosin filament surface-to-surface distances
for a 50% change in sarcomere length (bdact;mbb):

bdact;mbb

�
‘hs;ref

	 ¼ 2

3
, d10;ref � ract � rmbb ¼ 2

3
, 37 nm

� 5:5 nm � 7:5 nm ¼ 11:7 nmbdact;mbb

�
0:5 , ‘hs;ref

	 ¼ 2

3
,

37ffiffiffiffiffiffiffi
0:5

p � 5:5 � 7:5 ¼ 21:9 nm

bdact;mbb

�
1:5 , ‘hs;ref

	 ¼ 2

3
,

37ffiffiffiffiffiffiffi
1:5

p � 5:5 � 7:5 ¼ 7:1 nm ;

with the factor 2
3
arising from the actin filament being the

barycenter of an equilateral triangle formed by the myosin
filaments around it. Hence, in the physiological range of
‘hs ˛ ½0:44:::1:76� mm, the distance between the actin and
myosin surfaces, which the myosin head must bridge, varies
over a considerable range.
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Attraction (cross-bridge formation): Modeling electrostatics-
induced actin-myosin binding

Electrostatic forces on the molecular level have been
assumed to stabilize the actin-myosin lattice (67), underlie
the tilting mechanics of the myosin head during force gener-
ation (60,69–71), and found experimentally (98) as well as
theoretically (64) to account for crucial mechanical interac-
tions between a myosin head and actin. We used these data to
calculate the binding probability of a myosin head to the
actin filament, based on the electrostatic potential of two
negatively charged cylinders (actin and myosin backbones)
and the (net) positively charged myosin head (S1 region).

Our interest was calculating the probability of the posi-
tion of the myosin head in the summed potential field pro-
duced by the cylinders. This required calculating the
potential energy of the head (Fig. 4) in the field. The cylin-
drical (100,101) Debye-H€uckel formulation of Nakajima
et al. ((98), see also Appendix C) gives the general equation
for the potential energy of a charged entity in a potential
field:

JDHcylðdÞ ¼
��Zi ,Zj

�� , e20 , l ,K0ðd=lÞ
2 ,p ,Rc , ‘c , e0 , er ,K1ðRc=lÞ ; (9)
where Zi and Zj are the total number of charges on the
whole cylinder and the attracted object, respectively; K0

and K1 modified Bessel functions of second kind; d cen-
ter-to-center distance between the cylinder’s and object’s
charges; Rc and lc radius and the length of the cylinder,
respectively; l Debye length; and e0 and er absolute permit-
tivity of the vacuum and the dielectric constant of the matter
near the object (muscle cytoplasm as well as head material),
respectively.

Fig. 4 shows the situation present in muscle: two nega-
tively charged cylinders (the myosin backbone and actin
filament), and the myosin head attached to the myosin back-
bone by a rod (cyan head and rod attached to blue myosin
backbone). Taking into account how myosin head (charge
FIGURE 3 Cross-sectional view of sarcomere lat-

tice. A double triangular lattice of actin filaments

(red-orange circles: red, actin; orange, tropomyosin)

and hexagonal lattice of myosin filaments (blue-cyan

circle: blue, myosin back bone (mbb); cyan, myosin

heads (S1)), with each filament located in the

center of six actin filaments. As the sarcomere

lengthened from z1=2,‘hs;ref (left) to twice this

length (z‘hs;ref , right), cross-sectional area CSAhsp

halved. Black rhombus shows one possible half-

sarcomere primitive cell. Every myosin lies on the

vertex of a rhombus and is thus shared by four prim-

itive cells, for a total of one myosin per cell. The two

interior actin filaments are not shared and hence

count fully, resulting in an actin:myosin ratio of

2:1. For parameter meanings see text or Table 2. To

see this figure in color, go online.



FIGURE 4 Change of the potential energy function of the myosin head with sarcomere activity. (Left) Actin inactive state. The actin (red) charges are

blocked by tropomyosin (orange) and the potential energy of the myosin head due to the actin electrostatic field is therefore orders of magnitude smaller

than the potential energy due to the myosin backbone field (blue). The myosin head (cyan) remains near the backbone at the most negative potential energy

value. Black line, the difference between the potential energies of the myosin head due to each cylinder; red line, due to actin; blue line, due to myosin.

(Right) Activated state. The tropomyosin has moved aside and the actin charges are no longer blocked. The potential energy of the myosin head due to

the activated actin field has become much more negative (its magnitude has increased), and the myosin head therefore orients more toward the actin surface.

In both states, myosin surface charge remains unchanged (z9 zJ potential energy at the surface). A myosin to actin center-to-center distance of approxi-

mately 25 nm was chosen, corresponding to the situation at ‘hs;ref . Myosin and actin radii were 7.5 nm and 5.5 nm, respectively (92). Myosin and actin charge

densities were �12 e0 and �4 e0 per nm, respectively (101). To see this figure in color, go online.
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position at S1) distance to the myosin backbone and actin
filament depends on the head/rod orientation b (dmbb;S1 ¼
dmbb;S1ðbÞ to the myosin backbone, and dact;S1 ¼ dact;S1
ðb; ‘hsÞ to the actin filament), and that the myosin head is
believed to carry a charge of þ5 e0, Eq. (9), allowed calcu-
lating the potential energy functions of the myosin head in
the myosin backbone and actin filament electrostatic fields,
respectively,

JDHcyl;mbbðdmbb;S1Þ¼
��Zmbb ,ZS1

�� , e20 , l ,K0ðdmbb;S1=lÞ
2 ,p , rmbb , ‘mbb , e0, er,K1ðrmbb=lÞ

(10)

and

JDHcyl;actðdact;S1Þ ¼
��Zact ,~c ,ZS1

�� , e20 , l ,K0ðdact;S1=lÞ
2 ,p , ract , ‘act , e0 , er ,K1ðract=lÞ :

(11)

In each panel of Fig. 4, the potential energy of the head
due to the myosin electrostatic field alone is shown by the
blue line and that due to the actin filament alone by the
red line. Note that the ordinate is logarithmic, and thus
the lines are oppositely oriented; the field of the myosin
backbone pulls a positive charge toward the myosin back-
bone, the field of the actin filament toward the actin fila-
ment. Potentials appear as almost straight lines because
K0(x) equals �log(x) to a first approximation. The black
line shows the magnitude of the difference between the
two potential energy functions (the difference being taken
because of their opposite orientations), the actual potential
energy of the myosin head in the two cylinder case.
The magnitude of the potential energy produced by the
actin cylinder varies as a function of activity ~c (Eq. (11)).
In the inactive state (Fig. 4, left panel, ~c ¼ 0:01), all actin
surface charges are shielded by tropomyosin, and the poten-
tial energy of the myosin head due to the actin field is, at
most distances between the cylinders, much less than the po-
tential energy of the head due to the myosin field. As a
result, the most negative potential energy of the head be-
tween the two cylinders is located at the surface of the
myosin backbone. Ignoring random (Brownian) movements
(see below), the myosin head would orient to lie on the
myosin filament backbone.

In a fully activated state (Fig. 4, right panel, ~c ¼ 1), all
actin surface charges are unshielded. The potential energy
of the myosin head in the actin electrostatic field is, at all
distances, therefore much more negative (has a greater
magnitude). This increase is sufficient that the most negative
potential energy of the myosin head is now located at the
surface of the actin filament. In the model, this effect is
achieved by linearly scaling the number of ‘‘visible,’’ that
is, unshielded, actin charges with calcium concentration (~c
in Eq. (11)). Again ignoring randommovements, the myosin
head would orient toward the actin filament.

The description to now has assumed that the myosin head
and rod were macroscopic objects. However, they are actu-
ally molecules surrounded by a fluid, and are therefore
constantly randomly moving (Brownian motion) to some
extent. To determine if the myosin head potential energies
shown in Fig. 4 are large enough to substantially affect
head position, we must compare the magnitudes of the
head Brownian kinetic and electrostatic potential energies.
The head is composed of a very large number of atoms
Biophysical Journal 121, 1823–1855, May 17, 2022 1833
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(approximately 115,000 atomic units (114)) connected by
covalent bonds, the proteins that comprise it, which them-
selves form a tertiary structure due to ionic and van der
Waals forces. Each of these atoms are moving among their
(temperature-dependent) degrees of freedom, and the entire
ensemble is embedded in a solution composed of much
smaller particles (mostly only a few atomic units) that are
also moving among their temperature-dependent degrees
of freedom. Determining the head Brownian kinetic en-
ergies from first principles is thus clearly difficult. However,
we show now that doing so is unnecessary to demonstrate
that head Brownian kinetic energies are much too small to
prevent the heads from responding to the cylinder electro-
static potential energies shown in Fig. 4.

For an ideal gas, the kinetic energy distribution of its con-
stituent entities can be calculated from the Maxwell-Boltz-
mann equation (Fig. 5), which describes the distribution of
kinetic energies (Ekin) of three-degree-of-freedom particles
by the probability density function (PDF in Fig. 5, fMB in
equations below) and the corresponding cumulative distri-
bution function (CDF in Fig. 5, FMB in equations below):

fMBðEkinÞ ¼ 2 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekin

p , ðkB , TÞ3
s

, exp

��Ekin

kB , T

�
(12)

� ffiffiffiffiffiffiffiffiffiffiffiffi
E

r �

FMBðEkinÞ ¼ erf

kin

kB , T
� kB , T , fMBðEkinÞ (13)

where kB is the Boltzmann constant and T temperature.
Mathematically, the Maxwell-Boltzmann distribution of

the kinetic energy is equivalent to a chi (not chi-square)
distribution with three degrees of freedom, or a gamma dis-
tribution with shape parameters kshape ¼ 3

2
and qshape ¼

kB,T, respectively. Physically, the Maxwell-Boltzmann dis-
tribution describes the kinetic energy distribution of homo-
geneous gaseous particles under a maximum entropy
FIGURE 5 Maxwell-Boltzmann distribution: probability density func-

tion (PDF) (black) and cumulative distribution function (CDF) (gray).
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condition, not the situation described above for the myosin
heads. That these considerations result in a great overesti-
mation of the myosin head Maxwell-Boltzmann velocity
can be appreciated by noting that the peak Ekin (approxi-
mately 2 zJ) shown in Fig. 5 would imply a head velocity
around v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ekin=m
p

z3 m/s, roughly five orders of
magnitude higher than the 20 mm/s estimated work stroke
velocities of myosin heads after having been rapidly and
entirely unloaded, cf. (115, Fig. 7e, f) and (116, Fig. 3 a).

The curves in Fig. 5 should thus be interpreted as an upper
limit below which the actual myosin head kinetic energy
distribution exists. The black line shows that some 80% of
the particles in a Maxwell-Boltzmann distribution at near-
physiological temperatures (Twas set to 298 K) have kinetic
energies with magnitudes less than the 10�20 J myosin head
potential energy maximum magnitude in the right panel of
Fig. 4, and all have kinetic energy magnitudes less than
the 10�19 J myosin head potential energy maximum magni-
tude in the actin activated (left panel) state. Given that actual
myosin head kinetic energy distribution is certain to be less,
likely much less, than that in Fig. 5, these arguments show
that the electrostatic potential energies in Fig. 4 are suffi-
cient, at physiological temperatures, to drive large percent-
ages or all of the myosin heads to the orientations shown in
Fig. 4.

