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Advantages of Using Both Voxel- and Surface-based Morphometry
in Cortical Morphology Analysis: A Review of Various Applications

Masami Goto1*, Osamu Abe2, Akifumi Hagiwara3, Shohei Fujita2,3,
Koji Kamagata3, Masaaki Hori3,4, Shigeki Aoki3, Takahiro Osada5,

Seiki Konishi5, Yoshitaka Masutani6, Hajime Sakamoto1, Yasuaki Sakano1,
Shinsuke Kyogoku1, and Hiroyuki Daida1

Surface-based morphometry (SBM) is extremely useful for estimating the indices of cortical morphology,
such as volume, thickness, area, and gyrification, whereas voxel-based morphometry (VBM) is a typical
method of gray matter (GM) volumetry that includes cortex measurement. In cases where SBM is used to
estimate cortical morphology, it remains controversial as to whether VBM should be used in addition to
estimate GM volume. Therefore, this review has two main goals. First, we summarize the differences
between the two methods regarding preprocessing, statistical analysis, and reliability. Second, we review
studies that estimate cortical morphological changes using VBM and/or SBM and discuss whether using
VBM in conjunction with SBM produces additional values. We found cases in which detection of
morphological change in either VBM or SBM was superior, and others that showed equivalent perfor-
mance between the two methods. Therefore, we concluded that using VBM and SBM together can help
researchers and clinicians obtain a better understanding of normal neurobiological processes of the brain.
Moreover, the use of both methods may improve the accuracy of the detection of morphological changes
when comparing the data of patients and controls.

In addition, we introduce two other recent methods as future directions for estimating cortical
morphological changes: a multi-modal parcellation method using structural and functional images, and
a synthetic segmentation method using multi-contrast images (such as T1- and proton density-weighted
images).

Keywords: confounding covariate, cortex volume, smoothing, surface-based morphometry, voxel-based
morphometry

Introduction

Voxel-based morphometry1 (VBM) and surface-based
morphometry2,3 (SBM) are effective methods for estimat-
ing the indices of cortical morphology, mainly by using
T1-weighted MRI. Both methods were introduced almost
simultaneously at the end of the last century. While VBM
primarily serves to estimate gray matter (GM) volume,
including that of the cortex, SBM estimates a variety of
features, such as cortex volume, thickness, and area, as
well as gyrification.4 These indices are obtained locally
and can help differentiate between groups of controls and
patients with various conditions such as Alzheimer’s
disease.5 These automated analytical methods have signif-
icant benefits compared with the method of manual
tracing,6 which is much more time-consuming,7 is subject
to operator bias, and requires a priori anatomical
constraints.
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In cases where SBM is used to estimate cortical mor-
phology, it remains controversial as to whether VBM
should also be used to estimate GM volume.8–20 Since
the two methods were introduced nearly simultaneously,
the tools used in both methods have been updated con-
tinuously. Therefore, it is essential to consider which
tools, such as software versions, have been employed in
the existing studies while analyzing advantages and dis-
advantages of both methods. For example, the tools for
spatial normalization,21–23 distortion correction,24,25 and
signal intensity non-uniformity correction26–28 have been
greatly improved upon for obtaining more accurate
results.

Based on reviews of research reports for VBM and SBM
from the past 20 years, the authors of this review conclude
that both VBM and SBM should be used. The aim of this
paper was to discuss the necessity of using VBM in conjunc-
tion with SBM, based on the review of various studies
regarding the reliability and differences in the analysis of
VBM and SBM results.

In the following section, overview of both VBM and
SBM processing is described along with their points of
difference. Next, factors influencing their reliability are
listed, followed by the introduction of several applications
for healthy subjects, such as aging. Next, for various types
of diseases, SBM-superior examples, cases that are equiva-
lent for both methods, and VBM-superior examples are
introduced and reviewed. Then finally, as a future direc-
tion, multi-modal parcellation in SBM and synthetic seg-
mentation in VBM are introduced, along with several
examples.

Overview of VBM and SBM Processing

VBM and SBM share common processes, which begin with
preprocessing and conclude with statistical analysis. An
overview of data processing steps for both is described
below. In addition, their difference points, factors influen-
cing their reliability, and other details are listed.

Overview of VBM processing
The typical processes involved in VBM include skull
stripping29,30 and signal nonuniformity correction27,28 as
preprocessing steps, with tissue segmentation, spatial nor-
malization, smoothing of the normalized image, and statis-
tical analysis as the steps of the main process. An overview
of the data processing steps for both methods is shown in
Fig. 1, and popular software packages used are summarized
in Table 1. Two popular software packages: the statistical
parametric mapping software (SPM) (The Wellcome Centre
for Human Neuroimaging, London, UK) and the FMRIB
software library (FSL) (FMRIB, Oxford, UK), are used
extensively for VBM. In the following section, each analy-
sis step is described along with corresponding software
features.

