Skip to main content
. 2022 Jun 15;29(7):5525–5567. doi: 10.1007/s11831-022-09776-x

Table 9.

Performance comparison of some prediction models on Cleveland dataset

Work Ref. Classifier Performance metrics
ACC P R F1 S ERR
Single classifier based methods
Al-Milli [8] BPNN 0.92
Sonawane and Patil [208] BPNN 0.985 0.98 0.95 0.02
Gavhane et al. [64] MLP 0.91 0.89
Karayılan and Kılıç [113] BPNN 0.96 0.95 0.95
Ismaeel et al. [100] ELM-NN 0.87
Medhekar et al. [136] NB 0.90
Jabbar et al. [101] NB 0.86
Patel et al. [158] J48 0.15
Dwivedi [56] LR 0.85 0.85 0.89 0.81
Sen [194] SVM 0.84
Shao et al. [200] MARS-LR 0.84
Jayaraman and Sultana [106] PBAMNN 1.00 1.00 1.00
Gokulnath and Shantharajah [69] GA-SVM 0.88
Feshki and Shijani [60] PSO-FFBP 0.92 0.92 0.93
Harimoorthy and Thangavelu [81] Improved SVM 0.90 0.81 0.97 0.87 0.10
Ensemble based methods
Das et al. [48] Multi-NN 0.89
Miao et al. [138] Boosting 0.97 0.97 1.00 0.98 0.60 0.03
Mohan et al. [146] HRFLM 0.88 0.90 0.93 0.90 0.83 0.12
Maji and Arora [130] DT-NN 0.78 0.78 0.23
Amin et al. [14] Average voting 0.87