The next step is to combine the knowledge of the electro-
static potential energy of a myosin head as a function of dis-
tance between an actin filament and myosin backbone
(Fig. 4), and the kinetic energy distribution of the myosin
heads, to quantify the probability of a head becoming
attached. As explained above, we have only an upper bound
of the kinetic energy distribution of the heads. However,
because even this upper bound kinetic energy distribution
gives head kinetic energies of which the large majority
or all are less than the electrostatic potential energies,
we can use FMB with little loss of accuracy in these calcula-
tions (reducing the head energy distribution by moving
the energy distribution shown in Fig. 5 leftward induced
negligible changes in Fig. 6). Technically, we thus replace
the kinetic energy Ekin in Eq. (13) by the potential
energy JDHcylðxÞ : ¼ JDHcyl;mbbðxÞ þJDHcyl;actðxÞ, see
Eqs. (10) and (11).

For this, let x denote an arbitrary point on the (one-dimen-
sional) line segment L of length RZS1

between the surface of
the myosin backbone and the tip of the myosin head when
fully swung out. Hence, L ¼ ½rmbb; rmbb þRZS1

� represents
the entirety of possible radial positions x of a head. For
every x˛ L, the evaluation FMBðJDHcylðxÞÞ in Eq.(13) gives
the fraction of heads whose kinetic energy is smaller than or
equal to JDHcylðxÞ. By normalizing this fraction by the in-
tegral over L, i.e.,

R rmbbþRZS1
x¼ rmbb

FMBðJDHcylðxÞÞ dx, we obtain
a probability distribution function fposðxÞ of head position.
Since the sum of the two potential energy functions in
Fig. 4 (black line) has exactly one root bx ˛ L, its integral
(colored lines in Fig. 6, left) has exactly one minimum.



FIGURE 6 (Left) Probability of location (fpos(x)) of the tip of the myosin head (S1) at different half-sarcomere lengths ‘hs and relative calcium ion con-

centrations ~c. Note how, for short lengths, the calcium concentration did not influence the probability (solid, dashed, and dotted blue lines). The same holds

for the change of lengths from short to reference length at low calcium (blue, red dotted lines). Increasing calcium concentration or sarcomere length shifted

the probability in favor of the head being arranged toward the actin filament, as increasing calcium increases the visible charges on actin and increasing length

decreases the lattice spacing and thus shifts the potential energy function of actin closer toward the head. (Right) The probability of myosin binding, i.e., of a

head being ‘‘caught’’ by available actin (Paas , Pesa in Eq. (3)), calculated by the integral of the location’s distribution from the minimum of the potential

energy function to the tip of the swung-out head (Eq. (14)). The sigmoidal curves shifted right as calcium concentration decreased. To see this figure in color,

go online.

Interfilament spacing explains FL curve
We assume that heads positioned on either side of the poten-
tial’s root are attracted toward the corresponding cylinder.
The relative amount of heads aligned to the myosin back-
bone can therefore be calculated by integrating the distribu-
tion from the backbone’s surface to the distribution’s

minimum,
Rbx
rmbb

fposðxÞ dx, and the relative amount of heads

potentially attachable to actin can be calculated by inte-
grating from the minimum to the tip of the swung-out
head, i.e., the net probability of a head being electrostati-
cally attracted by the actin filament instead of the myosin
backbone (Pesa from Eq. (3)):

Pesað~c; ‘hsÞ ¼
Z
bx

rmbbþRZS1

fposðxÞ dx

¼
R bx rmbbþRZS1FMB

�
JDHcylðxÞ

	
dxR rmbbþRZS1

rmbb
FMB

�
JDHcylðxÞ

	
dx

: (14)
Fig. 6, left, sketches this scenario for several lengths and
calcium levels.Myosin heads positioned left of theminimum
of fpos(x) may be associated with the so-called super-relaxed
state (117), inwhich the heads align closelywith, and arewell
ordered on, the myosin backbone (Fig. 4, left). Myosin heads
positioned right of the minimum may be associated with the
‘‘disordered-relaxed state’’ (118), in which the heads move
freely in the interfilament space. This distinction should,
however, not be considered sharp, as heads near the myosin
filament could also be disordered; i.e., not align perfectly
with the backbone. Nevertheless, only disordered heads
near the actin filament have a chance of becoming ‘‘attached’’
to an available active site and produce force. In the (practi-
cally) deactivated (~c ¼ 0:01; left, dotted lines) state, most
heads were near the myosin filament (super-relaxed), in
accordance with experimental findings on myosin head
orientation (119, Fig. 3). There is also evidence that this dis-
tribution is length dependent (120, Fig. 1 b). For lengths
‘hs R ‘hs;ref (Fig. 6 left, red, green), in the fully activated state
(~c ¼ 1, solid lines), most heads were swung out (disordered)
and occupied the angular range of a myosin head’s work
stroke (z60�) (60, Fig. 2), (56, Fig. 2), (57, Fig. 1).

Fig. 6, right, shows the probability of amyosin head attach-
ing to the actin filament as a function of half-sarcomere length
at various calcium concentrations. These curves had different
magnitudes and shifted progressively left as ~c increased.
Much of both these changes is undoubtedly due to the pres-
ence of ~c in Eq. (11) for the myosin head potential in the actin
filament electrostatic field. However, their shapes also
changed; i.e., they are not simply differently scaled and trans-
located versions of a single curve.Given the complexity of the
derivation of these curves, it is difficult to associate their dif-
ferences to parameters of themodel other than~c. Presumably,
the changing interfilament distances, and consequent non-
linear changes in the summed electrostatic field between
the two filaments, play a central role in these differences.
Biophysical Journal 121, 1823–1855, May 17, 2022 1835
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Scaling factor

Because of the charges on the myosin backbone, even at full
activity, not all the heads can escape the myosin attraction. A
total of nM ¼ 3,ð‘mbb � ‘mbzÞ=9Mz150 S2 regions, each
with a double head, are available per myosin filament within
the half-sarcomere. Either head can form a force-generating
cross-bridge (121). A maximum of z100 cross-bridges
contribute to measured isometric tension ((93), Fig. 3 D).
Thus, approximately two-thirds of theoretically possible
cross-bridges account for 100% of measured force. Eq. (3)
therefore contains the scale parameter 2z1:5 (a model
parameter to be found by optimization; Eq. (3)), by which
the relative amount of bound heads (cross-bridges) was
multiplied to obtain 100% of relative force (maximum: 1).

Model initial conditions output

Fig. 7 shows model FLAR’s at multiple calcium concentra-
tions using the parameter set u0 (Table 3). These data were
generated, as explained above, by multiplying in Eq. (3) the
terms of the length-dependent effective overlap function
(Eq. (5), Fig. 1), the calcium-dependent probability of an
active site being available (Eq. (6), Fig. 2), the length-cal-
cium-dependent electrostatic binding of the head (Eq.
(14), Fig. 6), and scaling the result by 2 (1.8 in u0; from
experimental data, expected to be about 1.5, see section
‘‘scaling factor’’). These curves were then re-scaled to
give a final model output (solid colored lines) with a peak
of approximately 1 for the largest curve. The model gives
smooth FLAR curves without any sign of piece-wise linear
ascending arms. FLAR curve maxima decrease and shift
FIGURE 7 Final result of Eq. (3). Filament overlap (Povl, solid gray line) times

Pesa, black dotted lines) is shown for several relative calcium concentrations (col

shown by the correspondingly colored solid lines and represents the relative acti

lines show the edges of the Gordon et al. (1966) plateau region (see text). The do

this figure in color, go online.
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right (toward longer lengths) with decreasing calcium con-
centration. The model thus reproduced all qualitative as-
pects of experimental FLAR curves.

There are several important points to make about this
figure. First, although the FLAR curve maxima correctly
shifted right with decreasing calcium concentration, there
is no obvious explanation of why they do so in the constituent
parts of Eq. (3) plotted in Fig. 7, Povl (solid gray line) and the
product of the Paas and Pesa terms (dotted lines). That is,
across the range of half-sarcomere lengths where themaxima
occur, Povl is a simple straight linewith negative slope. Paas ,
Pesa are a series of smooth, sigmoid-like curves whose max-
ima, and maximum slopes, smoothly increase with increased
calcium concentration, but there is no discontinuity or other
special characteristic of the curves at the lengths where the
FLAR peaks occur. The peaks instead shift due to a non-intu-
itive property of multiplying each Paas , Pesa curvewith Povl,
with the position of the peak being determined by the partic-
ular slopes and magnitudes of each Paas , Pesa curve and
magnitude of Povl as half-sarcomere length changes. Appen-
dix A uses simple functions analogous to the Paas , Pesa

curves to demonstrate how this non-intuitive multiplicative
process can give rise to shifting FLAR peaks.

Second, the vertical dashed lines show the edges of the
Gordon et al. (1966) plateau (see Fig. 1). The right vertical
dashed line is the longest half-sarcomere length at which all
myosin heads can be attached to an actin (thin) filament. The
left vertical dashed line is the half-sarcomere length at
which the actin filaments arising from the two Z disks begin
to overlap. As such, in the Gordon et al. (1966) model, force
would be constant between these two lines. What is actually
the product of the amount of cleared active sites and myosin binding (Paas ,
ored dashed lines). The scaled version of this amount (2, Povl, Paas, Pesa) is

ve force-length relation (FLAR) of the half-sarcomere. The dashed vertical

tted vertical line at 0.8 nm is the initial (half-)myosin filament length. To see



TABLE 3 Initial parameter guesses for model F and optimizer

lower and upper bounds

Parameter Unit Sensitive

Initial

guess u0

Lower bound Upper bound

Factor Value Factor Value

‘act [mm] U 1.1 0.8 0.88 1.2 1.32

‘mbb [mm] U 0.8 0.8 0.64 1.2 0.96

‘mbz [mm] 7 0.08 0.7 0.056 1.3 0.104

ract [nm] U 5.5 0.8 4.4 1.2 6.6

rmbb [nm] U 7.5 0.8 6 1.2 9

RZS1
[nm] U 13 0.8 10.4 1.2 15.6

d10,ref [nm] U 37 0.9 33.3 1.1 40.7

K
~c

[ ] 7 0.025 0.2 0.005 5 0.125

n [ ] U 2.5 0.5 1.25 2 5

T [K] 7 exp. 1 exp. 1 exp.

er [ ] 7 800 0.8 640 1.2 960

I [mol/L] 7 0.17 0.5 0.085 2 0.34

jZactj [ ] 7 4400 0.5 2200 2 8800

jZmbbj [ ] 7 9600 0.5 4800 2 19,200

ZS1 [ ] 7 5 0.2 1 2 10
~Ffalse [ ] 7 0.2 0.2 0.04 5 1

2 [ ] U 1.8 0.5 0.9 1.5 2.7

Factors are given for clarity. Column three shows whether the parameters

were sensitive (U) or not (7), see Appendix B. Temperature values were

directly taken from experiments.

Interfilament spacing explains FL curve
seen is that, for all ~c, force continues to rise from the left to
the right dashed lines. This rise is what would be expected
from our model, as in it interfilament distances decrease,
and thus myosin head binding probability increases, with in-
creases in half-sarcomere length at all sarcomere lengths.
For FLAR above ~c ¼ 0:7, a kink, i.e., a slope discontinuity,
is seen at the right dashed line (the beginning of the de-
scending arm), consistent with the Gordon et al. (1966)
model. However, at lower ~c, no kinks are present and force
begins to decline at longer and longer lengths, much longer
than those predicted by Gordon et al. (1966). This again is
consistent with our model. At high ~c, with the associated
very high percentage of attached myosin heads, the effects
of decreased thin:thick-filament overlap could understand-
ably be the primary determinant of when force begins to
decline. For lower ~c, the increased interfilament electrostatic
interactions that will occur at longer half-sarcomere lengths
could become more important than how many myosin heads
are attached, and thus move the peaks rightward.

