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Abstract: Beta-Amyloid Cleaving Enzyme1 (BACE1) is a monospecific enzyme for the key rate-
limiting step in the synthesis of beta-amyloid(Aβ) from cleavage of amyloid precursor protein (AP-
P), to form senile plaques and causes cognitive dysfunction in Alzheimer's disease (AD). Post-trans-
lation modifications of BACE1, such as acetylation, glycosylation, palmitoylation, phosphoryla-
tion, play a crucial role in the trafficking and maturation process of BACE1. The study of BACE1
is of great importance not only for understanding the formation of toxic Aβ but also for the develop-
ment of an effective therapeutic target for the treatment of AD. This paper review recent advances
in the studies about BACE1, with focuses being paid to the relationship of Aβ, BACE1 with post-
translational  regulation  of  BACE1.  In  addition,  we  specially  reviewed  studies  about  the  com-
pounds that can be used to affect post-translational regulation of BACE1 or regulate BACE1 in the
literature, which can be used for subsequent research on whether BACE1 is a post-translationally
modified drug.
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1. INTRODUCTION

Alzheimer's disease (AD) is an age-depended neurode-
generative disease with progressive cognitive deficits [1, 2],
with senile plaques, neurofibrillary tangles and synaptic loss
being characteristic neuropathological hallmarks [3]. We are
facing the paradoxical fact that the morbidity of AD increas-
es rapid and the effective therapeutic drugs remain inadequ-
ate. Regrettably, the pathogenesis is still unclear [4]. Mount-
ing evidences  suggest  that  extracellular  deposition of  beta
amyloid (Aβ) plays a leading role in the pathological mani-
festations of AD [5-7]. The β-secretase 1 (BACE1) is a ne-
cessary enzyme for the rate-limiting step when amyloid pre-
cursor protein (APP) is cut into Aβ. Unfortunately, the ap-
proaches  and  drugs  which  directly  inhibit  BACE1  have
failed in clinical studies because of side effects or inadequ-
ate  clinical  benefit  [8,  9].  Recent  research  has  shown that
neurotoxicity of Aβ is mediated by soluble oligomeric forms
rather  than insoluble  aggregates  [10,  11].  It  is  known that
post-translational modifications of BACE1, including glyco-
sylation, phosphorylation, palmitoylation and so on, are re-
quired to get the enzymatic function of cleaving APP [12],
which is an important process for the formation of soluble
oligomeric or insoluble aggregates of Aβ. This means drugs
that inhibit Aβ production by regulating the post-translation-
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al modifications of BACE1 is promising and feasible. Here
we  will  review  recent  advances  on  the  role  of  Aβ  in  AD
pathogenesis,  the  relationship  between  BACE1  and  AβO,
and the effects of post-translational modifications of BACE1
in Aβ production.

2. Aβ AND AD PATHOGENESIS

2.1. Origin and Function of Aβ

Aβ, a kind of 39-43 amino acids peptide, was firstly con-
sidered one of antimicrobial peptides (AMPs) which are re-
lated to defensive strategy of  lower organisms and human
immunity of humans [13]. AMPs are widely expressed and
abundantly  distributed  in  the  brain,  and  in  other  im-
mune-privileged tissues  where  actions  of  the  adaptive  im-
mune  system are  constrained.  Synthetic  Aβ  peptides  have
been found to exert antibacterial activity against Gram-nega-
tive and Gram-positive bacteria and the yeast Candida albi-
cans in vitro. And Aβ peptides have also been demonstrated
to  protect  against  meningitis  in  genetically  modified  mice
and  to  increase  survival  of  transgenic  C.  elegans  infected
with Candida in vivo [14], and this activity of Aβ is isofor-
m-specific, with Aβ42 showing greater potency than that of
Aβ40 [15]. In addition, AMP dysregulation has been shown
to result in host cytotoxicity, chronic inflammation and neu-
rodegenerative disease such as AD [16, 17].