Tissue segmentation
Both SPM and FSL segmentation have previously been
summarized in a report by Tudorascu et al.31 Segmentation
in SPM version 12 (SPM12) includes bias-field correction
for nonuniformity and registration to a standard anatomic
space.31 SPM12 segmentation provides partial volume
ratios of six tissue classes: GM, white matter (WM), cere-
brospinal fluid (CSF), skull, soft tissue, and air.31 This
calculation is based on the registration of the subject data
to a prior tissue probability map, which quantifies six par-
tial volume probabilities modeled by a mixture of
Gaussians for signal intensity at each voxel in T1-weighted
images of the brain.32 That is, for example, GM volume
inside each voxel was defined by GM probability and voxel
size.

FSL performs similar processes, with minor differ-
ences as follows:31 the segmentation in FSL is based on
the FMRIB automated segmentation tool algorithm, and
consists of bias correction by the N4 (improved nonpara-
metric nonuniformity normalization bias correction) algo-
rithm, skull-stripping, and registration to prior tissue
probability maps for three tissue classes (GM, WM, and
CSF31).

Different segmentation algorithms are used for SPM
and FSL segmentation, but the feature that they share is
the use of tissue probability maps (segmented tissue
images) for measuring tissue volumes. Subsequently, the
GM volume inside a voxel of a segmented tissue image is
calculated on the segmented GM image using the follow-
ing equation: signal intensity inside voxel × volume of
voxel (Fig. 2).

Spatial normalization
3D spatial normalization from the native space to the
Montreal Neurological Institute (MNI) space33 is per-
formed on the segmented GM image. To accomplish this
task, it is very important to use the most accurate tool of
spatial normalization in VBM. In the early phase of VBM
application, the registration algorithm for spatial normal-
ization was identical to the one used in the segmentation,
which was less flexible. Therefore, there have been discus-
sions on the importance of the algorithm used for spatial
normalization by Bookstein34 and Ashburner.35 Recently,
diffeomorphic anatomical registration through exponen-
tiated lie algebra (DARTEL) has also attracted attention
as a group-wise registration algorithm for building a tem-
plate for spatial normalization.21 Previous reports have
shown that compared with SPM5 unified segmentation,
DARTEL significantly improved the accuracy of analysis
results for Alzheimer’s disease,36 age-related GM volume
change,37 and inter-scanner variances.22 FSL also offers
registration tools, which include the FMRIB’s linear
image registration tool38,39 in the early versions, and
FMRIB’s nonlinear image registration tool40,41 in the
updated ones.
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Smoothing of normalized image
The smoothing process for segmented GM images is per-
formed before statistical analysis. Smoothed images are used
for statistical analysis in a group comparison and correlation
analysis. The repeatability of the measurements of the intra-
cranial tissue volumes in VBM is improved by spatial
smoothing.42 Spatial smoothing is performed by the

Gaussian smoothing kernel43 as it reduces interindividual
variation. The false-positive rate, that is the incorrect signif-
icant difference of local GM volume between control and
patients, using 12- mm full width at half maximum
(FWHM), was reported to be lower than that using 6- mm
FWHM.43 By contrast, narrow filters (4-mm FWHM)
increased the sensitivity of the correlation procedure,

Fig. 1 Overview of data processing steps used for VBM and SBM. This figure shows common processes in each method, which are initiated
by preprocessing, and finished by statistical analysis. Major points of difference between VBM and SBM processing are highlighted with
three colored boxes. SBM, surface-based morphometry; VBM, voxel-based morphometry.

Table 1 Popular software packages in voxel- and surface-based morphometry

Package name Type Spatial normalization
method Platform URL

SPM VBM DARTEL Tool MATLAB https://www.fil.ion.ucl.
ac.uk/spm/software/

FSL VBM FLIRT and FNIRT Apple, Linux, and Windows
(Windows via a Virtual Machine)

https://fmrib.ox.ac.uk/fsl/

FreeSurfer SBM Spherical map
registration51

Apple, Linux, and Windows
(Windows via a Virtual Machine)

https://surfer.nmr.mgh.
harvard.edu/

CIVET SBM Robbins’s method49 Linux and web-based platform https://mcin.ca/
technology/civet/

CAT12 SBM Geodesic Shooting50 MATLAB www.neuro.uni-jena.de/
cat/

CAT12, computational anatomy toolbox 12; FSL, FMRIB software library; SBM, surface-based morphometry; SPM, statistical parametric mapping;
VBM, voxel-based morphometry.