This trade-off between interfilament spacing decreasing
(and hence acting to increase force) and thin:thick-filament
overlap decreasing (and hence acting to decrease force) is
also seen in two other aspects of the peak and descending
arm portions of the FLAR curves. For FLAR above ~c ¼
0:7, a plateau is visible, well outside the Gordon et al.
(1966) half-sarcomere length at which a plateau should
occur. For these ~c and half-sarcomere lengths, the increased
force due to decreasing interfilament spacing (Paas , Pesa),
and the decreased force due to decreasing thin:thick-fila-
ment overlap (Povl), just balance each other, keeping force
constant. Further down the descending arm, this balance is
broken as the constant negative slope of Povl increasingly
exceeds the positive slope of the sigmoidal Paas , Pesa.
This interplay of changing force by changing spacing and
overlap thus explains why the model descending arms are
not linear, as they appear in Gordon et al. (1966).

Third, the left dashed line is the half-sarcomere length
where opposing thin filaments begin to overlap, and thus a
length at which, according to Gordon et al. (1966), a kink
should occur. It is apparent that no noticeable kink is present
for any ~c at this half-sarcomere length.

Fourth, the vertical dotted line, myosin filament length, is
the half-sarcomere length at which the myosin filaments
would reach the Z line, and then become increasingly
squeezed with further half-sarcomere shortening. Again,
no kink is associated with this important state change of
Gordon et al. (1966).
Optimization of parameters to fit experimental
FLAR

Initial optimizations showed that the values of some param-
eters would ‘‘run away’’ and assume non-physiological
values. Bounds were therefore set for each parameter.
Table 3 gives the initial values (u0) plus the allowed bounds,
both as absolute values and as a multiplicative factor of each
parameter’s u0 value, and whether the model output was
sensitive to the parameter in the sensitivity analysis (Appen-
dix B). Temperature was set to the temperature at which
each experiment was performed. Relative calcium concen-
trations, ð~c1;.;~cncÞ were all assumed to be greater than
zero and less than or equal to one, without any hierarchical
boundary conditions (e.g., ~c1 <~c2 or the like). If nc denotes
the number of different activation levels, the Cartesian prod-
uct of these boundary intervals forms a hyperrectangle
U3R17þncþ in which all feasible parameter sets for any stri-
ated muscle are assumed to be found.

Fig. 8 shows the fits (Eq. (1)) for each of the 12 datasets
(Table 1). Optimized calcium levels are indicated in the
figure insets with consistent coloring according to the
superimposed color bar. Note that values are ordered
between full relaxation (~c ¼ 0, blue) and full activity
(~c ¼ 1, red) in a square-root fashion to account for the
non-linear activity-calcium relation (Eq. (6)). Hence, for

example,~c ¼ 0:25 ¼ 0:52 (green) is at themiddle of the co-
lor spectrum. Data points are shown as black circles, with
each activity level connected by a dashed line. Optimized
parameter values are shown in Table 4 along with each fit’s

calculated Debye length l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0,er,kB,T

2,103,NA,e20,I

q
, LSE, and ~LSE.

Description of fits

The model extremely well reproduced the experimental data
across a wide range of muscles, capturing both the variations
in FLAR peak values and, where such data were available,
the rightward shift of the peak as calcium concentration
changed. Normalized LSE values (Table 4) were extremely
Biophysical Journal 121, 1823–1855, May 17, 2022 1837



FIGURE 8 Optimal fit ofmodelF to the available datasets, see section ‘‘muscle datasets.’’ The dashed vertical lines in each panel show the edges of theGordon

et al. (1966) plateau region. The dotted vertical line in each panel is myosin filament length, at which the ends of the thick filament would reach the Z disk.

Rockenfeller et al.
good, with a maximum LSE of 0.2, and a mean LSE of
0.0489 in data running from 0 to 1. Some of this error is
also clearly due to experimental flaws. In the data with the
greatest LSE (Guschlbauer (a)), the ~c ¼ 0:12 data had
two peaks and the maximum activity data line crossed lower
activity data lines. Similarly, in the data with the second
greatest LSE (Guschlbauer (b)), the second-most-activated
data line crossed the third-most-activated data line.

As with the theoretical FLAR curves in Fig. 7, the curves
showed multiple differences from Gordon et al.’s (1966)
predictions (all conventions in Fig. 8 are the same as in
Fig. 7). At high ~c, many curves did show a kink (Balnave,
Brown, deBeer, deBrito, Gordon, Guschlbauer (a), Roszek,
Stienen, Zuurbier), at the end of the Gordon et al. (1966)
plateau (right vertical dashed line, the beginning of not all
1838 Biophysical Journal 121, 1823–1855, May 17, 2022
myosin heads being bound, the classic beginning of the de-
scending arm), with the Zuurbier fit actually showing a true
plateau, although this was just the flattening of a clearly
sigmoidal function. In almost all cases (Guschlbauer
(a) being an exception), this kink disappeared at lower ~c.
In no cases except our Gordon fit were the left edge of the
plateau (the beginning of opposing thin-filament overlap)
or the half-sarcomere length at which the thick-filament
ends would reach the Z disk (dotted vertical line) associated
with any noticeable kink in the FLAR ascending arm.
A notable observation was that for many fits (Brown,
deBeer, deBrito, Gordon, Guschlbauer (a), Stienen, Zuurb-
ier) the half-sarcomere length at which the ends of the thick
filaments would reach the Z disk were at large force values
on the ascending arms, suggesting that, if these fits are valid,
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Interfilament spacing explains FL curve
thick-filament penetrations of rather than collisions with the
Z disk (assertion 5) occur in the muscle. With respect to de-
scending arm linearity, both Gordon et al. (1966)-like
completely linear arms were present (deBeer, Gordon, and
Zuurbier) and descending arms in which only the end por-
tions appeared nearly linear, as in Fig. 7.

We now describe the parameter values found in the fits,
grouping the parameters as in section ‘‘model parameters
and parameter initial values.’’
Anatomical parameters. Optimized actin lengths all
settled well within the bounds, with a minimum of
0.891 mm (Stienen) and a maximum of 1.19 mm (Zuurbier).
Myosin lengths, alternatively, showed large variation,
ranging from a minimum of 0.713 mm (Guschlbauer (b))
and reaching the upper bound of 0.96 mm for three muscles
(Brown, deBeer, Zuurbier). Real myosin lengths vary less
than actin lengths (89,122). We show in Appendix B that
the sensitivity of F was greater to actin length than myosin
length, possibly explaining the wider variation of model
myosin values. Myosin bare zone length was also highly
variable, ranging from 0.0567 mm (Stienen) to the upper
bound 0.104 mm (Balnave, Gordon, Guschlbauer (a)).
Bare zone to backbone ratio also varied substantially, be-
tween 6.6% (deBeer) and 14% (Balnave). Since absolute
forces were not considered, we do not assess the absolute
number of possible cross-bridges, which decrease with a
higher ‘mbz=‘mbb ratio or shorter ‘mbb.

Radial sarcomere geometry remained close to our initial
guesses: actin radius varied from 5.3 nm (Guschlbauer
(b)) to 6.59 nm (Guschlbauer (a)) and myosin backbone
radius from 7.17 nm (Guschlbauer (b)) to 8.72 nm (Gordon).
The reference lattice constant d10,ref was predominantly
below our initial guess, ranging from 33.6 nm (Guschlbauer
(a)) to 40.7 nm (Roszek).
Hill parameters. K

~c
settled mainly within the bounds,

although Zuurbier again reached the lower bound of 0.005
and Roszek the upper bound of 0.125. Assuming a
maximum calcium concentration of 13 mmol/L, these values
give half-activity pCas of 6.7 and 5.3, respectively. n almost
always decreased, with the lower bound of 1.25 reached
twice (Morgan, Zuurbier), and only Guschlbauer (b)
increasing (to 2.7). The Gordon data gave a n of 3.07, but
this value is not reliable as only fully activated data were
available for this muscle. Further reducing n’s lower bound
to 1 did not improve the residuals.
Electrostatic parameters. We here only summarize these
parameters; see Appendix C for detailed discussion. The
optimizer tended to increase Debye length (last column,
Table 4) from the initial value ofz0.76 nm, settling between
1.48 nm (Gordon) and 3.72 nm (Brown). Debye length de-
pends, in part, on er and ionic strength (Table 2). The changes
in Debye length in the model were achieved by simultaneous
increases in er (from 644 for Gordon to 960 for Brown and
others) and decreases in ionic strength (from 0.0852 mol/L
for Brown to 0.34 mol/L for Gordon). Charge number on
Biophysical Journal 121, 1823–1855, May 17, 2022 1839
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the actin filament and the myosin backbone did not reach the
bounds for anymuscle. Actin charges always increased (from
3510 e0 for Morgan to 8620 e0 for Guschlbauer (a)). Myosin
backbone charges showed more variability (from 4870 e0 for
Zuurbier to 12,900 e0 for Guschlbauer (a)). These values
correspond to charge densities between 3.7 e0/nm and 8 e0/
nm (actin) and 5.1 e0/nm and 14.9 e0/nm (myosin). The
actin-to-myosin charge ratio consequently varied from 0.3
(Morgan) to 1.8 (Zuurbier). The number of charges on the
head showed no strong correlation with the number of
charges on either filament (see Appendix D). Values between
the lower bound of 1 e0 (Stephenson, and Zuurbier) and the
upper value of 9.37 e0 (Guschlbauer (a)) were found, with a
mean of approximately 3.86 e0. Using this value, the total
number of charges engaged in binding one myosin head to
a 10-nm length of actin filament (approximately two active
sites) was 3:86 e0,6 e0=nm,10 nmz232 e20, which com-
pares well with the 200 e20 found by (98).
Cross-bridge dynamics parameters. The sensitivity anal-
ysis presented in Appendix B shows that the value of the
false to proper cross-bridge force ratio either had no measur-
able effect on model output, or, at extreme values, caused
the model to fail (introducing two peaks in the FLAR at
high [Ca2þ] levels). This low sensitivity is presumably a
reason for the wide variety of false cross-bridge force values
found by the optimizer: for Morgan and Stephenson,
~Ffalse ¼ 0:2 remained unaltered; in Roszek, ~Ffalse was
diminished to 0.04; and in almost half of the cases (Brown,
deBeer, deBrito, Guschlbauer (a) and (b)), it reached values
above 0.9; i.e., false cross-bridges were exerting a force
almost equal to proper ones.
The scale factor 2. The parameter 2 ranged from 1.03
(Zuurbier) to 2.39 (Guschlbauer (b)), corresponding to 98%
and 42%, respectively, of maximally possible cross-bridges
simultaneously binding to produce force. These values can
directly be related to the variable actin-to-myosin charge ra-
tios above; i.e., the more charges on actin compared to
myosin, the more likely the heads will form cross-bridges.
Although it would not make sense physiologically, 2 was
mathematically allowed to reach values less than one. That
no optimization gave values less than one is consistent with
the model being intrinsically physiologically plausible.
Residuals. The Stephenson data had the overall best fitwith
a relative residual ~LSE (LSE per data point) of 8.31 , 10�5.
Most of the other fits had ~LSE between 1.11 , 10�4 (Balnave)
and 8.83 , 10�4 (Zuurbier). Three fits had ~LSE above 10�3
~Fdesð‘hsÞ ¼

8>>><>>>:
1

1 � 1

‘mbb � ‘mbz

, ð‘hs � ð‘act þ

0
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(Morgan, Guschlbauer (a) and (b)). As noted in section
‘‘description of fits,’’ the high residual for Guschlbauer
(a) and (b) is likely partially explained by experimental er-
rors. It is important to stress that all fits were conducted using
the same initial guess, bounds, and algorithm. Varying these
for individual muscles might have improved the LSE of that
individual muscle, but would have likely worsened the LSE
of others. It is beyond the scope (and would contradict the
general applicability claim) of this modeling paper to iden-
tify the best initial guess, boundaries, and optimization pro-
cedure for each dataset individually.
A simpler descriptive model that fits as well as the
complete model

Rockenfeller and G€unther (2018) argued in earlier work (96)
that calcium density within a fixed cross-sectional area
in the neighborhood of the TnC terminals varies with sarco-
mere length. Unfortunately, this explanation is wrong; cal-
cium concentration [Ca2þ] per unit volume does not
change with length. Experiments have also not provided
any evidence of a length-dependent change in TnC calcium
affinity (123,124). Despite the constancy of [Ca2þ] as length
changes, there is an effective dependence on length of the
ability of a given [Ca2þ] to produce force, due to the
length-dependent changes in interfilament distance and
thus the probability of a myosin head to bind (Fig. 6, right),
see sections ‘‘availability of active sites: kinetics of calcium
binding to troponin,’’ ‘‘volume constancy and geometric con-
sequences,’’ ‘‘attraction (cross-bridge formation): modeling
electrostatics-induced actin-myosin binding,’’ and ‘‘scaling
factor’’. We use here this effective length dependency to pre-
sent a very reduced, descriptive FLAR model. Rockenfeller
and G€unther (96) used the following equation to describe a
calcium and length-dependent force replacing the Pesa $
Paas product in Eq. (3).