It  is  well  known that  Aβ aggregates  are  the main con-
stituent  of senile  plaques in the  brains of AD  patients.  Aβ
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Fig. (1). Amyloid beta oligomers in Alzheimer’s disease pathogenesis. (A higher resolution / colour version of this figure is available in the
electronic copy of the article).

can be divided into soluble amyloid-β oligomers (AβO) and
fibrosis  Aβ  amyloid  on  the  basis  of  the  aggregation  state,
however, only the oligomerization of fibrosis Aβ is regarded
as neurotoxins and involved in synaptic dysfunction and cog-
nitive impairment in AD [18]. The soluble AβO was long ig-
nored until fairly recently, when studies found that amyloid
burdens were not correlated well with the premortem cogni-
tive  decline  on  AD patients,  instead,  the  median  levels  of
AβO  in  cerebrospinal  fluid  from  AD  patients  are  30-fold
higher  than  those  from  non-demented  individuals  [6].
Another line of evidence is that a single injection of a hu-
manized AβO-specific antibody (30μg) could suffice to res-
cue memory performance in 5xFAD TG mice [11]. At pre-
sent, it is now widely accepted that soluble AβO, instead of
the fibrosis amyloid burdens, is synaptotoxious that accumu-
late in AD brains [19].

2.2. Toxicity of AβO

Increasing evidences have suggested that soluble AβO is
the major neurotoxicity in AD [20, 21]. There are two kinds
of hypotheses about the mechanism of neurotoxicity. One is
called the bilayer insertion hypothesis, which assumes that
soluble AβO can form annular structures which can be insert-
ed into the cell membrane and induce unregulated efflux/in-
flux through the created pores and finally damage the cells
(Fig. 1-A). But this hypothesis cannot explain the specificity
of AβO attachment, which is a major challenge to this hy-
pothesis. The other well accepted hypothesis is aberrant cel-
lular signaling, which suggests that soluble AβO can bind to
the membrane and induce its endocytosis and deposit within
organelles, then damage nerve cells, influence signal trans-
duction, disrupted Ca2+ homeostasis, provoke CNS insulin re-
sistance, etc. [22]

It is found that accumulation of exogenous soluble AβO
at synapses can cause abnormal transmembrane signal selec-

tivity in neurons (Fig. 1-B).  There are three main reasons,
one  is  that  the  membrane  proteins  are  disrupted  by  high
affinity multi-component toxin complex, which are formed
by AβO attaching to a set of high-affinity binding proteins
and then recruiting some low-affinity toxin receptors (PRPS,
mGLuR5  and  RANG.  etc)  [23].  Another  one  is  that  AβO
can  directly  or  indirectly  over-activate  postsynaptic  NM-
DARs by impairing glutamate up-take from the extra-synap-
tic spaces, which binds to the PrPC-mGLU5 receptor com-
plex to phosphorylate and trigger downstream Fyn [24], or
results in Ca2+ influx, disrupt the Ca2+ homeostasis (Fig. 1-
C). The activation of the Fyn can activate the eEF2 (impair
LTP) and Pyk2 (regulate synaptic plasticity) simultaneously
to  impair  synaptic  deficit  [25,  26].  The  third  way  is  that
AβO can disturb the expression and activity of Akt,  ERK,
JNK, P38 and some other downstream protein kinases. In ad-
dition, AβO can induce Tau hyperphosphorylation and Tau
oligomerization both in vitro and in vivo, which leads to sy-
naptic  damage  and  reduction  in  the  number  of  synapses
[27-29] (Fig. 1D, E). With all these pathways, AβO can in-
hibit  synaptic  plasticity  through  abnormal  cellular  signal
transduction, and ultimately lead to nerve cell-specific death
[21, 30-32].

CNS insulin signaling might also play a role in AβO for-
mation  and  AβO  neurotoxicity.  AβO  in  turn,  can  impair
CNS insulin signaling by competitively inhibiting the bind-
ing of insulin-to-insulin receptors and directly leads to in-
sulin  resistance  (Fig.  1-F),  which  form a  vicious  circle  to
build  up  AβO  in  intracellular  and  extracellular  of  CNS
[33-34].  When  AβO  down-regulates  insulin  signaling,
GSK3β activity is elevated, which can increase the level of
p-Tau. Besides, AβO can not only lead to a slow, time-de-
pendent  decrease  in  ATPase  activity  to  cause  energy
metabolism disorders (Fig. 1-G) [35], but also induce the ac-
tivation and neuroinflammation of astrocytes and microglia
in CNS (Fig. 1-H)  [36].  In addition, AβO can damage the
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neurons by an upregulation in both oxidative stress and ER
stress  (Fig.  1I,  J).  In  all,  these  events  of  cellular  damage
caused by soluble AβO can initiate the death of nerve cells,
and AβO is  considered as  the  proximal  toxins  responsible
for synaptic dysfunction and neuron damage, as well as cell
death in AD [37-39].

