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Abstract

Objective: Heart failure (HF) can be difficult to diagnose by physical examination alone. We 

examined whether wristband technologies may facilitate more accurate bedside testing.

Approach: We studied on a cohort of 97 monitored in-patients and performed a cross-sectional 

analysis to predict HF with data from the wearable and other clinically available data. We recorded 

photoplethysmography (PPG) and accelerometry data using the wearable at 128 samples per 

second for 5 minutes. HF diagnosis was ascertained via chart review. We extracted four features 

of beat-to-beat variability and signal quality, and used them as inputs to a machine learning 

classification algorithm.

Main Results: The median [interquartile] age was 60 [51 68] years, 65% were men, and 

54% had heart failure; in addition, 30% had acutely decompensated HF. The best 10-fold 

cross-validated testing performance for the diagnosis of HF was achieved using a support vector 

machine. The waveform-based features alone achieved a pooled test area under the curve (AUC) 

of 0.80; when a high-sensitivity cut-point (90%) was chosen, the specificity was 50%. When 

adding demographics, medical history, and vital signs, the AUC improved to 0.87, and specificity 

improved to 72% (90% sensitivity).

Corresponding author: Amit Shah, MD, MSCR, Assistant Professor, Department of Epidemiology, Assistant Professor, Department 
of Medicine, Division of Cardiology, Staff Physician, Division of Cardiology, Atlanta VA Medical Center, Emory University, 1518 
Clifton Road NE, Room 3053, Atlanta, GA 30322, (T) 404-727-8712, (C) 404-647-4351, (F) 404-727-8737, ajshah3@emory.edu. 

HHS Public Access
Author manuscript
Physiol Meas. Author manuscript; available in PMC 2022 June 15.

Published in final edited form as:
Physiol Meas. ; 41(4): 044001. doi:10.1088/1361-6579/ab7f93.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Significance: In a cohort of monitored in-patients, we were able to build an HF classifier from 

data gathered on a wristband wearable. To our knowledge, this is the first study to demonstrate 

an algorithm using wristband technology to classify HF patients. This supports the use of such a 

device as an adjunct tool in bedside diagnostic evaluation and risk stratification.
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Introduction

Heart failure (HF) is broadly defined as a complex clinical syndrome in which the heart’s 

ability to fill or eject blood is impaired. There are an estimated 38 million people with 

HF worldwide [1], and the affected population is growing steadily. Although in many 

cases HF can cause symptoms such as shortness of breath and leg swelling, other times 

the symptoms can be nonspecific and difficult to diagnose without an echocardiogram, 

which is expensive and can have limited availability (for example, in primary care clinics 

and developing countries). Other conditions such as anemia, depression, emphysema, and 

chronic venous insufficiency can have similar clinical presentations to HF. Therefore, the 

need to have accurate bedside diagnostic tools is critically important when diagnosing and 

treating patients with symptoms suggestive of HF. Physical examination is helpful, but can 

vary by provider and offer limited sensitivity [2].

Wearables have the potential to measure physiology in a way that is potentially 

more accurate, objective, and repeatable than the clinical exam in diagnosing HF. A 

photoplethysmography (PPG) signal provides a wealth of information, including heart rate 

and rhythm, vascular dynamics, and oxygenation [3]. One of the most notable differences 

between HF and controls is impaired autonomic function and increased propensity for 

arrhythmia. Generally, HF patients have less heart rate variability, higher overall heart 

rates, and increased arrhythmia risk [4]. In this study, we seek to examine the ability 

of heart rate variability and entropy (as an indirect arrhythmia measure) derived from a 

wristband wearable with PPG sensor to classify HF in a pilot cohort of inpatient subjects. 

We hypothesize that such metrics, with or without clinical characteristics, can aid in the 

classification of HF.