~Fascð~c; ‘hsÞ ¼
�
6asc$~c$‘hs



‘hs;ref

	nasc
1þ �

6asc$~c$‘hs


‘hs;ref

	nasc : (15)

This equation continually increases with ‘hs (that is, does

not include the effects of decreasing filament overlap at
large ‘hs). Because the FLAR is essentially insensitive to
false cross-bridges (Appendix B), we used the following
simplified version of Eq. (5), in which false cross-bridges
are omitted, for Povl in Eq. (3).
; if ‘hs % ‘act þ ‘mbz

‘mbzÞÞ ; if ‘act þ ‘mbz < ‘hs % ‘act þ ‘mbb

; if ‘act þ ‘mbb < ‘hs

: (16)
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Assuming that the myosin bare zone length is always 10%
of the myosin backbone length (‘mbz ¼ 0:1,‘mbb), we
ended up with a very compact five-parameter model approx-
imation Fsimple of the complete FLAR:

Fsimpleð~c; ‘hsÞ ¼ 2 , ~Fascð~c; ‘hsÞ , ~Fdesð‘hsÞ : (17)

Fig. 9 and Table 5 show the ability of Fsimple to fit the 12
muscle datasets (sections ‘‘muscle datasets’’ and ‘‘optimiza-
tion of parameters to fit experimental FLAR’’), again using
the optimizer described by Eq. (1). In this example, all
boundaries were chosen so as not to be reached during opti-
mization. Remarkably, for some data (deBrito, Gordon,
Guschlbauer (a), Stephenson, and Stienen), Fsimple gave bet-
FIGURE 9 Optimal fit of model Fsimple to the available datasets, see section ‘‘m

different Hill exponents. The dashed vertical lines show the edges of the Gord

length, the sarcomere length at which the ends of the thick filament would reac
ter absolute residuals than F. This result may suggest that
finding mathematically possible solutions in the complete
model F might have been impeded by physical boundary
conditions. That is, limiting some of the parameters to
certain ranges may have prevented the optimizer, starting
from the initial parameter guess u0, from being able to
find better fitness maxima. For cases where errors are un-
bearably large, that might indicate that changing u0, the
boundaries imposed on the optimizer, or revising the phys-
ically based F model, is required. A drawback to the simple
model is that the parameter values obtained by it can
often not be meaningfully interpreted, see for example
‘act ¼ 0:73 mm (deBrito), ‘mbb < 0:6 mm (Guschlbauer (b),
Roszek), nasc > 10 (Gordon, Roszek) or 2> 2 (deBrito,
uscle datasets.’’ Note that the color bar differs from Fig. 8 due to inherently

on et al. (1966) plateau region. The dotted vertical line is myosin filament

h the Z disk.
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TABLE 5 Comparison of optimized parameters, including initial guess and bounds, from each data fit of FSimple, cf. Fig. 9

Parameter/dataset ‘act [mm] ‘mbb [mm] 6asc [ ] nasc [ ] 2 [ ] LSE , 103 [ ] ~LSE , 103 [ ]

Initial guess 1.1 0.8 1.5 5 1.5

Lower bound 0.66 0.48 0.3 2.5 0.45

Upper bound 1.54 1.12 7.5 15 3

Balnave 1.08 0.676 1.33 3.93 1.33 12.3 0.491

Brown 1.1 1.11 1.33 5.84 1.15 11.7 0.469*

deBeer 1.1 1.03 1.45 6.36 1.09 15.7 0.747

deBrito 0.726 0.851 0.758 5.49 2.54 29.7 0.297*

Gordon 1.09 0.815 1.58 14 0.999 53.2 0.805*

Guschlbauer (a) 1.12 0.851 1.55 4.24 1.14 135 1.93*

Guschlbauer (b) 1.19 0.566 1.07 5.96 1.6 78.5 0.873*

Morgan 1.15 0.634 1.53 4.93 1.17 76.3 2.39

Roszek 0.882 0.496 0.956 10.9 2.46 48.8 0.697

Stephenson 1.15 0.856 1.18 6.38 1.25 1.77 0.0442*

Stienen 0.875 0.939 1.11 3.5 1.49 8.47 0.303

Zuurbier 1.15 0.895 1.45 9.82 1.04 95.6 1.26

Corresponding absolute (LSE) and relative ( ~LSE) errors (thousandfold) shown in the last two columns. Relative errors indicated by asterisks indicate better

residuals than the ones obtained with model F, cf. Table 2. Numbers given to three significant digits.
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Roszek). Hence, the model simplification definitely hinders
mechanistic understanding of the physical system. For this
reason, although we show the edges of the Gordon et al.
(1966) predicted plateau (dashed vertical lines) and the
half-sarcomere length at which the ends of the thick fila-
ments would reach the Z disk (dotted lines), we do not
describe them here. However, if the goal is a computation-
ally cheap model for describing the full FLAR, model
Fsimple is highly suitable. Finally, we note that the number
of state variables (currently two: ~c and ‘hs) in both models
(Fsimple and F) can be extended in a straight forward way
to include other physiological processes; e.g., ATP dy-
namics (125).
DISCUSSION

We presented here an FLAR muscle model based on funda-
mental physical properties. The model well reproduced
experimental data from a large number of muscles. The
key addition to prior models was including the changes in
interfilament spacing that occur as sarcomere length
changes, something that, to our knowledge, prior muscle
models lack. This addition naturally and intuitively explains
the ascending arm of the FLAR without resort to ‘‘hand-
waving’’ arguments about filament collisions or thick-fila-
ment compression. Although not as intuitively obvious,
the combination of 1) the force decrease due to decreased
filament overlap and 2) the contemporaneous increase in
force due to decreased filament spacing naturally leads
(Fig. 7) to the ubiquitous observation that FLAR peaks
move to longer sarcomere lengths as muscle activity
([Ca2þ]) decreases (see also Appendix A). The combination
of extremely good fits and a mechanistic explanation of the
ascending arms and shifting force maxima of real FLAR
curves makes us believe the proposed model constitutes a
substantial advance in muscle models. We also provide a
simpler descriptive model that reproduces experimental
1842 Biophysical Journal 121, 1823–1855, May 17, 2022
data as well or better than the complete model, and which
may therefore be advantageous for ‘‘everyday’’ computa-
tional modeling in practice.
Potential limitations/flaws in model approach

Most aspects of the model are a direct application of geo-
metric constraints, physical laws, and well-described
biochemical processes (e.g., Hill-curves), and thus unlikely
to be flawed. One concern is the calculation of the myosin
head binding in section ‘‘attraction (cross-bridge forma-
tion): modeling electrostatics-induced actin-myosin bind-
ing.’’ We model this process solely on the basis of the
potential energy of the myosin head in the summed potential
field produced by the myosin backbone and actin filament.
Although this approach likely well approximates myosin
head position between the filaments, myosin head binding
to the actin filament depends on the amino acid sequences
of the myosin head and actin binding sites. Our model as-
sumes that these atomic-specific interactions do not need
to be specifically modeled, but occur ‘‘automatically’’ pro-
vided the myosin head and open actin binding site are suffi-
ciently close. We are unaware of data that contradict this
assumption. The good fits the model produces also suggest
that including this level of detail is not required to produce
extremely accurate FLAR models.

Alamo et al. (126) estimated a 60:40 ratio of super-
relaxed to disordered-relaxed myosin heads in low calcium
mouse heart muscle. In our model, at short sarcomere
lengths and low calcium, essentially 100% of the heads
are in what we presume might be the super-relaxed state
(blue lines, Fig. 6, left). At longer sarcomere lengths (red,
green lines, Fig. 6, left), our super-relaxed and disordered-
relaxed ratios are comparable with those in (126). To our
knowledge, the dependence of the super-relaxed/disor-
dered-relaxed ratio on sarcomere length has not been explic-
itly reported, although it is visible in the data of (119,
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Fig. 3). If the Alamo et al. (126) data are from short sarco-
meres, our model ratios may thus agree with existing data. If
not, one explanation could be the molecular differences be-
tween heart and skeletal muscle myosins. Another explana-
tion could be that tropomyosin does not perfectly shield the
actin filament, which would increase the effect of the actin
potential energy in the inactive state, and hence the number
of disordered-relaxed heads. A final explanation could be
that we have not considered the effect dissolved entities in
the cytoplasm between the two filaments would have on
myosin head movement or attraction. For example, such en-
tities reduce the effective volume in which proteins can
move (excluded volume effects (127)), which might hinder
the formation of super-relaxed heads. Also, the physical
properties of such entities in the cytoplasm, or the cytoplasm
itself, may well affect the dielectric constant (relative
permittivity) er, similar to how charged particles in a fluid
determine ionic strength I.

Another model limitation is that it explains the FLAR,
which describes muscle activity at steady state. In its present
form, it is thus not immediately applicable for modeling the
temporal evolution of muscle contraction. A time-dependent
model could be developed in future work by allowing cal-
cium concentration to change over time, the muscle to
shorten in response by including equations predicting how
much filament movement should result from each head
attachment, and feeding the contractile response back to
the existing Povl, Pesa, and Pass equations. These changes
would allow Povl, Pesa, and Pass to be continuously updated,
and hence predict dynamic contractions in response to vary-
ing muscle activity and boundary (load) conditions.
The simple model and further simplifications

The simple model (section ‘‘a simpler descriptive model that
fits as well as the complete model’’) emphasizes many of the
issues raised above. The model gave very good perfor-
mance, but reduced understanding of which parameters
were being altered to achieve the fits. Given the unimpor-
tance of false cross-bridges demonstrated here, an obvious
simplification of both F and Fsimple is replacing the piece-
wise linear ~Fdesð‘hsÞ function used here with single,
often continuously differentiable, functions, e.g., sigmoid
(103, Appendix F) or hyperbolic tangent (1

2
tanhðslope ,

ðposition � ‘hsÞÞ þ 1
2
, where the two shape parameters

slope and position lie in the magnitude of approximately
3 mm�1 and 1.5 mm).
Calcium sensitivity

The term calcium sensitivity is used in multiple ways in the
muscle contraction literature (e.g., (17,80,81,86,128–130))
and consequently, at least to a mathematician, is not well
defined. For instance, calcium sensitivity is defined as
both ‘‘the term that is used to express the fact that force at
a given [Ca]2þ can vary’’ (131, p.222) and ‘‘a concept
used by researchers to simplify the complex, dynamic pro-
cess of [.] contraction [.] into a relationship between
the concentration of free calcium ions available for binding
to TnC and the amount of force generated by the muscle’’
(132, p.2). It is unclear from these descriptions whether cal-
cium sensitivity refers to changes in output (e.g., force) as a
function of input state variables (e.g., length), where [Ca2þ]
is an additional state variable, or to changes of an additional
state or boundary condition (e.g., length or pH), with these
changes being performed at a fixed [Ca2þ], which is then
varied systematically.