Voxel- and Surface-based Morphometry

Vol. 21, No. 1 43



especially when small brain structures were analyzed using
VBM.7 Although previous reports have discussed the appro-
priate filter size (FWHM), this issue remains controversial.
We suggest that the appropriate filter size is affected by the
size of volume change target (i.e., atrophy), subject number,
registration accuracy (i.e., spatial normalization accuracy),
and target indices (i.e., volume, area, and thickness). For
example, the use of high-dimensional warping tools for
registration, such as DARTEL, can reduce the necessity for
smoothing to blur out warping errors.43–45

Statistical analysis
Probability density value for the GM tissue is obtained for
each voxel in a segmented GM image. Then, statistical
analysis is performed voxel by voxel, that is, a comparison
between two groups with spatially smoothed GM images in
VBM. Conversely, a non-smoothed GM image is used for
brain volumetry with the atlas-based method, which can
measure the absolute volume of each anatomical region.46

In statistical analysis for VBM, it is important to consider
confounding factors: age, sex, handedness, disease duration,
and medication use, as well as total intracranial volume
(TIV). These factors are the parameters set as confounding
covariates in the statistical analysis. For example, patient age
is set as a confounding covariate in group comparisons (i.e.,
control vs. disease group) because cortex volume correlates
with age. By contrast, patient age would not serve as a
confounding covariate if only age-matched groups were
analyzed in the statistical analysis. Therefore, the number
of the types of confounding factors can be decreased by
using factor-matched groups.

Overview of SBM processing
Similar to VBM, common processes involved in SBM
include skull stripping, signal nonuniformity correction as
the preprocessing step, and tissue segmentation, spatial nor-
malization, smoothing of the normalized image, and statis-
tical analysis as the steps of the main process. Overview of

data processing steps is shown in Fig. 1, and popular soft-
ware packages are summarized in Table 1. Three popular
software packages, the FreeSurfer (Martinos Center for
Biomedical Imaging, Boston, MA, USA), CIVET
(McConnell Brain Imaging Center, Montreal, Canada), and
Computational anatomy toolbox 12 (CAT12) (Structural
Brain Mapping Group, Jena, Germany), are used extensively
for SBM. Different approaches in cortex segmentation are
used in these methods as follows: FreeSurfer uses model-
based deformation approach, CIVET uses the skeleton-based
reconstruction approach, and CAT12 uses a projection-based
thickness approach.47–50 Each step of SBM is described in
the following section with examples of FreeSurfer as the
most popular package used.

Tissue segmentation
Two surfaces—the WM surface and pial surface—are used
to create the segmented tissue images in SBM.2 First, the two
borders are determined based on voxel intensity information.
As shown in Fig.1, the first border is inside for dividing WM
and GM, while the second is outside for dividing GM and
CSF. That is, the planar orientation that minimizes within-
plane intensity variance is computed for each of these border
voxels. Then, WM is divided between the two cortical hemi-
spheres, and surface tessellation is performed for each hemi-
sphere. The tessellation process at each border voxel is a
determination of a square consisting of two triangles to
separate WM and GM. After the smoothing of these tessel-
lated WM surfaces, the pial surfaces are defined secondarily
by expanding the WM surfaces. The vertices of the surfaces
are used to estimate indexes of cortical morphology, such as
volume, thickness, area, and gyrification. The cortical thick-
ness is defined at each WM vertex as the shortest distance to
the pial surface. The cortical area at each vertex can be
computed as the average area of all the triangles which
include the vertex. Then, the GM volume is defined as the
area times the thickness.51,52 The whole brain gyrification
index is defined as the ratio of the total pial surface over the

Fig. 2 Difference in the measurement of gray matter volume. In VBM (left), volume was calculated from voxel size and signal intensity on a
segmented gray matter image used as a tissue probability map. In SBM (right), volume was calculated from area size and gray matter
thickness. Gray matter thickness is defined as the distance between the pial and white matter surfaces. SBM, surface-based morphometry;
VBM, voxel-based morphometry.
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total perimeter of the brain. The latter is obtained by shape-
smoothing (morphological closing) of the former. The local
gyrification index measures the degree of cortical folding at
specific points of the cortical surface.4,53,54

Spatial normalization
2D spatial normalization from the native space to a standard
surface space was performed on the 2D cortical sheet.3,55

Identifying corresponding points on different cortical sur-
faces requires the establishment of a uniform surface-based
coordinate system. The patient’s WM surface is “inflated” to
the shape of a sphere, and the geometric quantification of the
WM surface is transferred to the sphere.51 The registration is
performed in a spherical space, meaning that the atlas exists
as a sphere by the seventh-order subdivision of icosahedron.
The folding pattern quantification technique is used to drive
a nonlinear, surface-based, inter-subject registration proce-
dure that aligns the cortical folding patterns of each subject
to a standard surface space, and this approach is similar to
performing a volume-based registration to the MNI space.51