Methods

Description of cohort:

Subjects were recruited randomly from an inpatient sample undergoing bedside ECG 

monitoring at Emory University Hospital, Emory Midtown Hospital, and Grady Memorial 

Hospital from October 2015 until March 2016. Most of these subjects were admitted as 

inpatients for coronary artery disease, heart failure, or arrhythmia management, while a 

minority of patients were admitted for non-cardiac reasons, including pulmonary disease and 

infection. Because an additional aim of the study was AF detection, those with AF were 

oversampled with approximately 50% prevalence [5]. Otherwise, recruitment was blind to 

HF status and comorbidities. ECG rhythms were reviewed by 3 physicians (A.S., O.L., and 
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N.I.) to adjudicate AF vs. non-AF with 12-lead ECG’s that were scanned in the medical 

records. The study was IRB approved and all subjects underwent informed consent.

Description of data collection device and acquisition of data:

The Samsung Simband was used for capture of reflective PPG and 3-axis accelerometry at 

128 Hz each. Subjects were instructed to sit still, and they wore the device for 5 minutes 

while resting in a chair. Approximately 3 minutes into the monitoring period, they were 

asked to do 5 Valsalva maneuvers over 1 minute. This was done in order to evaluate the 

baroreflex and other pressure-related mechanisms of the heart.

Description of HF adjudication:

Chronic HF was based on physician-adjudicated chart review by a single individual (N.I.). 

HF was classified based on whether or not the patient had any history of heart failure 

with reduced (HFrEF) or preserved ejection fraction (HFpEF). This was based on clinical 

notes, echocardiographic data, and cardiac catheterization data. If ejection fraction was 

found to be less than or equal to 40% on echocardiogram or left ventriculogram, then 

the HF was classified as HFrEF. Relevant clinical history included previous admission of 

acutely decompensated heart failure and/or current symptoms of heart failure (e.g. dyspnea 

and orthopnea) with corresponding physical examination (rales, increased jugular venous 

pressure, and edema) and elevated brain natriuretic peptide levels.

In addition to HF, a detailed chart review was performed to ascertain clinical characteristics 

that could be risk factors with HF such as age, diabetes, hypertension, coronary artery 

disease, and others. ECG at the time of examination was evaluated and adjudicated for 

AF independently by 2 clinicians (N.I. and A.S.). Disagreements were discussed and a 

consensus was obtained in each applicable case.

Description of Data Analysis

Waveform Preprocessing: We first performed outlier rejection and amplitude 

normalization. We then standardized the PPG signal data to have a mean amplitude of 

zero, and cropped the 10% highest amplitude waveforms, including below the lower 5% 

(most negative waveforms) and above the upper 95%. We then performed bandpass filtering 

to remove frequencies outside of the range 0.2 – 10 Hz with a FIR filter of order 41. PPG 

pulse onset detection was performed using the slope sum function approach (see Fig. 2), and 

the signal quality index was assessed using the Hjorth’s purity quality metric (purity-SQI: 

0=random noise, 1=sinusoidal signal) [6, 7]. Additionally, accelerometer data was evaluated 

as part of the signal quality assessment [8].

Feature measurement: The entire 5-minute interval was analyzed. Beat-to-beat intervals 

were assessed from the PPG signal, which allowed for the calculation of heart rate 

variability (HRV). Such metrics have been found to associate strongly with heart failure due 

to generalized sympathetic activation [9]. We then calculated several standard HRV metrics, 

including standard deviation of the RR intervals (RR-rSTD), as well as sample entropy 

(SampEn). PPG signal quality index (Purity-SQI) and standard deviation of accelerometry 

(ACC-STD) were added feature of the model as well, given that a significant amount of data 
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was noisy. RR-rSTD is considered as an important variable for two reasons; in heart failure, 

the value is reduced, while in AF, it is elevated. Because AF and HF are comorbid, both low 

and high extremes in RR-rSTD are important to consider for the purposes of classifying HF.

Technical study design: Our goal was to build an accurate HF classifier, and to 

assess the contribution of wearable-based features as well as clinical variables to the 

overall classification performance. Therefore, we considered four groups of variables and 

constructed four separate models, based on wearable-based features (Model 1: Purity-SQI, 

SampEn, RR-rSTD, ACC-STD), socio-demographics (Model 2: age, race, and gender), 

medical history (Model 3: COPD, hypertension, PVD, creatinine), and 4) physical exam 

(Model 4: BMI, SBP, DBP, HR, SPO2). Additionally, in Model 5, we looked at the 

combined predictive performance of all clinical variables from Models 2, 3, and 4. Finally, 

we looked at the combined performance of the wearable-based features and the clinical 

covariates (Model 6) to evaluate the maximum accuracy when assessing all data that may be 

available at the bedside.