Furthermore, the term sensitivity has differentmeanings in
different fields. In mathematics, sensitivity is a differential
measure, quantifying the changes in output that correspond
to changes in the input when only a single parameter is
changed with the others held constant (see Appendix B).
This meaning is also present in the muscle literature in
such uses such as ‘‘Ca-sensitivity [.] was lost’’ (133,
p.713) or ‘‘there is little Ca2þ sensitivity’’ (134, p.4910). In
physiology, alternatively, sensitivity commonly is an abso-
lute measure, describing the minimum value of an input
required for any system response (system threshold), or to
achieve a certain system output (e.g., 50% of maximum
response). This sense is also (although often only implicitly)
used in the muscle literature when describing system output
relative to a characteristic pCa50 value (e.g., the pCa at which
half the maximum output state value is attained), cf. (135,
p.4195), (19, p.337), and (136, p.114).

A particular problem with the physiological definition
arises when describing force-pCa curves (Hill plots) by
means of their inflection point (pCa50) and slope (n): the
Hill exponent n can be expressed as the derivative of the
force with respect to pCa at pCa50, and thus in a mathemat-
ical sense as the local sensitivity of force with respect to cal-
cium around pCa50. Presumably to prevent confusion for
having pCa50 already named calcium sensitivity instead
of, e.g., ‘‘half-maximal effective calcium concentration’’
(137), we find compensatory designations of n in the phys-
iological literature, e.g., ‘‘cooperativity’’ (138) or even ‘‘ul-
trasensitivity’’ (139). Similar conceptual and terminological
ambiguities also occur regarding normalized sensitivity, i.e.,
percentage change in output per percentage change in input.
This quantity can also be found under the names elasticity
(coefficient) or response coefficient, cf. (140), which could
easily be confused with material properties (fiber elasticity)
or enzyme kinetics (the dependence of a system variable on
an external parameter).
Biological implications

Using actin:myosin filament interaction to generate force
first evolved in eukaryotes to power cell division
(141,142), only later being co-opted (perhaps more than
once (143,144)) to generate tissue contraction (originally
Biophysical Journal 121, 1823–1855, May 17, 2022 1843
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in combined neuromuscular cells; for a brief review, see
(145)). Given this evolutionary history, it is not surprising
that, when examined across Animalia, a great variety of ac-
tin:myosin contraction systems exist (90), particularly with
respect to myosin thick-filament structure. The relative con-
stancy in vertebrate striated muscle design, e.g., myosin
length and diameter, a marked exception to this rule, is
perhaps due to vertebrates being, species wise, so small
(less than 5%) a portion of animals.

All these muscles work well enough to fulfill their many
and varied functions. That does not mean they are optimal at
doing so. Evolution works on what is available, which may
preclude finding best, or even close to best, solutions (hu-
man knees and backs, derived from those of four-legged an-
cestors, being prime examples). Moreover, optimal is
environment dependent, and thus evolution to optimal states
requires constant environment over evolutionary times
scales, something likely often not available. Contemporary
muscles should thus be considered just good enough solu-
tions in that they allow species continuation, not entities
that optimally perform the tasks they are set (146). The var-
iations in FLAR curves in Fig. 8 should thus not be inter-
preted as necessarily being best adaptations of the muscles
to function.

Nonetheless, however arisen, these variations are specific
to the muscles examined. Muscle models must reproduce
these variations. They should do so, moreover, in terms of
mechanistic and comprehensible foundations and also offer
the possibility of physiologically interpretable and reason-
able parameter variations. Our model, being physically
based, meets the first requirement. Table 4 shows that, to
fit the experimental data, many model parameters showed
wide variations. Some of these variations (e.g., myosin
length) are presumably spurious, as the sensitivity analysis
in Appendix B shows their parameters had little effect on
muscle output.

Others, however, presumably represent biologically
relevant variation. Relevant to this issue, all the parame-
ters to which model output is most sensitive (d10;ref ; ‘act;
RZS1

; rmbb; ‘mbb;n;2, and ract) are explicitly biological, hav-
ing to do with filament and lattice geometry, charge loca-
tion on the myosin head, the dependence of actin active
site clearance on [Ca2þ], and how many myosin heads
have to be activated to achieve maximum muscle force.
That these parameters are biological suggests that the var-
iations in them were evolutionarily selected. Greater con-
fidence in this conclusion could be obtained were data
from muscles with a wider variety of these parameters
available.
It is time to discard the overlap/collision
hypothesis of the ascending arm

In Fig. 5 of Gordon et al. (1966) (5), the authors imposed on
the ascending arm a two-piece-wise linear fit to data that, to
1844 Biophysical Journal 121, 1823–1855, May 17, 2022
modern eyes, could clearly be fitted with a variety of contin-
uous functions. In their mechanistic explanation Fig. 12,
they follow the ascending arm with a constant amplitude
plateau and a linear descending arm. They then relate the
plateau and the descending arm with changes in thin:-
thick-filament overlap (with which we do not disagree,
although changing interfilament spacing on the descending
arm will make it somewhat non-linear; see our fits in Fig. 8).

As mentioned several times before, their explanation of
the ascending arm is not based on filament overlap consid-
erations but arguments that thin-filament overlap and thick-
filament collision with the Z disks will reduce force. These
hypotheses were reasonable at the time. What is striking is
that they have remained the accepted explanation since then,
particularly given the demonstration a mere three years later
that FLR peaks shifted with changes in calcium concentra-
tion (8), something not explainable by the Gordon et al.
(1966) (5) hypothesis for the ascending arm, and the lack,
in general, of any clear kink in the ascending arm in later
work on other muscles, see again Fig. 8.

We assume that the Gordon et al. (1966) (5) hypothesis
for the ascending arm still being the accepted explanation
is due to their certainly true explanation of the plateau and
descending arm (a penumbra effect). This history is none-
theless a compelling example of how a hypothesis that is
true in part (plateau, descending arm) can be accepted in
whole (the ascending arm) despite the accumulation of
many examples (see references in second part of section
‘‘introduction’’) contrary to its predictions. And it is
also true that the overlap/collision hypothesis is intui-
tively attractive and easy to understand. Nonetheless, the
continuing use of this hypothesis to explain the ascending
arm, in the light of the large body of contrary evidence
that has since been obtained, is clearly inappropriate.

We provide here an alternative explanatory mechanism
for the ascending arm, that it arises from increases in lattice
spacing as sarcomere length decreases. Except the Gordon
data, we chose the datasets in Fig. 8 on the basis of them
having force-length curves over a large range of [Ca2þ]
values. We cannot thus state that they are representative of
muscle force-length curves across the entire muscle litera-
ture. Nonetheless, the goodness of fits of the ascending
arm that the interfilament spacing hypothesis model gives,
and its mechanistic likelihood, intuitive attraction, and
ease of understanding, suggest it is, for now, a better expla-
nation of the ascending arm.
APPENDIX A. EXPLANATION WITH SIMPLE
FUNCTIONS OF RIGHTWARD SHIFT OF FLAR
PEAKS WITH DECREASING [CA2D]

A striking property of FLAR curves is the rightward shift of their peaks

with decreasing activity (decreased [Ca2þ], Fig. 8) (8–18). Finding a mech-

anistic explanation for this shift was a driving force to begin the work pre-

sented here. The resulting model well reproduces the rightward shifts with



A1

A2

A3 B3

B2

B1 C1

C2

C3

FIGURE A. 10 Conceptual explanation of FLAR rightward shift with decreasing [Ca2þ]. Some changes (rightward translocation, column A; squaring,

column C) in the myosin force generation curve (~Fasc, top row) result in rightward shifts of the FLAR peak (middle row). Changing ~Fasc slope, alternatively,

does not (column B). An understanding of these different responses of the FLAR peak to changes in ~Fasc can be obtained by considering how these changes

affect the equation that gives rise to the FLAR, ~Fð‘hsÞ ¼ ~Fasc,~Fdes (bottom row). See text for detailed explanation. Keys in (A2) and (A3) apply to all other

panels in same row. To see this figure in color, go online.
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decreasing activity (Fig. 8). It does so by, in a muscle-specific manner,

finding model parameter values that alter the changes in force due to

changes in filament overlap (solid gray line in Fig. 7), and how changes

in [Ca2þ] alter the force being generated by the myosin heads (black dotted

lines in Fig. 7) at any filament overlap (any ‘hs). Only the force generated by

the myosin heads depends on [Ca2þ]. Nonetheless, because each [Ca2þ]’s
black dotted curve is multiplied by the gray curve (and 2) to give that

[Ca2þ]’s FLAR (the solid colored lines in Fig. 7), the optimizer alters

both types of curves in the fitting procedure. The black dotted curves in

turn arise from an interaction of the Hill equation (Fig. 2) and the changes

in intra-filament spacing described in section ‘‘attraction (cross-bridge for-

mation): modeling electrostatics-induced actin-myosin binding’’ (note that

the final equation in that section, Eq. (14), implicitly depends on [Ca2þ]).
Given this complex dependence of model output on [Ca2þ] and number

of parameters in the model, obtaining an intuitive understanding of how

the rightward shifts occur in the model is difficult. We attempt here to pro-

vide such an understanding.

A word explanation of this difficulty follows. Calcium binding to TnC

unmasks actin filament charges, increasing actin’s electrostatic attraction
of the myosin head (Fig. 4). Length increases increase the likelihood of

myosin head binding by decreasing lattice spacing. The consequence is

that, at a lower [Ca2þ], the sarcomere has to be longer to give an equivalent

overall head binding probability (an equivalent force) than it does at a

higher [Ca2þ]. This (rightward) shift might seem a sufficient explanation

for the FLAR peak moving right with decreased [Ca2þ]. However, as length
increases beyond a certain length, force decreases with length because how

many cross-bridges can occur at any activity decreases as filament overlap

decreases (Eq. (5)). It is this interaction between how sarcomere length-

ening increases the ability of calcium to induce force (due to decreased in-

terfilament spacing) and decrease the amount of force that a given [Ca2þ]
induces (due to decreased filament overlap) that makes understanding

why the FLAR peak moves right with decreasing [Ca2þ] so non-intuitive.