Smoothing of normalized image
The smoothing process is performed before statistical analy-
sis in SBM as it is in VBM. In SBM, spatial smoothing is
performed in parameter maps of factors, such as cortical
thickness, on the spherical surface by the Gaussian smooth-
ing kernel51 for reduction in inter-individual variation.
Larger kernel size yields high repeatability in cortical thick-
ness estimation among scan and rescan, and also produces
low repeatability for surface area and volume change.56 The
main cause for the former is that the effect of misregistration
is decreased by using smoothed image. The latter is mainly
based on the fact that small region of surface or volume
change is averaged with the surrounding unchanged area by
smoothing. Therefore, there exists a trade-off problem in the
determination of kernel size (i.e., degree of smoothing), and
we should choose the size carefully.

Statistical analysis
Various indices, such as cortical thickness, area, and volume,
are obtained at each vertex. Then, statistical analysis is per-
formed vertex by vertex, that is, comparison between two
groups with spatially smoothed index images. Conversely, a
non-smoothed index image was used for the estimation of
morphology with the atlas-based method. The atlas-based
method can demonstrate the absolute index values.57

As in the statistical analysis for VBM, SBM considers
indispensable factors such as age, sex, handedness, disease
duration, and medication use. In the statistical analysis
for cortical thickness in SBM, a prominent controversial
issue exists such that there is disagreement between two
types of studies: studies wherein TIV was used as the con-
founding covariate,5,11,58,59 and those wherein TIV was not
used.8,10,12,14,15,20,60–63 If cortical thickness correlates with
TIV, then TIV should be used as the confounding covariate in

the statistical analysis. It remains unknown whether results
show a correlation between TIV and cortical thickness. The
mean female head size is smaller than that of male indivi-
duals, but a part of the region within the cortex has a thicker
structure in female than in male samples.64 A report by
Winkler showed that brain volume is also highly correlated
with the surface area of the cortex (R2 = 0.856, P = 1.8 ×
10−142) but is not correlated with the average cortical thick-
ness (R2 = 0.046, P = 0.153).65 Therefore, we suggest that
TIV should not be used as a confounding covariate in the
statistical analysis of cortical thickness; instead, mean corti-
cal thickness of the global brain area may be used for this
purpose. Appropriate covariates should be identified in
future studies.

Difference points between VBM and SBM processing
In this paragraph, we describe important points of difference
between VBM and SBM. In VBM, the GM volume inside a
voxel of a segmented tissue image is calculated on the
segmented GM image using the following equation: signal
intensity inside voxel × volume of voxel. However, the GM
volume in SBM is calculated from GM thickness and area
(Fig. 2). Therefore, GM volume in VBM is not equal in
meaning to GM volume in SBM. Moreover, previous reports
have revealed a difference in accuracy between VBM and
SBM. The 3D spatial normalization process was used for
VBM, and the 2D spatial normalization process was used for
SBM (example images are shown in Fig. 3). A report by
Ghosh demonstrated more accurate registration in SBM
compared with VBM.66 In contrast, a study by Klein showed
no significant difference in registration accuracy between
VBM and SBM.67 These contradictory study results from
Ghosh and Klein were addressed in Ghosh’s report, noting
that the topographic properties used by FreeSurfer (e.g.,
curvature) may provide better features for matching findings
across participants in this age range (i.e., children) than those
provided by the intensity-derived properties used by volume-
registration algorithms.66 We agree with this discussion
point, which is further supported in a report by Wilke,68

showing that the accuracy of spatial normalization with
VBM in children is lower than that in older individuals. In
addition, Wilke’s report68 suggested that a pediatric template
should be used for spatial normalization in VBM for this
patient population. No previous report has shown that the
spatial normalization performance in VBM is superior to that
of SBM. Finally, FWHM in the smoothing process with
VBM is smaller than that with SBM (VBM: 4 mm7 to
12 mm12, SBM: 10 mm8 to 25 mm15), which is summarized
in Table 2.

Factors Influencing the Measurement
Reliability

The reliability of measurements is a very important factor
because low reliability obscures changes in brain volume
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and cortical morphology. Several factors can influence
the reliability of measurements. In addition to analysis
software,31,69,70 software parameters,71 and quality of the
analyzed image24,25,72,73; three major factors are
described in the following section: effects of (1) structure
and volume, (2) imaging parameters, and (3) statistical
analysis parameters.

