Skip to main content
. 2022 Jun 15;29(7):5525–5567. doi: 10.1007/s11831-022-09776-x

Table 4.

Performance comparison of recent prediction models on various Breast Cancer datasets. Classifiers with ’*’ represent the classifiers with the highest ACC scores in the respective paper

Work Ref. Classifier Performance metrics
ACC P R F1 S AUC
BreakHis Dataset
Han et al. [79] CSDCNN 0.93
Sudharshan et al. [212] MILCNN* 0.92
Shallu and Mehra [199] VGG 16 + LR 0.92 0.93 0.93 0.93 0.95
Jannesari et al. [105] ResNet V1 152 0.98 0.99 0.98
Gupta and Chawla [77] ResNet50+LR 0.93
Chattopadhyay et al. [38] DRDA-Net 0.98
BACH Dataset
Rakhlin et al. [172] LightGBM + CNN 0.87
Yang et al. [230] EMS-Net 0.91
Roy et al. [178] Self-designed (OPOD) 0.77 0.77 0.77 0.77
Roy et al. [178] Self-designed (APOD) 0.90 0.92 0.90 0.90
Sanyal et al. [189] Hybrid Ensemble (OPOD) 0.87 0.86 0.87 0.86 0.99
Sanyal et al. [189] Hybrid Ensemble (APOD) 0.95 0.95 0.95 0.95 0.98
Bhowal et al. [28] Choquet fuzzy integral and coalition game based classifier ensemble 0.95
Mics. Dataset
Yan et al. [228] Inception-V3* 0.91 0.87 0.89
Dey et al. [52] DenseNet-121 0.99 0.99 0.98 0.98