Increased understanding of how these shifts occur can be obtained using

very simple functions (Fig. A10). The black trace in Fig. A10 A1 shows a

filament overlap force dependency. This dependency does not depend on

[Ca2þ], and is therefore the same in panels (A1) –(C1). This curve is iden-

tical to that shown in Fig. 1, with false cross-bridges developing no force. It

therefore consists of an initial portion (‘hs from 0.3 to 1.18 mm) with a value
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of 1, a linear portion from 1.18 to 1.9 mm over which filament overlap de-

creases, reaching 0 at 1.9 mm, at which there is no filament overlap, and

having a value of 0 at all longer lengths. The blue trace in Fig. A10 A1 is

the myosin force generated at a constant [Ca2þ] as ‘hs changes. As was ex-
plained in section ‘‘attraction (cross-bridge formation): modeling electro-

statics-induced actin-myosin binding,’’ as ‘hs increases, interfilament

spacing decreases, and myosin force therefore increases. In this simple

example, we model this length dependency as being linear (the curve

becoming negative at very short lengths is immaterial to the explanation be-

ing provided here). For ease of explanation, we from here refer to the black,

filament overlap curve, as ~Fdes, and the blue, change in myosin head force

generation curve, as ~Fasc.

Because we are here concerned only with the FLAR peak position, not

amplitude, we ignore the scaling factor 2. Thus, in this simple model, mus-

cle force as a function of ‘hs is given simply by ~Fð‘hsÞ ¼ ~Fasc, ~Fdes. The

blue trace in Fig. A10 A2 shows this multiplication. The thin blue line

shows that the FLAR peak occurs at 1.2 mm. Our task is to try to understand

why the peak occurs at this length. The peak corresponds to the ‘hs at which

d~Fð‘hsÞ=d‘hs equals zero. Applying the chain rule to ~Fð‘hsÞ gives d~Fð‘hsÞ=
d‘hs ¼ ~Fasc,d~Fdes=d‘hs þ d~Fasc=d‘hs,~Fdes. We can therefore examine how

the two products in the sum add to zero at the ‘hs they do. Fig. A10 A3

shows the individual products (dashed blue line, ~Fasc,d~Fdes=d‘hs; dotted

blue line (overlying with dotted green line, see next paragraph), d~Fasc=

d‘hs,~Fdes) and their sum (solid blue line, d~Fð‘hsÞ=d‘hs) for the blue lines

in Fig. A10 A2 between ‘hs values of 1.18 and 1.9 mm (the only relevant

portion of ‘hs, as it is over this range that ~Fdes is not constant). ~Fasc,
~Fdes=d‘hs decreases with ‘hs, and is negative over this ‘hs range. d ~Fasc=

d‘hs,~Fdes also decreases with ‘hs, but is positive over the ‘hs range. The

curves are such that they sum to zero at ‘hs ¼ 1:2 mm, consistent with

the FLAR peak in Fig. A10 A2.

We can now examine how changes in the ~Fasc curve (in the model,

arising from changes in [Ca2þ]) affect FLAR peak position. With the linear
~Fasc curve used here, only a limited number of changes are possible. One is

to shift the curve right by changing its zero value from 0.5 to 0.75 mm

(green line in Fig. A10 A1). Multiplication of this ~Fasc by the (unchanged)
~Fdes gives the green FLAR in Fig. A10 A2. It is apparent that, if decreasing

[Ca2þ] induced this shift in ~Fasc, the FLAR peak would shift right, to a value

of 1.325 mm. The reason for this shift can be understood by considering the

green (~c ¼ 0:5) lines in Fig. A10 A3. For both [Ca2þ], the d~Fasc= d‘hs, ~Fdes

curves are identical, since shifting ~Fasc right does not alter its derivative.

The term ~Fasc,d~Fdes=d‘hs, alternatively, is altered by shifting ~Fasc rightward,

since this shift alters ~Fasc’s value at each ‘hs. The effect is to increase the

value of ~Fasc,d~Fdes=d‘hs at each ‘hs (to shift the curve upward). The sum

of the d~Fasc=d‘hs,~Fdes and ~Fasc,d~Fdes=d‘hs curves therefore reaches zero

at a larger ‘hs, 1.325 mm, matching the peak of the green FLAR in Fig.

A10 A2.

Another possible change in ~Fasc is to change its slope, here by a factor

of two (Fig. A10 B1, green curve). Multiplying the blue and green ~Fasc

curves by ~Fdes gives the FLAR curves in Fig. A10 B2. The amplitude

of the FLAR peak (as also occurs in Fig. A10 B1) is altered by the in-

crease in ~Fasc slope, but its position, 1.2 mm, is not. The reason for this

maintenance of FLAR peak position can be understood by examining

Fig. A10 B3. Changing ~Fasc slope changed both d~Fasc=d‘hs,~Fdes (compare

the dotted blue, ~c ¼ 1, and green, ~c ¼ 0:5 lines) and ~Fasc, d~Fdes= d‘hs
(compare the dashed blue, ~c ¼ 1, and green, ~c ¼ 0:5 lines). In both

cases, the slopes of the product curves increased. However, the effects

on the amplitude of the two product curves differ. For the dotted curves,

the green ~c ¼ 0:5 curve is greater than the blue ~c ¼ 1 curve at all rele-

vant ‘hs values. For the dashed curves, the ~c ¼ 0:5 curve is less than the

~c ¼ 1 curve at all relevant ‘hs values. These changes are such that the sum

of the product curves (blue and green solid line) continue to add to zero at

the same length of 1.2 mm. That this will occur for any multiplication of

the ~Fasc curve can be shown as follows: define ~Fasc ¼ m, ð‘hs � b‘Þ. Its
derivative d~Fasc=d‘hs is therefore m, and so d~Fasc=d‘hs,~Fdes ¼ m,~Fdes and
~Fasc,d~Fdes=d‘hs ¼ m,ð‘hs � b‘Þ,d~Fdes=d‘hs. Summing the products gives
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m,~Fdes þ m,ð‘hs � b‘Þ,d~Fdes=d‘hs. When solving this sum for the value of

‘hs that gives zero, the common m terms are divided out, and thus changes

in m cannot affect the ‘hs value at which the sum of the products are zero.

Although not obvious as written, the ~Fasc curve m,ð‘hs � b‘Þ has one

more parameter, the power to which the ð‘hs � b‘Þ term is raised. Fig.

A10 C1 shows ~Fasc with ð‘hs � 0:5Þ squared, resulting in ~Fasc being a

parabola. We use here only the values of the parabola greater than

‘hs ¼ 0:5 mm (where ð‘hs � 0:5Þ ¼ 0), and fix ~Fasc at zero for smaller

‘hs. Multiplying ~Fdes with the two ~Fasc again gives FLARs with different

peak positions (in this case, shifting the low [Ca2þ] FLAR peak to

1.43 mm, Fig. A10 C2). Consideration of Fig. A10 C3 again allows this

shift to be understood. The change in ~Fasc by lowering [Ca2þ] caused

the d~Fasc=d‘hs,~Fdes product curve (green dotted line) to become rightward

curved (concave), rather than straight, and increased its values for all ‘hs.

The change in ~Fasc likewise caused the ~Fasc,d~Fdes=d‘hs curve (green

dashed line) to become concave, but changed its amplitude such that the

curve is greater than the ~c ¼ 1 line for values of ‘hs less than about

1.5 mm and less than the ~c ¼ 1 line for longer ‘hs values. These changes

in the two product curves necessarily move where their sum equals zero to

a longer ‘hs, namely 1.43 mm.

Despite the simplicity of the functions used here, the explanation of

how the FLAR peaks move to longer lengths as [Ca2þ] decreases is anal-
ogous to the situation occurring in Fig. 7, with ~Fdes being analogous to the

Povl curve and ~Fasc being analogous to the Paas , Pesa curves. In Fig. 7,

each Paas , Pesa curve has different magnitudes and maximum slopes.

The ‘‘top’’ four Paas , Pesa curves, corresponding to ~c values between

0.7 and 1, have very similar shapes and primarily differ because of right-

ward shifts as ~c decreases (i.e., they would essentially overlap if translo-

cated to lie over each other). The shifts in FLAR peak for these ~c is

thus similar to that shown in Fig. A10 column A. For lower ~c, the Paas

, Pesa curves both effectively shift right and have increasingly different

shapes. The shifts in FLAR peak for these ~c are thus similar to a combi-

nation of the explanations shown in columns A and C of Fig. A10. In

Fig. 7, performing a differential-based explanation of why the FLAR

peaks move as was done in Fig. A10 is difficult because of the complexity

of the equations giving rise to the Paas , Pesa curves. Nonetheless, it is

clear from Fig. A10 how the changes in the Paas , Pesa curves could result

in the shifts in the FLAR peak positions.
APPENDIX B. SENSITIVITY ANALYSIS

The complex interactions of the model parameters make it difficult to assess

how changes in their values alter model output. To examine this issue, we

performed a local first-order sensitivity analysis, in which each parameter is

varied alone while the others remain fixed at their u0 values. For each

parameter, we first varied the parameter to values less and greater than

the parameter’s u0 value at three activity ([Ca2þ]) levels, finding value

bounds for the parameter for which the total mean deviation about all three

curves was exactly 10% (Fig. B11).

We then plotted the total range of each parameter in Fig. B11 in

increasing order (Fig. B12). The parameters clearly fell into three groups.

The first (d10,ref to ract) were eight parameters to which model output was

highly sensitive. The second (zact to er) was a group to which model output

was moderately sensitive. The third was a group to which the model was

largely insensitive (ZS1 to ~Ffalse). The highly sensitive parameters include

d10,ref, ‘act, rmbb, ‘mbb, and ract; all geometric constraints, with the model be-

ing most sensitive to d10,ref. The sensitivity to these geometric parameters is

presumably due to the effective electrostatic potential (black line in Fig. 4)

decaying in essence exponentially with distance. This conclusion is further

supported by one of the remaining sensitive parameters being RZS1
, the

charge location on the myosin head, which would also strongly affect

myosin head response to changes in the electric field between the actin

and myosin filaments. In the insensitive group, it is notable that ~Ffalse has

extremely little effect on model output, further supporting the arguments



TABLEB1 Comparison of residuals with boundaries from Table 4 and optimizationwith non-sensitive parameters fixed, cf. Fig. B12

Dataset Balnave Brown deBeer deBrito Gordon Guschl (a) Guschl (b) Morgan Roszek Stephenson Stienen Zuurbier

103, ~LSE Table 4 0.111 0.77 0.707 0.527 0.819 2.95 1.05 1.57 0.215 0.0831 0.245 0.883

103, ~LSE (fixed params) 0.161 2.09 4.06 1.06 1.33 5.91 1.19 1.77 0.811 0.148 0.316 4.35
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made in the introduction that myosin push-back is unlikely to play a sub-

stantial role in the genesis of the ascending arm.

These sensitivity considerations led us to re-perform the fits with the

optimizer being allowed to alter only the parameters in the most sensi-

tive group. In all cases, this increased fit error, in some cases as much

as fivefold (Table B1). However, the original errors were so small that,
FIGURE B. 11 Sensitivity analysis. The factors in front of the parameters ind

deviationDr from the three solid curves is exactly 10%. The metric, i.e., distance,R
‘hs

jrðxÞ � gðxÞj dx=R
‘hs

rðxÞ dx.
in most cases, the increased error was visually small. Fig. B13 shows

the best (Stephenson) and worst (Guschlbauer (a)) fits with the sensitive

parameters as the only free parameters (right column) and the fits with

all parameters free (left column). Not surprisingly, the two Stephenson

fits are essentially equally good. The Guschlbauer sensitive-only fit is

substantially worse than the all-fit case, with the fits to the most- and
icate the lower (dotted) and upper (dash-dotted) bound at which the mean

of a function g(x) from the solid curves r(x) was therefore defined byDr : ¼
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FIGURE B. 12 Range over which each parameter in Fig. B11 varied, arranged by increasing magnitude. Two clear breaks are apparent, one between ract
and Zact and the another between er and ZS1. We identified the first eight parameters as being sensitive parameters (see Table 3). Note that the bar for ~Ffalse is

truncated.
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second-most-activated data being identical, and the fits to the third- and

fourth-most-activated data having peaks in the wrong positions. These

data had substantial experimental difficulties, with the most-activated

data overlapping with the second- and third-most-activated data on the
FIGURE B. 13 Best (Stephenson, upper row) and worst (Guschlbauer (a), lo

results from the parameter fit with bounds from Table 4. Right column shows

for Guschlbauer (a), the fits to the two highest activation FLAR datasets were id

in color, go online.
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descending arm. It is thus perhaps not surprising that fitting these data

would be most sensitive to reductions in allowed parameter number.