Effect of structure and volume
In brain morphometry, the goal is to detect small changes. The
required level of reliability has been found to change based on
the amount (or change rate) of the brain volume change that
must be detected. We describe this amount (or change rate) as
follows: over time, the GM volume decreases curvilinearly,
showing an average volume loss of 0.7 mL/year, whereas the
WMvolume remains constant during five decades in the normal
aging process, as reported in individuals aged 21–70 years.74

TheGMvolumewas found to decreasewith age at a rate of 2.37
cm3/year (−0.18%/year) in normal aging (individuals aged 58–
95 years).75 Cortical thickness is very thin (overall average of
approximately 2.5 mm) for the typical voxel size of an analyzed
image, and regional variations in cortical thickness can be quite
large (1–4.5 mm).52 Most of the cortical mantle shows thinning
rates of ≥ 0.01 mm/decade in normal aging (individuals aged
18–93 years), and the greatest rate (> 0.07 mm/decade) was
found in the primary motor cortex.76

Regarding VBM, a report by Jovicich77 showed that: (i)
reproducibility errors (= 100 × standard deviation/mean
volume) across sessions using the same scanner were <
4.3% in the older group and < 2.3% in the younger group;

and (ii) smaller structures (pallidum, amygdala, and inferior
lateral ventricles) were associated with higher reproducibil-
ity errors (approximately < 10%). Moreover, a report by
Ewers78 described repeatability with voxel-wise analysis,
and lower repeatability was found in the base of the skull
and parietal lobe.

Regarding SBM, a report by Wonderlick79 showed that
surface maps of cortical thickness reliability reveal high local
intraclass correlation coefficient (ICC) values across most of
the cortex, and the areas of relatively low reliability include
the entorhinal, medial orbitofrontal, lingual, and right-rostral
middle-frontal cortex. Moreover, a report by Han80 also
showed that the thickness measurement variability is nonuni-
form across the cortex. The most variable area is the region
surrounding the precentral gyrus. Other reports have shown
that the boundaries of the temporal pole and occipital lobe
were not defined precisely and that variation in these regions
among individuals is often observed.81

Effect of imaging parameters
In VBM, the report by Jovicich77 showed that the choice of
imaging sequence (magnetization prepared rapid gradient
echo [MPRAGE] or multiecho fast low angle shot
[FLASH]) influenced repeatability. There are inconsistent
reports regarding static magnetic fields; repeatability in a
low-field MRI scanner (0.4 tesla) was similar to that in a
1.5-tesla scanner,82 and bias related to changes in field
strength was found in another study.77

In SBM, the report by Wonderlick79 showed that
(i) parallel imaging acceleration decreases the ICCs of

Fig. 3 Difference in spatial normalization. In VBM (figures on the left), 3D spatial normalization was performed on the segmented gray
matter image. Signal intensity on the segmented gray matter image represents tissue probability. In SBM (figures on the right), 2D spatial
normalization was performed on the 2D cortical sheet that was shown on a sphere surface. The brain sulcal patterns were inflated to the
sphere surface space in SBM, and the depths of the sulcus and gyrus were represented by the black and white colors, respectively. SBM,
surface-based morphometry; VBM, voxel-based morphometry.
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cortical thickness in a part of the structure (i.e., parietal and
cingulate); and (ii) in general, multiecho MR image acquisi-
tion increases the ICCs of cortical thickness and volume; and
(iii) voxel size has no obvious effect on cortical measurement
reliability but produces bias-related effects, such as higher
thickness in isotropic voxels compared with anisotropic vox-
els. Moreover, the report by Han80 also revealed the

following three findings on SBM: first, the measurement
variability (difference in the average absolute thickness) is
< 0.12 mm for the bulk of the cortex when comparing
thickness measurements within the same scanner platform;
further, comparing these measurements across platforms or
field strengths slightly increases measurement variability,
but it is still < 0.15 mm for most of the cortex when the

Table 2 Summary of comparison studies of voxel- and surface-based morphometry

Paper Year Patient Superior

Software
(upper: VBM
and lower:

SBM)