Algorithm Development: We designed six linear support vector machines (SVMs) 

corresponding to each of the six models using MATLAB [10] Statistics and Machine 

Learning Toolbox™. This was chosen because of the small sample size [11]. Further feature 

selection was performed using Bayesian Optimization technique for global optimization of 

model hyper-parameters [12].

Statistical Methods: For all continuous variables, we report medians (25-percentile, 

75-percentile) and utilize a two-sided Wilcoxon ranksum test when comparing two samples. 

For binary features we report percentages and utilize a two-sided Chi-square test to assess 

differences in proportions between two samples. All classification results are based on 

10-fold bootstrapping cross-validation; for each of the 10 iterations [13], we selected a 

random 70% of the data for training, and 30% for testing. We then report the mean (of 

the 10 iterations) area under receiver operating curves (AUROC) for the main outcome. In 

addition, we report the specificity, accuracy, and positive predictive value (PPV) at a fixed 

90% sensitivity level. This was chosen with the likely clinical application aimed at ruling out 

HF, rather than ruling it in. We combined all the testing set predictions (probabilities of HF) 

across all ten folds to calculate a single pooled AUC [14].

A sensitivity analysis was also performed to examine for possible differences in model 

performance amongst various subgroups. For this purpose, a single model was developed on 

the entire sample to develop a score based on the sum of the products of the beta coefficient 

and predictors. The score was then evaluated based on its ability to detect heart failure with 

reduced ejection fraction vs. preserved ejection fraction. Furthermore, it was tested amongst 

those with and without AF.

Results

Baseline Characteristics:

We evaluated 97 subjects for this study, including 54 HF patients (56%). Also, 29 (30%) 

were admitted for acutely decompensated HF; the other reasons for admission were 
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heterogenous, including infection, pulmonary disease, and ischemic heart disease. The 

median ([25-percentile, 75-percentile]) age of the cohort was 60 [51 68] years; 65% were 

men, and 76% were African American. Approximately 48% of the subject had a history of 

AF. The HF patients had a higher prevalence of AF (25.6% vs. 66.7%; p<0.01) and COPD 

(7.0% vs. 37.0%; p<0.01). Moreover, both creatinine level (1.0 [0.8 1.2] vs. 1.32 [1.0 2.2]; 

p<0.01) and heart rate (70 [63 84] vs. 84 [71 94]; p<0.01) were elevated in the HF patients 

(see Table 1 for the baseline characteristics of the patient population). When comparing 

HFrEF and HFpEF, no significant differences were found between groups.

Table 2 lists the features in order of importance, and table 3 provides a summary of 

the performance of all six models. Notably, the wearable-based features alone (Model 1) 

achieved an AUC of 0.80, with an overall accuracy of 74%. The final features included in 

this model, after variable selection, included the Purity-SQI, SampEn, RR-rSTD, ACC-STD 

(4 features total). In comparison, all clinical variables combined (Model 5) yielded a testing 

AUC of 0.81 with an overall accuracy of 0.75. After variable selection, our combined model 

(Model 6) included 14 variables, including Purity-SQI, SampEn, RR-rSTD, ACC-STD, age, 

race, history of AF, chronic obstructive pulmonary disease, hypertension, peripheral vascular 

disease, serum creatinine, systolic blood pressure, diastolic blood pressure, and heart rate. 

This model achieved a testing AUC of 0.87, and when choosing a cut point with a sensitivity 

of 90%, the specificity was 72%, and accuracy was 82% (see Figure 3).