3. BACE1 and AβO

The treatment  strategies  for  AD patients  via  Aβ clear-
ance have been recently questioned and challenged due to its
poor clinical effects, together with the difficulty to reliably
measure AβO in body fluids and tissues [4, 22]. Considering
that the key role of soluble AβO in AD pathology, preven-
tion the formation of Aβ becomes even more important than
prevention  its  accumulation  and  aggregation  [9,  40,  41].
BACE1,  the  key  rate-limiting  enzyme in  the  formation  of
both soluble AβO and fibrosis Aβ, plays crucial role in Aβ
generation.

BACE1, beta-site amyloid precursor protein [APP] cleav-
ing enzyme I,  is  a  type I  transmembrane aspartyl  protease
which  was  identified  and  named  in  1999  [42].  BACE1  is
widely expressed in the CNS, particularly in neurons, oligo-
dendrocytes, astrocytes, which are the major sites of Aβ gen-
eration [43, 44]. This enzyme is predominantly localized in
acidic intracellular compartments (such as late Golgi/TGN
and  endosomes),  and  the  optimum  enzymatic  activity  is
around pH 4.5 [43]. BACE1 is first synthesized as a 501 ami-
no acid immature precursor protein (proBACE1) in endoplas-

mic reticulum (ER) and matured in Golgi apparatus where
its pro-domain (residues 1-21) is removed by furin-like pro-
protein convertases [43]. BACE1 fulfills most of the require-
ments for a candidate β-secretase, and induces Aβ produc-
tion by the successive cleavage of β- and γ-secretase of APP
[45].

Amyloid precursor protein (APP) is a single-pass trans-
membrane protein with large extracellular domains, and can
be generally cleaved through non-amyloidogenic and amyloi-
dogenic pathways (Fig. 2). The non-amyloidogenic pathway
is mainly cleaved by α-secretase and γ-secretase; while the
amyloidogenic pathway is cleaved by β-secretase and γ-sec-
retase. Through non-amyloidogenic pathway, APP is cut in-
to soluble APPα (APPsα) and a peptide with 83 amino acids
in  length  (CTF83)  by  α-secretase.  Afterwards,  CTF83  is
cleaved by γ-secretase to release a small  p3 fragment into
the extracellular space and the APP carboxy-terminal frag-
ment59 (C59) into the cytoplasm. Through amyloidogenic
pathway, APP was first cleaved by β-secretase (BACE1) to
release soluble APPβ (APPsβ) and a peptide with 99 amino
acids in length (CTF99). BACE1 initiates Aβ generation by
cleaving  APP within  the  extracellular  domain  of  APP  be-
tween  Met596  and  Asp597  sites,  to  generate  the  N-termi-
nus-fragment of Aβ, shed a large part of the ectodomain of
APP (APPsβ) and generate an APP carboxy-terminal frag-
ment (βCTF or C99), which acts as the immediate substrate
for γ secretase [46]. Then, β-CTF is cleaved into C-terminal
heterogeneous Aβ peptides (ranging from 38 to 43 residues