Version Spat.
Norm. Smoothing Significant

threshold

Allan8 2016 Tinnitus SBM SPM 8 DARTEL FWHM = 10 mm FWE, P < 0.05

FreeSurfer 5.3 FWHM = 10 mm Corrected,
P < 0.05

Juurmaa9 2016 Methcathinone
abusers

SBM FSL 4.1 FLIRT Sigma = 3 mm FWE, P < 0.05

FreeSurfer 5.1 Not specified Corrected,
P < 0.05

Tessitore10 2016 Parkinson’s
disease

SBM SPM 8 DARTEL FWHM = 8 mm FWE, P < 0.05

FreeSurfer 4.5 FWHM = 10 mm FDR, P < 0.05

Pereira11 2012 Parkinson’s
disease

SBM SPM 8 DARTEL FWHM = 12 mm FWE, P < 0.05

FreeSurfer 4.3.1 FWHM = 15 mm Corrected,
P < 0.05

Hyde12 2010 Autism SBM CIVET Not
specified

Not
specified

FWHM = 12 mm FDR, P < 0.05

CIVET Not
specified

FWHM = 20 mm FDR, P < 0.05

Bär13 2015 Anorexia
nervosa

Equivalent SPM 8 DARTEL FWHM = 8 mm FWE, P < 0.05

FreeSurfer 5.3 FWHM = 10 mm Corrected,
P < 0.05

Baima14 2020 Obstructive
sleep apnea
syndrome

Equivalent SPM 12 DARTEL FWHM = 8 mm Uncrrected,
P < 0.001

SPM + CAT 12 FWHM = 15 mm Uncrrected,
P < 0.001

Klauser15 2015 ARMS Equivalent SPM 8 DARTEL FWHM = 8 mm Uncrrected,
P < 0.001

FreeSurfer 5.1 FWHM = 25 mm FDR, P < 0.05

Grieve16 2013 Major
depressive
disorder

VBM SPM 8 DARTEL FWHM = 8 mm FDR, P < 0.05

FreeSurfer 4.3 Not specified FDR, P < 0.05

Voets17 2008 Schizophrenia VBM FSL Not
specified

Not
specified

FWHM = 8 mm Corrected,
P < 0.05

FreeSurfer Not
specified

FWHM = 10 mm FDR, P < 0.05

Palaniyappan18 2012 Schizophrenia VBM SPM 8 DARTEL FWHM = 8 mm FWE, P < 0.01

FreeSurfer 4.5 Not specified Corrected,
P < 0.0125

DARTEL, diffeomorphic anatomical registration through exponentiated lie algebra; FDR, false-discovery rate; FSL, FMRIB software library; FWE,
family-wise error; SBM, surface-based morphometry; SPM, statistical parametric mapping.
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platform—but not field strength—differs, and is < 0.2 mm
when field strength differs. Second, thickness reliability is
poorer when using the non-multiecho FLASH sequence ver-
sus MPRAGE. Third, a scanner upgrade improves the thick-
ness measurement reliability. A report by Iscan showed that
cortical thickness is more susceptible to scanner differences
than cortical surface area and volume.81

In both VBM and SBM processing, signal intensity on MRI
is used for tissue segmentation. The signal intensity is affected
by imaging parameters, such as field strength, TR, and TE. In
addition, MR images show slight differences between initial
scans and re-scans even if they are obtained using the same
imaging parameters; this is because of random artifacts from
motion and flow. These factors decrease the reliability of VBM
and SBM. However, we do not yet know the difference in
reliability between VBM and SBM. We were not able to find
previous reports that show comparisons between the reliability
of the methods when the same imaging parameters are used.
Moreover, reliability was affected by the software used in
VBM and SBM. These differences in imaging parameters
and the software used complicate the comparison of reliability.

Effect of statistical analysis parameters
Statistically significant differences were estimated regionally in
the brain between control and patient groups in both methods.
However, it was found that these statistically significant differ-
ences may have included false-positive and -negative results.
The major cause of this is the statistical analysis parameters,
such as cluster-forming threshold. Otherwise, preprocessing
quality (distortion correction and signal intensity non-unifor-
mity) and signal change due to abnormal tissue (iron content)
affect analysis in both methods. Therefore, clinicians who use
VBM and SBM should not forget the potential for false-posi-
tive and -negative results, even if the latest version of analysis
software is used for cortex estimation.43,51 As one example,
Silver et al.43 assessed 181 patients with mild cognitive impair-
ment from the Alzheimer’s Disease Neuroimaging Initiative
database83 who underwent VBM using the SPM software,
version 5 (SPM5)1, and created a general linear model for
statistical inference. The results showed that the false-positive
rates were found to be well controlled (3.9%–5.6%) at a
relatively high cluster-forming threshold (αc = 0.001) and that
the false-positive rates ranged from 9.8% to 67.6% at a lower
cluster-forming threshold (αc = 0.01, 0.05).43 Therefore, it is
important to investigate significant positive results in both the
VBM and SBM methods, with the hypothesis that VBM or
SBM should be used for whole brain testing, and additional
methods, such as manual tracing and visual evaluation, should
be used to reconfirm the findings.

Review of VBM and SBM Studies
on Healthy Subjects

This section discusses two main findings from the literature
on VBM and SBM studies: (1) group differences among

populations and (2) correlation with aging and indices of
cortical morphology.

Group differences among populations
Tang et al.84 have reported on brain morphology differences
among populations using both VBM and SBM. On the other
hand, Wei’s group85 reported association with brain mor-
phology and second language exposure timing in native
English speakers with both methods. Based on the review
of both reports, we found differences in brain morphology
among populations and differences in statistically significant
thresholds between both methods.