The optimizer was nonetheless able to find calcium concentrations that

varied appropriately as muscle activity decreased, and peaks that had
wer row) examples of fixing non-sensitive parameters. Left column shows

the optimal fit after fixing the nine most insensitive parameters. Note that

entical (both found ~c ¼ 1). For residuals, see Table B1. To see this figure
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approximately the correct amplitude. This ability was true for all the fits

with relatively high errors in the sensitive-only fits (Brown, deBeer,

Zuurbier), confirming the importance of the parameters identified as sen-

sitive in Fig. B12.
APPENDIX C. THE ELECTROSTATIC
PARAMETERS

The parameter er markedly differed from the initial guess of 80, the relative

permittivity of water, reaching a minimum of 643 and the upper bound of

960 seven times (Table 4; Brown, deBeer, deBrito, Guschlbauer (a) and

(b), Morgan, Zuurbier). These high values are close to that found in a theo-

retical study (147) but are 12 times water’s relative permittivity, which is

commonly assumed to apply to the sarcoplasm (19, p.222). We are unaware

of direct measurements of cytoplasm er. High er values would either indi-

cate a highly viscous, net-like structure of molecular dipoles in muscle

cytoplasm or layers of dipoles (not only elementary charges as in Debye-

H€uckel theory) on or closely under the surfaces of the myosin head and

the filament backbones. The latter mechanism would provide ‘‘dipole

shielding’’ of central elementary charges in the head and the backbones

analogous to the ion-induced shielding in Debye-H€uckel theory. Optimized

values of ionic strength I reached both the lower (Brown) and upper (Gor-

don) bounds. However, these values are comparable with literature values of

0.1–0.2 mol/L (19, p.30). The Debye length corresponding to the optimized

er and I values varied from 3.59 nm for Guschlbauer (a) to 1.48 nm for Gor-

don, all well above textbook values of 0.7–0.8 nm (19, p.30). The number of

charges on the actin filament, myosin backbone, and head varied 2.1-fold

(Zact), 2.6-fold (Zmbb), and 9.4-fold (ZS1), respectively. The first two are

parameters to which model output was only moderately sensitive and the

last a parameter to which model output showed low sensitivity (Fig.

B12), which may also have contributed to these wide ranges. We are un-

aware of experimental data with which to compare these results.

We used Debye-H€uckel theory rather than ‘‘naked’’ coulomb interac-

tion because of a sophisticated experiment in which recognition distance

and unbinding force between a single myosin molecule and an activated

actin filament were determined (98). Because this experiment contained

near-physiological boundary conditions and the data were well explained

by Debye-H€uckel theory alone, we did not consider other particle-particle

interactions (e.g., van der Waals forces, Brownian motion, Casimir forces,

Donnan potential) (66,148–150). In this approach, the electrostatic poten-

tial energy functions between two charges qi and qj, with charge numbers

Zi and Zj , respectively, must be carefully chosen. Following original

Debye-H€uckel theory (151), Nakajima et al. (1997) (98) used point

charges and assumed ionic shielding by the surrounding solution. The

potential energy of the central charge therefore did not decrease with

the first power of the distance between the charges, but with a dominating

superposed negative exponential term. In our work, we assumed the

charges were homogeneously distributed along an actin filament backbone

of finite cylinder shape (100). Table C1 summarizes the coulomb and orig-

inal and two refined Debye-H€uckel potential energy functions, each

including the factor A :¼ jZact,ZS1j,e20
4,p,e0,er

(unit: N , m2) representing a gener-

alized coulomb constant.

Based on inferred (98) values of attraction force (2.12 pN) and distance

(5.3 nm) between the surfaces of a single myosin molecule and an activated

actin filament, Nakajima et al. (1997) determined Az 590 pN , nm2. Note

that the ‘‘recognition force’’ value of 2.12 pN lay below the uncertainty

threshold of their measuring device (3 pN). In calculating the number of

involved charges, they omitted a factor of 4 , p (confirmed by personal

communication with T. Ando), therefore calculating jZact,Zmbbjz16:3

(98, p.181) instead of the correct value jZact,Zmbbjz205. Calculations

were made assuming Iz0:05 mol/L, er ¼ 80, and T ¼ 298 K, yielding a

Debye length of lz1:36 nm. They further calculated a ‘‘recognition

distance’’ (similar to the Bjerrum length) from the energy condition

JDðdÞ ¼ � 1
2
,kB,T, which yielded a recognition distance and force of
5.4 nm and 1.9 pN, respectively. An unbinding (yank-off) force of the

myosin molecule was measured to be approximately 15 pN, which, using

the original Debye-H€uckel theory, would correspond to a charge distance

of 3.3 nm (see Fig. C14, right). The unbinding force was similar to prior

measurements (152), while the charge distance was shorter than the actin

radius.

Using the directly measured Nakajima et al. (1997) unbinding force of

15 pN and applying the refined Debye-H€uckel formulation with the shield-

ing charges (on actin) distributed on a spherical surface, we can set up a

three-parameter equation system to estimate the actin radius ract, the sur-

face-to-surface distance bd jump between actin and myosin head at ‘‘jump-

in,’’ and the constant A:

FDHsph

�
ract þ bd jump

	 ¼

A ,
exp

�� bd jump



l
	
,
�
lþ ract þ bd jump

	
ðlþ ractÞ ,

�
ract þ bd jump

	2
¼ �

6:3 , 10� 9 m � bd jump

	
, 2:09 , 10� 3N m� 1

(C.1a)

1 � 12
FDHsphðractÞ ¼ A ,
r2act

¼ 15 , 10 N (C.1b)

F
�
r þ bd 	 �

l
�

DHsph act jump

d

dd
FDHsph

�
ract þ bd jump

	z � l , 1 �
ract þ bd jump

¼ bd jump � 6:3 , 10� 9 m :

(C.1c)

Numerically solving system (C.1) yields ract z 5.51 nm, bd jumpz6:27

nm, and Az456 pN , nm2. Our re-calculation of Nakajima et al. parameter

values thus strengthens their conclusion favoring a Debye-H€uckel potential

as a physical model for explaining actin-myosin attachment. In particular,

the value ract z 5.5 nm being the revised prediction of the lower boundary

of the myosin head charges to approach actin is close to the actin filament

radii predicted (Table 4) from our fits to FLARs.

We now consider the effects on the potential energy function of altering

er or I. For this, we compare our optimally fitted model F parameter predic-

tions based on the cylinder-based version of the Debye-H€uckel potential

with the other three electrostatic potential formulations shown in

Table C1. Coulomb potential and force both decrease with increasing er,

if properties of a surrounding solvent, i.e., ionic strength I, are not taken

into account. Alternatively, two opposite effects occur for Debye-H€uckel

potential (and force): with increasing er, the pre-factor A is diminished,

but the Debye length l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0,er,kB,T

2,103,NA,e20,I

q
is increased, resulting in a gener-

ally weaker potential (and force) that in turn penetrates further into the

sarcoplasm. With increasing I, only l decreases, resulting in stronger

shielding of the head and backbone charges, and a steeper decrease of po-

tential (and force). Fig. C14 compares alterations in er and I on the potential

energy and force of a single myosin head with a total charge ofþ5e0 located

next to a part of the actin filament with ract ¼ 5.5 nm, length ‘c ¼ 11 nm

(approximately two monomers), and a total of 40 negative elementary

charges (�e0). Two solvent permittivities were considered: 1) that of water,

er ¼ 80, resulting in Az577,10� 30 N , m2; and 2) the mean of our opti-

mized (Table 4) values, er z 800, resulting in A z 577 , 10�31 N , m2.

For er ¼ 80, two ionic strengths were used: 1) I ¼ 0.05 as in (98), resulting

in a Debye length of l z 1.4 nm; and 2) I ¼ 0.17, as assumed for in vivo

muscle (97), resulting in a Debye length of l z 0.76 nm. Fig. C14 shows

the potential energies (left) and forces (right) under these conditions. While
Biophysical Journal 121, 1823–1855, May 17, 2022 1849



TABLE C1 Possible formulations of electrostatic potential energy functions assuming point charges (coulomb and Debye-H€uckel)
or charges homogeneously distributed on surfaces (sphere or cylinder with radius ract)

Formulation Coulomb Debye-H€uckel/Nakajima Sphere (radius ract) Cylinder (radius ract, length ‘c)

Potential

J [J]
JCðdÞ ¼ � A

d
JDHðdÞ ¼ � A,

expð� d=lÞ
d

JDHsphðdÞ ¼ � A,
expð� ðd � ractÞ=lÞ

ð1þ ract=lÞ,d JDHcylðdÞ¼ � A,
2,l,K0ðd=lÞ

ract,‘c,K1ðract=lÞ
Force F [N]

FCðdÞ ¼ A

d2
FDHðdÞ ¼ A,

expð� d=lÞ,ðlþ dÞ
l,d2

FDHsphðdÞ ¼
A,

expð� ðd � ractÞ=lÞ,ðlþ dÞ
ðlþ ractÞ,d2

FDHcylðdÞ ¼ A,
2,K1ðd=lÞ

ract,‘c,K1ðract=lÞ

Regarding the forces, we note that, for equal er and I values, FCðractÞ ¼ FDHsphðractÞ ¼ FDHcylðractÞ ¼ A,r� 2
act , where the latter equation requires ‘c ¼ 2,

ract (as chosen here).
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coulomb and Debye-H€uckel potential energy (and force) asymptotically

start from infinity, the spherical and cylindrical potential (and force) were

bound to the finite extent of the hypothetical actin filament. Under similar

physical conditions, the cylinder and sphere potentials lie between the

coulomb and the Debye-H€uckel potentials. The recognition distance of ap-

prox. 5.4 nm, corresponding in Nakajima et al. (1997) to the energy of 1
2
,

kB,T, agrees well with the assumed actin radius.

In interpreting these results, it is important to note that distance has

different meanings in the original Debye-H€uckel model (as applied by Na-

kajima et al. (1997)) and when modeling a sphere or cylinder with charges

distributed on the surface, in which distances d from the origin (d ¼ 0) are

offset by ract. ract is the distance from the origin (the center of the actin fila-

ment) below which the attracted (myosin head) charges cannot move closer

(the head can only ‘‘feel’’ the potential at d > ract). Alternatively, in (98),

d was treated as in the original Debye-H€uckel formulation, in which dis-

tance is measured from a singularity in the origin where the central (actin)

charge is assumed to be located. Unfortunately, in (98), there seems to be an

inconsistency between the meaning of d in their analysis of the experi-

mental data (in which d¼ 0 represents actin-head contact) and in their theo-

retical Debye-H€uckel analysis (98, Eq. 2). Regardless, using our corrected

re-calculation, for a sphere charged at its surface, the jump-in distance is

6.27 nm, away from the sphere/actin surface, compared with about

5.3 . 5.4 nm from the origin in (98) (see Fig. C14). Taken together, this
FIGURE C. 14 Electrostatic potential (left) and force (right) resulting from dif

conditions (solid, dashed, dotted). Experimental conditions as in (98), er ¼ 80 a

increased ionic strength, respectively. The solid blue lines represent the corresp

Reference values of the potential (gray dotted line) and force (gray dotted and

ract (red dotted line) marks the start of the cylinder and sphere formulations. To

1850 Biophysical Journal 121, 1823–1855, May 17, 2022
re-analysis of Nakajima et al. (1997) shows that our fitting data are consis-

tent with the experimental data in (98), and support their, and our, use of the

Debye-H€uckel formulation to model myosin head attachment to active sites

on actin.