Fig. (2). Processing of APP by the secretases. A) In the nonamyloidogenic pathway, APP is first cleaved by α-secretase within the Aβ se-
quence, which releases the APPsα ectodomain. Further processing of the resulting carboxyl terminal by γ-secretase results in the release of
the p3 fragment. B) The amyloidogenic pathway is initiated when β-secretase cleaves APP at the amino terminus of the Aβ peptide and re-
leases the APPsβ ectodomain. Further processing of the resulting carboxy-terminal fragment by γ-secretase results in the release of Aβ. C)
The amino acid residues from various cleavage of APP. Aβ and p3 fragments of differing lengths are produced by processing of APP at two
different sites by γ-secretase. Abbreviations: Aβ, amyloid-β; APP, amyloid precursor protein; APPsα, soluble amyloid precursor protein-α;
APPsβ, soluble amyloid precursor protein-β; C83, carboxy-terminal fragment 83; C59, carboxy-terminal fragment 59; C99, carboxy-terminal
fragment 99. The APP progressing was referred to literature [51] and created on BioRender.com. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).
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in length) and cytosolic APP intracellular domains by γ-sec-
retase at multiple sites [47], which occurs within the hydro-
phobic environment of biological membranes [48]. Aβ is lib-
erated  into  extracellular  fluids  such  as  cerebrospinal  fluid
(CSF) [48, 49]. Both APPsα and APPsβ have benefit proper-
ties, such as increasing neurite outgrowth in vitro, protecting
neuron and stimulating proliferation of adult neural progeni-
tors [50].

In addition to acting as an enzyme in a key rate-limiting
processing step of Aβ generation, BACE1 also regulates ax-
on myelination in the peripheral nervous system through par-
ticipating  the  proteolytic  processing  of  Neuregulin-1
[52-53]. Although some studies have shown that moderate
inhibition of BACE1 activity may be beneficial to AD treat-
ment, BACE1 inhibition is beneficial or not for AD patients
is controversial up to now. Evidences supporting the benefi-
cial  roles  came  from  animal  experiments  and  clinical
studies, for instance, BACE1 heterozygous knockout mice
have no reported abnormal phenotypes, and reduced Aβ de-
position.  One  study  reported  that  BACE1  knockout  mice
showed a 12% decrease in Aβ level in young 5XFAD AP-
P/PS1 mice, and did not show any major behavioral, morpho-
logical, or developmental deficit [54, 55]. Another study re-
ported that knockout of BACE1 completely blocked the gen-
eration of Aβ and had a minor impact on mouse growth or
overall  functions  since  BACE1+/-  mice  appear  normal  [56,
57].  Similar studies in humans reported a rare mutation at
the BACE1 cleavage site of APP [A673T] resulted in an ap-
proximately 40% reduction in the formation of Aβ produc-
tion in Icelanders; and these people showed a significant re-
duction for Aβ aggregates, and five- to seven-fold reduced
risk  of  developing AD,  and greater  resilience  to  cognitive
dysfunction in elderly individuals [58, 59]. However, owing
to that BACE1 deficiency can induce hypomyelination of pe-
ripheral nerves and aberrant axon segregation of small-diam-
eter axons by Schwann cell processes within Remake bun-
dles [52, 53], there is growing concern that complete inhibi-
tion of BACE1 may have serious adverse effects.  Clinical
trials  targeting  at  inhibiting  BACE1 in  AD patients  found
that these inhibitors have the potent in reducing Aβ in hu-
man CSF or plasma by as much as 90% during trials, howev-
er the trials have failed to proceed because of BACE1 selec-
tivity issue or intolerable toxicity [60-64].

4.  POST-TRANSLATIONAL  MODIFICATIONS  OF
BACE1 AND Aβ PRODUCTION

After a series of post-translational modifications in ER
and Golgi apparatus, BACE1 is matured to have the func-
tion of cleaving APP [65]. During BACE1 maturation, four
sites  were  N-glycosylated  and  seven  Lys  residues  were
acetylated in ER [66], meanwhile, four C-terminal Cys resi-
dues for lipid raft localization were deacetylated and palmi-
toylated in Golgi apparatus [67]. Besides, Lys residues are al-
so the targets for ubiquitination, so BACE1 activity is post-
translationally  regulated  via  ubiquitination,  because  muta-
tion of this residue impairs its endocytosis to lysosomes for
degradation,  reduces  the  proteasomal  degradation  of
BACE1, and affects APP processing at the β site, as well as

Aβ production [68, 69]. Ser498 phosphorylation facilitates
reposition  of  BACE1  from  endosome  to  Golgi  apparatus.
and  Thr252  phosphorylation  increases  the  activity  of
BACE1. SUMOylation inhibits the degradation of BACE1
in  the  lysosome.  These  post-translational  modifications  of
BACE1 affect the production of Aβ by affecting enzyme ac-
tivity,  substructure  localization,  and  hydrolysis.  Current
knowledge on these regulatory pathways and their implica-
tions on Aβ production or AD therapy are discussed below
in detail (Figs. 3 and 4).