The report by Tang showed significant group differences
in VBM (GM volume) and SBM (cortical thickness, cortical
volume, and cortical surface area).84 This study analyzed two
comparable samples (45 subjects in each group) from young
Chinese and Caucasian populations, well matched for sex,
handedness, and education. In VBM, they used the VBM
8 toolbox software (using DARTEL), 8-mm FWHM for
image smoothing, and P < 0.001 as the statistically signifi-
cant threshold without a correction for multiple comparisons.
In SBM, they used FreeSurfer (version 5.3.0), 20-mm
FWHM for image smoothing, and P < 0.05 as the statistically
significant threshold with a false-discovery rate (FDR). They
stated that the use of both VBM and SBM for studying group
differences was the main strength of their study, the results of
which are summarized in Table 3. These results showed that
both the VBM and SBM methods were needed for the
detection of brain morphological changes. In this report,
different statistically significant thresholds were used for
group comparisons using VBM (uncorrected, P < 0.001)
and SBM (FDR, P < 0.05). It is important to note here that
the decision regarding the threshold for statistical signifi-
cance is a controversial issue for studies using both VBM
and SBM. Based on the results of the study by Tang,84 we
think that the threshold for statistical significance in VBM is
lower than that of SBM, when detectability in VBM is the
same as that of SBM. When the statistically significant
threshold in VBM was set to the FDR at P < 0.05, the
false-negative rate was increased compared with when an
uncorrected P < 0.001 was used, but the false-positive rate
was decreased.

The statistically significant threshold in VBM and SBM is
also discussed in the report by Wei.85 They suggested that
VBM results with a lower threshold of uncorrected P < 0.01
still provide useful information. An important point is that
VBM and SBM may provide different types of information
and thus should be conducted concurrently. The causes of the
difference are that the GM volume in VBM is not the same as
the cortical volume in SBM and that SBM can provide
several kinds of indices. That is, the results strongly depend
on various factors such as used indices, smoothing kernel
size, and statistically significant threshold. Therefore, it is
important to understand the effects of the factors if we inter-
pret the results of the previous studies.
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Correlation with aging and indices of cortical
morphology
Age and sex differences in brain morphometry were reported
in some previous studies on SBM.76,86,87 A study by Zhao
examined age differences in SBM measurements of cortical
thickness, volume, and surface area in a well-defined sample
of 8137 generally healthy participants (age, 45.17–79.37
years) from the United Kingdom Biobank.86 Novel relation-
ships were shown of age-related cortical differences with the
following individual factors: sex; cognitive functions of fluid
intelligence, reaction time, and prospective memory; cigarette
smoking; alcohol consumption; sleep disruption; and genetic
markers of apolipoprotein E, brain-derived neurotrophic fac-
tor, catechol-O-methyltransferase, and several genome-wide
association study loci for Alzheimer’s disease. The results
further reveal the combined effects of cognitive functions,
lifestyle behaviors, and education on age-related cortical
differences.86 In the case of all measurements (cortical
volume, area, and thickness), quadratic age effects were
observed in the medial orbitofrontal cortex, medial temporal
cortex, and cingulate cortex. In addition, quadratic age effects
were observed in specific measurements in the following
regions: in the lateral temporal cortex and occipital regions,
on cortical volume and area; in the dorsolateral prefrontal
cortex, on cortical area; in the bilateral temporal poles, on
cortical thickness; and in the left-lateral occipital cortex, on
cortical volume.86 Negative associations (based on fitted gen-
eralized linear regression models) between age and cortical
morphology were found across most of the cortical areas, and
most pronouncedly, in the prefrontal cortex and lateral tem-
poral cortex in the case of all the measurements.86 Studies of
VBM also showed that negative associations between age and
GM volume were found across most of the cortical areas and,
most pronouncedly, in the lateral temporal cortex.88,89 In
addition, the SBM study by Zhao and aforementioned VBM
studies showed that the slope of the regression line for the
correlation between GM volume and age in male subjects was
significantly steeper than that in female subjects.86,88,89

Some previous reports revealed a larger number of clus-
ters of a significant group difference in GM volume on using
VBM compared with on using SBM.90–92 Moreover, the
report by Winkler showed that cortical surface area is not
correlated with cortical thickness (R2 = 0.0003), GM volume
is very weakly correlated with cortical thickness (R2 =
0.1815), and GM volume is strongly correlated with surface
area (R2 = 0.7881).65 Compared with VBM, SBM can pro-
vide more detailed information on brain morphometry—spe-
cifically, SBM can provide indices such as volume,
thickness, area, and gyrification, whereas VBM can only
provide volume measurements. Based on a review of all of
the results from these studies on healthy subjects, we suggest
that using both VBM (GM volume) and SBM (cortical
volume, area, and thickness) would help researchers and
clinicians to obtain a better understanding of the neurobiolo-
gical processes of the brain.