Permittivity er, ionic strength I, and the numbers of the central charges

(on actin) and the attracted charges (on the myosin head) contribute to

the extended Debye-H€uckel cylinder formulation that is a basis of our

FLAR model F (Eq. (3)). Unfortunately, the values of these parameters

are presently not well known. Given their importance to our model, more

evidence that electrostatics-based models of myosin head attachment to

actin are sufficient to predict head binding is very important. Repeating

the pioneering experiments of Nakajima et al. (1997) with the modern tech-

nology could provide such data. For example, repeating them with a 10-fold

force resolution enhancement (by use of a more sensitive cantilever sensor)

would allow the FLR of the almost certainly Debye-H€uckel-like actin-head

attraction potential to be followed over a much longer distance along the

head approach to actin, as opposed to detecting only the jump-in condition

as was possible in 1997. Present techniques may also allow better fixation of

the end of the actin filament, removing the need to include a deformation

degree of freedom of actin ‘‘lift’’ in the analyses. Independent of technolog-

ical improvements, simply repeating the experiments with saline of varying

the ionic strength is clearly possible, and would greatly help characterize

the nature of the attraction between actin and myosin head.
ferent model approaches (Table C1; black, blue, lilac, green) under different

nd I ¼ 0.05 mol/L, are used as reference against increased permittivity and

onding reference case Debye-H€uckel proposed by Nakajima et al. (1997).

dash-dotted line) taken from (98) given for orientation. The actin radius

see this figure in color, go online.
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APPENDIX D. PARAMETER CORRELATIONS

The model has 16 free parameters, many of which interact, often in non-

linear ways, in creating model output. Some parameters may therefore be

correlated, either due to the mathematical structure of the model or physical

or biological properties of the real system. Fig. D15 shows a correlation ma-

trix among all 17 parameters for which numerical entries were made. How-

ever, only 16 of these were free, as temperature was entered as a fixed value

for each experiment. We identify both correlations with p % 0.05 (open

white circles) and %0.01 (solid white circles). Given the large number of

comparisons made, we describe only correlations with p % 0.01.

Several model parameters were strongly correlated: positive correla-

tions between lact and ract, ract and zact, and rmbb and I and negative corre-

lations between rmbb and 2 and RZS1
and er. ract is well maintained across

muscles. Thus the lact and ract, as well as ract and zact, correlations are un-

likely due to these parameters co-varying in real muscle, and instead

likely arise from the mathematical structure of the model. It is similarly

doubtful that muscle cytoplasm ionic strength (I) or dielectric constant

(er) show large across-species variation, particularly in vertebrates, from

which most of the experimental data were obtained. However, they may

well do so because of varying experimental conditions. The rmbb and I,

and RZS1
and er, correlations therefore also likely arise from model-spe-

cific character of the electrostatic interactions between the parameter-

associated structures. The highly successful performance of the simple

model (section ‘‘a simpler descriptive model that fits as well as the com-

plete model’’) is consistent with this conclusion. The myosin backbone

radius rmbb and the fraction 1=2 of total cross-bridges needed to be formed

to produce maximum muscle force could well be evolutionarily selected.

However, all the data used here are from vertebrate muscles in which rmbb

shows small, if any, variation. In the present dataset, this correlation thus

also likely arises not from a biological correlation but the structure of the

mathematical model.

Myosin backbone radius (rmbb) and other myosin filament and half-

sarcomere properties show much greater variation in some invertebrates,

particularly molluscs (90). Invertebrates’ muscles may also show greater

variation in I and er, given that some invertebrates do not maintain hemo-
FIGURE D15 Correlation coefficients between each pair of optimized

model parameters, see Table 4. White closed and open circles are a ¼
0.01 and a ¼ 0.05 deviations of the correlation coefficient r from zero,

respectively. The test statistic was calculated as t ¼ r,
ffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffi
1� r2

p (153) and

compared against the corresponding quantile of the Student’s t-distribution

with n� 2 degrees of freedom (two-sided test), where n¼ 12 is the number

of available datasets.
lymph ion concentrations within the narrow ranges common in vertebrates.

It would thus be of interest to examine the correlations between these model

parameters in muscles with such enlarged biological parameter ranges.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.04.019.
AUTHOR CONTRIBUTIONS

The manuscript is a joint work of all three authors, who contributed as fol-

lows: initial idea for the study, R.R., M.G., and S.L.H.; model development,

R.R. and M.G.; calculations and coding, R.R.; sensitivity analysis, R.R.,

M.G., and S.L.H.; data collection, R.R.; main writing, R.R.; editing,

M.G. and S.L.H.; figures, R.R., with feedback/suggestions from M.G. and

S.L.H.; discussion, R.R., M.G., and S.L.H..
DECLARATION OF INTERESTS

The authors declare no competing interests.
ACKNOWLEDGMENTS

The authors thank Toshio Ando (Kanazawa University, Japan) and his co-

authors for providing the inspiring work on acto-myosin interactions and

for his quick and helpful reply regarding a calculation error in their

25-year-old paper, see Appendix C.

Funding. M.G. was supported by Deutsche Forschungsgemeinschaft (DFG:

SCHM2392/5-2) granted to Syn Schmitt (Universit€at Stuttgart).
REFERENCES

1. Heidenhain, R. 1864. Mechanische Leistung, W€armeentwicklung und
Stoffumsatz bei der Muskelth€atigkeit (German Text). Breitkopf und
H€artel.

2. Beck, O. 1922. Die gesamte Kraftkurve des tetanisierten Froschgastroc-
nemius und ihr physiologisch ausgenutzter Anteil (German Text).
Pfl€ugers Arch. 193:495–526. https://doi.org/10.1007/bf02331607.

3. Blix, M. 1894. Die L€ange und die Spannung des Muskels IV (German
Text). Skand. Arch. Physiol. 5:173–206. https://doi.org/10.1111/j.
1748-1716.1894.tb00199.x.

4. Ramsey, R. W., and S. F. Street. 1940. The isometric length-tension
diagram of isolated skeletal muscle fibers of the frog. J. Cell Comp.
Physiol. 15:11–34. https://doi.org/10.1002/jcp.1030150103.

5. Gordon, A. M., A. F. Huxley, and F. J. Julian. 1966. The variation in iso-
metric tensionwith sarcomere length invertebratemusclefibres. J. Phys-
iol. 184:170–192. https://doi.org/10.1113/jphysiol.1966.sp007909.

6. Herzog, W., S. Kamal, and H. Clarke. 1992. Myofilament lengths
of cat skeletal muscle: theoretical considerations and functional impli-
cations. J. Biomech. 25:945–948. https://doi.org/10.1016/0021-
9290(92)90235-s.

7. Vaz, M. A., C. de la Rocha Freitas, ., W. Herzog. 2012. The force-
length relationship of the cat soleus muscle. Muscles Ligaments
Tendons J. 2:79–84.

8. Rack, P. M. H., and D. R. Westbury. 1969. The effects of length and
stimulus rate on tension in the isometric cat soleus muscle. J. Physiol.
204:443–460. https://doi.org/10.1113/jphysiol.1969.sp008923.

9. Balnave, C. D., and D. G. Allen. 1996. The effect of muscle length on
intracellular calcium and force in single fibres from mouse skeletal
Biophysical Journal 121, 1823–1855, May 17, 2022 1851

https://doi.org/10.1016/j.bpj.2022.04.019
https://doi.org/10.1016/j.bpj.2022.04.019
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref1
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref1
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref1
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref1
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref1
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref1
https://doi.org/10.1007/bf02331607
https://doi.org/10.1111/j.1748-1716.1894.tb00199.x
https://doi.org/10.1111/j.1748-1716.1894.tb00199.x
https://doi.org/10.1002/jcp.1030150103
https://doi.org/10.1113/jphysiol.1966.sp007909
https://doi.org/10.1016/0021-9290(92)90235-s
https://doi.org/10.1016/0021-9290(92)90235-s
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref7
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref7
http://refhub.elsevier.com/S0006-3495(22)00318-6/sref7
https://doi.org/10.1113/jphysiol.1969.sp008923


Rockenfeller et al.
muscle. J. Physiol. 492:705–713. https://doi.org/10.1113/jphysiol.
1996.sp021339.

10. Brown, I. E., E. J. Cheng, and G. E. Loeb. 1999. Measured and
modeled properties of mammalian skeletal muscle. II. The effects
of stimulus frequency on force-length and force-velocity relation-
ships. J. Muscle Res. Cell Motil. 20:627–643. https://doi.org/10.
1023/a:1005585030764.

11. de Beer, E. L., R. L. F. Grundeman, ., P. Schiereck. 1988. Effect of
sarcomere length and filament lattice spacing on force development in
skinned cardiac and skeletal muscle preparations from the rabbit.
Basic Res. Cardiol. 83:410–423. https://doi.org/10.1007/bf02005827.

12. de Brito Fontana, H., and W. Herzog. 2016. Vastus lateralis maximum
force-generating potential occurs at optimal fascicle length regardless
of activation level. Eur. J. Appl. Physiol. 116:1267–1277. https://doi.
org/10.1007/s00421-016-3381-3.

13. Guschlbauer, C., H. Scharstein, and A. B€uschges. 2007. The extensor
tibiae muscle of the stick insect: biomechanical properties of an insect
walking leg muscle. J. Exp. Biol. 210:1092–1108. https://doi.org/10.
1242/jeb.02729.

14. Morgan, D. L., N. P. Whitehead,., U. Proske. 2000. Tension changes
in the cat soleus muscle following slow stretch or shortening of the
contracting muscle. J. Physiol. 522:503–513. https://doi.org/10.
1111/j.1469-7793.2000.t01-2-00503.x.

15. Roszek, B., G. C. Baan, and P. A. Huijing. 1994. Decreasing stimula-
tion frequency-dependent length-force characteristics of rat muscle.
J. Appl. Physiol. 77:2115–2124. https://doi.org/10.1152/jappl.1994.
77.5.2115.

16. Stephenson, D. G., and I. R. Wendt. 1984. Length dependence of
changes in sarcoplasmic calcium concentration and myofibrillar cal-
cium sensitivity in striated muscle fibres. J. Muscle Res. Cell Motil.
5:243–272. https://doi.org/10.1007/bf00713107.

17. Stienen, G. J. M., T. Blang�e, and B. W. Treijtel. 1985. Tension devel-
opment and calcium sensitivity in skinned muscle fibres of the frog.
Eur. J. Physiol. 405:19–23. https://doi.org/10.1007/bf00591092.

18. Zuurbier, C. J., M. B. E. Lee-de Groot,., P. A. Huijing. 1998. Effects
of in vivo-like activation frequency on the length-dependent force
generation of skeletal muscle fibre bundles. Eur. J. Appl. Physiol.
77:503–510. https://doi.org/10.1007/s004210050367.

19. Smith, D. A. 2018. The Sliding-Filament Theory of Muscle Contrac-
tion1. Springer Switzerland.
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