4.1. Acetylation

Acetylation  is  one  kind  of  BACE1  post-translational
modification that occurs in ER. After pro-BACE1 is synthe-
sized in ER, nascent BACE1 is transiently/reversibly acety-
lated in seven lysine residues (Lys-126, Lys-275, Lys-279,
Lys-285, Lys-299, Lys-300, and Lys-307) in the lumen of
the  endoplasmic  reticulum  (ER)  by  two  ER-based  acetyl-
CoA: ATase1 and ATase2. Acetylation of BACE1 affect its
intracellular trafficking [70, 71]. When BACE1 is transport-
ed to Golgi apparatus, acetylated BACE1 will be further pro-
cessed,  while  non-acetylated  BACE1  will  be  degraded.
Studies show that the ability of nascent BACE1 to complete
maturation is tightly regulated by ER-based ATases. Indeed,
it  is  only  that  acetylated  intermediates  of  nascent  BACE1
are able to reach the Golgi apparatus and complete matura-
tion,  and  with  the  acetyl  groups  been  removed  by  Gol-
gi-based deacetylase for following post-translational modifi-
cations, ceramide regulates both efficiency of acetylation in
the ER and rate of deacetylation in the Golgi apparatus [72].
The non-acetylated intermediates are retained in ER or de-
graded  in  Golgi  apparatus  via  a  process  that  involves  the
serine  protease  PCSK9/NARC-1  [73].  Consistently,  it  is
found  that  ATase1  and  ATase2  are  expressed  in  neurons,
and are up-regulated in the brains of  AD patients.  Studies
have shown that up-regulation of ATase1 and ATase2 can el-
evate  the  levels  of  BACE1  and  Aβ  generation  in  H4  and
SH-SY5Y cell lines [71].

4.2. Glycosylation

O-glycosylation  and  N-glycosylation  are  two  types  of
glycosylation that can influence a diverse range of protein
properties  such  as  folding,  stability,  enzyme  activity,  etc.
[74].  Glycosylation of  BACE1 occurs after  being released
from the ER to the cytoplasm, where BACE1 is glycosylat-
ed to generate a 75-kDa mature BACE1 on the way from ER
to  Golgi,  where  fully  glycosylated  BACE1 protein  is  pro-
duced  [75-76].  Glycosylation  modification  of  BACE1  oc-
curs more at N-glycosylation rather than insignificant O-gly-
cosylation [77]. The maturation processes are initiated with
an  O-glycosylation  at  sites  of  Glu46  and  further  matured
with  complex  N-glycosylation  at  four  Asn-residues  in  the
ectodomain of BACE1 (Asn153, Asn172, Asn223, and As-
n354). It is necessary for the disulphide bonds in the catalyt-
ic exoplasmic domain to be fully glycosylated and to have
the  function  for  the  cleavage  of  APP  [78-80].  It  is  well
known that BACE1 is glycosylated with bisecting N-acetyl-
glucosamine (GlcNAc), and research demonstrates that AD
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patients have higher levels of bisecting GlcNAc modifica-
tions on BACE1, too [78]. Analysis of knockout mice lack-
ing the biosynthetic enzyme for bisecting GlcNAc revealed
that cleavage of Aβ-precursor protein (APP) by BACE1 is
reduced in these mice, resulting in a decrease in Aβ plaques
and improved cognitive function [78]. This modification cat-

alyzed by a  GlcNAc transferase  Gnt-III  is  up-regulated in
oxidative stress brain and results in the blocking of the lyso-
somal  degradation of  BACE1,  and elevates  the  activity  of
BACE1, leading to increase Aβ generation and plaque for-
mation [81, 82].