A sensitivity analysis was then performed to evaluate the model performance amongst 

different groups of heart failure. Heart failure with reduced ejection fraction (HFrEF) was 

present in 33% of subjects, while heart failure with preserved ejection fraction (HFpEF) 

was present in 23% of subjects. The AUC for the model in HFrEF (vs. no HF) was 0.92, 

and for HFpEF (vs. no HF) was 0.85. When the difference between AUCs was evaluated 

(using SAS 9.4), no significant difference was found, with p=0.42. Acutely decompensated 

HF (AUC 0.85) was discriminated from controls to a greater degree than chronic stable HF 

(AUC 0.77), although this difference was not statistically significant (p=0.29). In addition, 

a trend for higher AUC was found in those without AF (0.79) vs. AF (0.66), although the 

difference was not statistically significant (p=0.44).

Discussion

To our knowledge, this is the first study that has attempted to classify individuals with 

HF from physiologic data recorded from a wristband monitor. Our findings, which include 

an accuracy of 74% from the wristband alone, suggest that such a device may be useful 

in aiding in the diagnosis of HF at the bedside, especially when combined with socio-

demographics, clinical history, and physical examination: when combined with wristband 

data, accuracy increased to 82%. These findings are of particular interest when considering 

the work-up of dyspnea in an outpatient or emergency room setting, when limited time and 

resources are available for a full echocardiogram. In many cases, a chart review (or medical 

history) and wristband wearable may be sufficient to utilize the algorithm and risk stratify 

for HF. The actual use of this technology in diagnosing and treating HF prospectively, 

however, is unknown.
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Our algorithm relies upon well-known characteristics of HF; namely, because of decreased 

autonomic flexibility and increased sympathovagal balance, HRV and complexity are 

generally suppressed in HF, and therefore the predictive value of the metrics from the 

wristband are physiologically sound. Addition of clinical variables enriches the algorithm 

by providing more context, and can be assessed at the bedside via clinical examination. 

A potential future clinical application therefore is a bedside tool consisting of a wristband 

monitor and tablet in which the clinical features can be entered into the model.

Wristband technologies with PPG sensing have been increasingly shown to offer important 

physiologic data. This includes approximations of cardiac output and arterial stiffness, for 

example [15, 16]. As such, we consider these findings an important proof of concept 

that may be further enhanced in the future with additional PPG-based features that reflect 

oxygen saturation and cardiac output. Other portable technologies to risk stratify for HF and 

predict readmission may serve as an important predicate when evaluating this technology 

in various clinical scenarios. This includes CardioMEMS [17], a wireless pulmonary 

artery pressure monitor; ReDS [18], a system for non-invasively measuring pulmonary 

congestion; smartphone applications [19], which correlate with HF severity by counting 

physical activity; impedance devices, which measure chest congestion, and others [20]. The 

technology described here is more portable and low burden than most other technologies 

discussed, although it remains to be seen how the accuracy may compare.

Our study is subject to limitations. The small sample size did not allow us to derive 

separate models for subcategories of HF based on ejection fraction or ischemic heart 

disease; furthermore, the role of age, sex, and race could not be evaluated. Conditions that 

mimic HF such as anemia and depression were not fully evaluated when considering model 

accuracy. AF was heavily oversampled in the cohort, and therefore the results should be 

evaluated with caution in populations with lower AF prevalence, given the association of AF 

with HF. The clinical context for the participants was heterogeneous, ranging from HF to 

infection; this may limit generalizability to particular groups. Data on precise volume status 

was not available; however, based on chart review we were able to at least ascertain which 

participants were admitted for acutely decompensated HF. When applying the model to a 

clinical setting in which a 90% sensitivity is required (because of the costs of missing a 

potentially life-threatening diagnosis), the algorithm from the wristband alone yields only a 

50% specificity; as such, it should only be applied to high pre-test probability settings and 

combined with clinical data to minimize the number of false positives. Alternatively, it may 

be considered as a screening tool in home settings or other screening programs.