Fig. (3). Mature BACE1 is transported from ER to TGN, and the cell surface, then it is endocytosed in the early and late endosomes (Black
arrow). Next, BACE1 can be recycled back to the cell surface, or transited to the lysosome for degradation, or go back to the TGN to be re-
paired and trafficked back to the cell surface (Red arrow).  Nascent BACE1 is acetylated in the ER in seven lysine residues, which are im-
portant for its catalytic activity and will be deacetylated on Golgi apparatus. The acetylated BACE1 will be further transported to Golgi ap-
paratus to be processed;  BACE1 is Glycosylated at four Asn-residues after being released from the ER to the cytoplasm to create a 75-kDa
BACE1, which affects the maturation of BACE1;  BACE1 is palmitoylation on Golgi apparatus at four cysteine residues, which affect the
degradation of BACE1 and affects the activity of BACE1;  BACE1 is phosphorylated on Golgi apparatus at Ser498 and Thr252, Ser498 in-
fluence the subcellular localization of BACE1, while the Thr252 increases the activity of BACE1;  BACE1 can be ubiquitinated in the cyto-
plasm and nucleus at three lysine residues, to affect the activity of BACE1 and promote the degradation of BACE1;  BACE1 can be SU-
MOylated in the cytoplasm and nucleus at two lysine residues, to affect the activity of BACE1 and prevent the degradation of BACE1. (A
higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig. (4). Post-translational modifications of BACE1. BACE1 undergoes various modifications, including N-glycosylation (N-gly-Asp153,
Asp172,  Asp223,  and  Asp354),  phosphorylation  (P-Ser498,  Thr252),  acetylation  (Acetyl-Lys126,  Lys275,  Lys279,  Lys285,  Lys299,
Lys300, and Lys307), palmitoylation (Pal-Cys474, Cys478, Cys482, Cys485), SUMOylation (SUMO-Lys275, Lys501), and ubiquitination
(Ub-Lys203, Lys382, and Lys501).
Abbreviation: D: two aspartic protease-active sites; SP: signal peptide; Pro: pro-peptide; TM: transmembrane domain. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).
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4.3. Palmitoylation

Protein palmitoylation modifications is an important, per-
vasive and reversible post-translational modification in eu-
karyotes with a wide range of biological effects such as mod-
ulating protein stability, trafficking, activity, as well as pro-
tein-protein  and  membrane-protein  associations  [83,  84].
BACE1  is  palmitoylated  at  four  juxtamembrane  cysteine
residues (Cys474, Cys478, Cys482, and Cys485) within its
transmembrane/cytosolic tail in Golgi apparatus. Due to the
high  affinity  of  acyl  chains  for  the  ordered  lipid  environ-
ment, palmitoylated BACE1 can target a variety of peripher-
al and integral membrane proteins to lipid rafts in nonneuron-
al  cells  and  in  neurons  in  order  to  reduce  the  shedding  of
BACE1 in the Golgi body [85-87].

Multiple lines of evidence indicate that lipid rafts are in-
volved in amyloidogenic processing of APP, because APP
and BACE1 come into immediate contact within this com-
partment  [88-91].  Palmitoylation  of  BACE1  cytosolic  tail
Cys  residues  reduces  the  shedding  of  a  soluble  form  of
BACE1 from lipid rafts. In the presence of BACE1, intracel-
lular C99 production is enhanced and Aβ is secreted, which
means palmitoylation of BACE1 increased Aβ burden in the
brain [92]. Displacement of BACE1 by abolishing palmitoy-
lation neither affected the BACE1 cleaving of APP nor the
production of Aβ in neurons [85]. A significant reduction of
cerebral insoluble amyloid is induced by dystrophic neurites
of  the  absence  of  BACE1  palmitoylation  in  4CA-PDAPP
transgenic mouse models, and the lack of BACE1 palmitoy-
lation also improved cognition functions in this mouse mod-
el [85, 93]. In addition, it is efficient to change amyloid by
modulating BACE1 targeting to dendritic spines and trans-
porting to neurons, instead of affecting BACE1 stability, ma-
turation,  or  the  enzymatic  processing of  BACE1 and APP
[83,  86,  90],  which  means  inhibiting  the  shedding  of
BACE1 may be an alternative strategy in the treatment  of
AD.

4.4. Phosphorylation

Phosphorylation is a reversible process of protein regula-
tion, and it is extremely important in most cellular functions
such as protein synthesis, cell division, and signal transduc-
tion  [94].  Phosphorylation  works  addition  of  a  phosphate
group  (PO4)  to  the  polar  group  R  of  various  amino  acids
with the help of protein kinases. After maturation, BACE1 is
reinternalized from the cell surface and trafficked between
the cell surface and endosomes, then recycle back to the cell
surface [95]. In 2001, Walter et al. first found that CK-1 can
phosphorylate  BACE1 at  the  phosphorylation site  Ser498.
Full maturation of BACE1 needs phosphorylation at Ser498
in its cytoplasmic domain and at the Thr252 residue in the lu-
men of endosomes [96]. The former affects the subcellular
localization of BACE1, while the letter increases the activity
of BACE1 [96-97]. In addition to regulating the retrieval of
BACE1  from  endosomes  vesicles  and  relocated  to  Golgi
compartments, the phosphorylation of BACE1 at Ser498 can
influence the binding of BACE1 to some regulatory proteins
such as GGA proteins at the endosomes, particularly, GGA1

[98,  99].  The  mechanism  is  that  the  phosphorylation  of
BACE1  at  Ser498  increases  the  combination  of  BACE1
with GGA by elevating hydrogen bonding and electrostatic
interactions and modulates BACE1 retrieval from the endo-
some  to  Golgi.  Phosphorylated  BACE1  interacts  with
GGA1 in the Golgi  to  prevent  the recycling of  BACE1 to
the cell surface, where BACE1 cleaves APP, indirectly af-
fecting the production of Aβ [100, 101]. It is reported that
there was a three-fold reduction in Aβ production in CHO
cells which stably express both APP and the Ser498 phos-
phorylation [102]. And a significant decrease in the Ser498
phosphorylation of BACE1 in AD patients has also been re-
ported [97].

Interestingly, BACE1 phosphorylation at Thr252 increas-
es the activity of BACE1, which appears to favor the amyloi-
dogenic  processing  of  APP.  BACE1  is  phosphorylated  at
Thr252 by  p25/Cdk5,  and  the  phosphorylated  BACE1 en-
hances the BACE1 activity by around 27% and increases Aβ
levels by 77% in HEK293 cell, further leading to accelerat-
ed AD pathology. This process can be inhibited by PPARγ
agonist  pioglitazone,  hence,  p25/Cdk5  may  represent  a
promising  drug  target  for  the  treatment  of  AD  [96,  103].

4.5. Ubiquitination

The  ubiquitin-proteasome  system  is  a  major  protein
degradation pathway in eukaryotic cells, to regulates multi-
ple critical cellular functions, including differentiation, pro-
liferation, and apoptosis [104]. After polyubiquitin chain is
covalently conjugated to lysine residues of the targeted pro-
tein, the ubiquitinated protein will be recognized and trans-
ported to the 26S proteasome, and subsequently degraded by
lysosome. BACE1 protein can be ubiquitinated at Lys203,
Lys382,  and  Lys501,  and  GGA3  mediates  targeting  of
BACE1 to the lysosomes for degradation [68-69]. Blocking
the ubiquitin-proteasomal pathway inhibits BACE1 degrada-
tion, and leads to increased BACE1 enzymatic activity and
more β-cleavage product C99 and increases both Aβ40 and
Aβ42 production in both neuronal and non-neuronal cells. In
all, ubiquitin-proteasome pathway dysregulation might con-
stitute an important event in the pathogenesis of certain AD
[101, 105, 106].

4.6. SUMOylation

Protein SUMOylation is covalently attaching the small
ubiquitin-like modifing (SUMO) proteins to specific lysine
residues in target proteins, to regulate many aspects of nor-
mal protein function, such as interactions, subcellular local-
ization, activity, stability, and partnering [107]. BACE1 is
SUMOylated at Lys501 and Lys257 residue, predominantly
at  Lys501 residue,  to mediates its  intracellular trafficking.
SUMOylated BACE1 is mostly localized in the endosomes
and transferred to cell membrane to cleave APP, while non-
SUMOylated BACE1 is prone to be transported to the lyso-
somes  for  degradation.  In  other  words,  SUMOylated
BACE1 increases its protease activity and stability and sub-
sequently  increases  in  Aβ  production,  resulting  in  senile
plaque formation and cognitive defect. SUMO/deSUMOyla-
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Table 1. Post-translational modifications observed for BACE1.