In conclusion, we present an important proof-of-concept study that classifies chronic HF 

based on a limited number of features using PPG and accelerometry from a multisensor 

wristband. The results indicate that such a test may be a useful bedside diagnostic aid, 

although further testing is warranted to further develop and improve the performance of the 

algorithm in larger cohorts, as well as the study its potential clinical role in a prospective 

manner.
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Figure 1. 
Sample five minutes of PPG recording (top). We perform PPG and accelerometer-based 

signal quality assessment to select high signal quality (SQI) 30 second segments of the 

recording (middle). Movement, as reflected in the accelerometer (ACC) sensor magnitude 

(bottom) is often associated with degradation in PPG signal quality. Our ACC-based SQI 

metrics enables us to identify such high activity data segments.
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Figure 2. 
Examples of recorded PPG signals (panels b and c) and the corresponding ECG recording 

(panel a). The PPG signal in the middle panel has a higher signal quality as quantified by 

the Purity-SQI (or simply SQI). The slope sum function (SSF) based pulse onset detection 

algorithm enables identification of each pulse (*) when the SSF peak is above the pulse 

threshold (pulseThresh).
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Figure 3. 
Area under the receiver-operating characteristic (ROC) curve of all six HF classification 

models. Model 1: wearable features; Model 2: socio-demographics features; Model 3: 

patient’s medical history features; Model 4: physical exams features; Model 5, combined 

clinical features from Models 2, 3, and 4; and Model 6: combined wearable and clinical 

features.
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Table 1.

Baseline characteristics

Non-HF HF p

Sample size 43 54

Age 58 [51 68] 60 [52 68] 0.80

Race (White) 18.6% 20.4% 0.83

Race (African American) 79% 74% 0.56

Race (other) 2.4% 5.6% 0.4

Male 55.8% 72.2% 0.09

AF 25.6% 66.7% <0.01

COPD 7.0% 37.0% <0.01

Hypertension 70.0% 74.1% 0.64

PVD 2.3% 5.6% 0.42

Creatinine 1.0 [0.8 1.2] 1.32 [1.0 2.2] <0.01

BMI 27.7 [24.4 33.2] 31.3 [24.6 38.7] 0.18

SBP 128 [110 136] 117 [108 127] 0.06

DBP 72 [66 80] 73 [66 82] 0.91

HR 70 [63 84] 84 [71 94] <0.01

SpO2 98 [95 100] 98 [95 99] 0.27

For continuous variables, mean values are presented, followed by 95% confidence intervals in brackets.

Abbreviations: AF=atrial fibrillation, COPD=chronic obstructive pulmonary disease, PVD=peripheral vascular disease, BMI=body mass index, 
SBP=systolic blood pressure, DBP=diastolic blood pressure, HR=heart rate, SpO2=blood oxygen saturation level
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Table 2.

List of Features in Order of Importance

1. Photoplethysmogram Signal Quality Index (Purity-SQI)

2. Sample Entropy

3. Standard deviation of beat-to-beat intervals

4. Standard deviation of accelerometer amplitude

5. Heart rate

6. Systolic blood pressure

7. Creatinine

8. History of hypertension

9. Chronic Obstructive Pulmonary Disease

10. Peripheral Vascular Disease
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Table 3.

Performance summary of all six models

Model AUC ROC Test (Train) Specificity* Test (Train) Accuracy* Test (Train) PPV* Test (Train)

1 0.80 (0.80) 0.53 (0.50) 0.74 (0.72) 0.70 (0.69)

2 0.56 (0.59) 0.11 (0.18) 0.55 (0.58) 0.55 (0.58)

3 0.74 (0.70) 0.21 (0.22) 0.62 (0.60) 0.59 (0.59)

4 0.77 (0.76) 0.27 (0.27) 0.62 (0.62) 0.60 (0.61)

5 0.81 (0.88) 0.57 (0.71) 0.75 (0.82) 0.72 (0.80)

6 0.87 (0.90) 0.72 (0.81) 0.82 (0.86) 0.80 (0.86)

*
Model sensitivity was fixed at 0.90

Model 1: Purity-SQI, SampEn, RR-rSTD, ACC-STD from wristband

Model 2: Age, Race, and Gender

Model 3; chronic obstructive pulmonary disease, hypertension, peripheral vascular disease, and creatinine,

Model 4: body mass index, systolic blood pressure, diastolic blood pressure, heart rate, and oxygen saturation

Model 5: Models 2, 3, and 4 combined

Model 6: Model 1 + 5 combined
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