Feature of PTM Site Function References

Acetylation Lys-126, Lys-275, Lys-279, Lys-285, Lys-299, Lys-300, Lys-307 Stability; Transit from ER; Intracellular trafficking [71]

N-Glycosylation Asp153, Asp172, Asp223 Asp354 Folding; Lysosomal targeting; Rescue degradation [75 78, 81]

Palmitoylation Cys474, Cys478, Cys482, Cys485 Target to and reduces shedding from lipid rafts [77, 87, 92]

Phosphorylation Ser498, Thr252; Endosomal-lysosomal trafficking; Enhancement of activity [95-96]

Ubiquitination Lys203, Lys382, Lys501 Degradation [69]

SUMOylation Lys275, Lys501 Stability, Intracellular trafficking, Escalates activity [110]

tion imbalance of BACE1 and tau can be found in the early
phases of AD, and contribute to loss of synapse [108, 109].
Besides, compared with a non-SUMOylated mutant, injec-
tion of wild-type BACE1 significantly increase Aβ produc-
tion  and  triggers  cognitive  dysfunction  in  APP/PS1  AD
mice [110]. These data suggest that inhibition of Lys501 SU-
MOylation on BACE1 may be a beneficial potential thera-
peutic target for AD.

CONCLUSION AND FUTURE DIRECTIONS

Accumulating evidence suggests that AβO may be more
likely to act as a trigger than a result of AD and other neu-
rodegenerative diseases. AβO may be less important or even
irrelevant to the later stage of the disease,  so reducing the
early production of Aβ is the key point to prevent and allevi-
ate AD. Given that BACE1 is a crucial molecule of Aβ pro-
duction,  inhibition  drugs  of  BACE1 function  were  almost
wiped out in recent years, partly due to complications relat-
ed  to  the  physiological  function  of  BACE1.  BACE1 gene
knockout experiments have offered insight into the physio-
logical functions of BACE1 and warned of the risks associat-
ed with total eradication of its activity.

The post-translational modification of BACE1 mostly af-
fects  the  maturation  and  transportation  of  BACE1  rather
than  directly  affecting  its  activity  Table  (1),  which  means
post-translation modification of BACE1 could be a promis-
ing new drug discovery strategy. In this paper, recent studies
were reviewed about Aβ and AD pathogenesis, toxicity of
AβO, and BACE1 and AβO, especially in the post-translatio-
nal modification of BACE1. We systematically summarized
and evaluated that the relationship between different post-
translational modifications of BACE1 (Acetylation, Glycosy-
lation, Palmitoylation, Phosphorylation, Ubiquitination and
SUMOylation) and Aβ generation, maturation and degrada-
tion. Discovering the novel drugs, including naturally active
molecules,  on the basis  of  the post-translational  modifica-
tion of BACE1 should be one of the prospective therapeutic
strategies for treatment AD in the future.

We checked the relevant literature to find out if there are
any compounds that have a clear effect on the post-translatio-
nal modification of BACE1. Unfortunately, only three com-
pounds have been clearly reported on the post-translational
modification  of  BACE1  (lovastatin,  simvastatin  and  li-
coflavonol, details are showed in Table S1 ), and we cannot
in depth discuss drug targeting to post translational regula-

tion of BACE1. But there are many studies on the effects of
BACE1 expression, activity, and search inhibitors based on
the structure of BACE1(some has been used for commercial-
ization). It is not clear whether these compounds have any ef-
fects on the post-translational modification of BACE1. Here,
we gathered the compounds that regulate BACE1 in the liter-
ature, which can be used for subsequent research on whether
BACE1 is a post-translationally modified compound library
[Table S2-S5].

LIST OF ABBREVIATIONS

AD = Alzheimer's Disease

Aβ = Beta Amyloid

APP = Amyloid Precursor Protein

BACE1 = β-secretase 1

CSF = Cerebrospinal Fluid

AMP = antimicrobial Peptides

AβO = soluble amyloid-β Oligomers

CNS = Central Nervous System

ER = Endoplasmic Reticulum

C99 = Carboxy-terminal Fragment 99

Cys = Cysteine

Ser = Serine

Thr = Threonine

Asn = Asparagine

Lys = Lysine
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