Review of VBM and SBM Patient Studies

In this section, we discuss how VBM compares to SBM in
morphological change detection between normal subjects
and patients with various diseases. We review them in three
classes: (1) superior detection by VBM, (2) superior detec-
tion by SBM, and (3) equivalent detection by VBM
and SBM.

Superior detection by VBM
In a report by Grieve,16 102 patients with major depressive
disorder (MDD) and 34 healthy controls were analyzed using
VBM (SPM8) and SBM (FreeSurfer, version 4.3). The VBM
analysis showed large areas of decreased GM volume dis-
tributed across the brain in MDD, with no regions of
increased GM volume. In a comparison of the widespread
differences in volume, the measured cortical thickness dif-
ferences between the MDD and control groups were limited
in SBM.16

In a report by Voets,17 25 patients with adolescent-onset
schizophrenia and 25 healthy controls were analyzed by
VBM (FSL) and SBM (FreeSurfer). Based on their results,
nine regions of apparent reduction in GM volume were found
in the patients compared with the healthy matched controls
using VBM, which were not found with SBM-derived cor-
tical thickness measurements. The study’s discussion made
the following points: the measured GM volume with VBM is
a mixed result, combining thickness, surface area, and fold-
ing differences; and a mixed measurement improves sensi-
tivity relative to that in an analysis that uses each
measurement separately.17 In addition, superior detection of
brain morphological changes in schizophrenic patients was
observed in VBM as compared with in SBM in a study by
Palaniyappan.18

In a study by Meyer involving the use of SBM
(FreeSurfer, version 5.3.0),19 the researchers reanalyzed
the structural MRI data of 257 patients (these data were
analyzed in their previous VBM study) with tinnitus and
discussed the difference between the results of VBM and
SBM. Their discussion expressed that, “even though the
architecture of SBM makes it possible to investigate more
neuroanatomical traits than just cortical volume, the
results that it engenders are statistically less reliable.”19

Moreover, they suggested that SBM should be used com-
plementary to VBM because it allows for the computa-
tion of three distinct parameters, namely, cortical volume,
area, and thickness.19

In a study by Prins involving the use of SBM (FreeSurfer,
version 5.3.0),20 structural MRI data were reanalyzed in 113
participants (34 patients with juvenile macular degeneration,
24 patients with age-related macular degeneration [AMD],
and 55 healthy age-matched controls). Their findings suggest
that the cortical changes in AMD patients are relatively
subtle, and superior detection was observed in VBM com-
pared with SBM in AMD patients. Finally, they suggested
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that SBM does not always detect changes in cortical features
in areas where VBM detects differences in GM volume.20

Superior detection by SBM
In a study by Allan,8 55 controls and 73 patients with tinnitus
were analyzed with VBM (SPM8) and SBM (FreeSurfer,
version 5.3.0). The results showed that any regions found
in the VBM analysis would also appear in the SBM analysis,
and a larger proportion and number of significant clusters
were observed in SBM compared with VBM.8 Allan noted
three reasons for the difference in results between VBM and
SBM. First, the nature of the measurement was different
because the analytical process is different between VBM
and SBM. Second, registration accuracy was different
because VBM and SBM used 3D and 2D registration tools,
respectively. Third, different types of family-wise error
(FWE) corrections and different covariate nuisances were
used in the statistical analysis. As we agree with the first
and second reasons, we will focus this discussion on the third
reason. Allan mentioned in the discussion that it is also likely
that the cluster-based FWE correction used in FreeSurfer is
more sensitive to large clusters of relatively low significance,
which could explain why more clusters were found overall in
the SBM analysis.8 As mentioned in a previous subsection of
the current review (“Review of VBM and SBM studies on
healthy subjects”), many studies used different thresholds of
statistical significance between VBM and SBM in the ana-
lysis, e.g., uncorrected P < 0.001 in VBM and FDR P < 0.05
in SBM.84 Based on the discussion by Allan8 and result of
the Tang study,84 we think that the threshold for significance
in the statistical analysis for VBM should be set at a lower
level compared with that of SBM. However, a lower statis-
tically significant threshold generates false-positive results
corresponding to group differences in brain morphological
changes.

In a report by Juurmaa,9 12 methcathinone abusers and 12
controls were analyzed using VBM (FSL, version 4.1) and
SBM (FreeSurfer, version 5.1). For the statistically signifi-
cant threshold, the P value with a multiple-comparison cor-
rection was set to 0.05 in both methods. In SBM, clusters of
significant cerebral cortical thinning were observed in a large
area of the cortex in the methcathinone abusers compared
with in the controls. By contrast, in VBM, significant GM
loss was limited to small areas (i.e., putamen, caudate, and
left-temporal lobe) in the patients compared with the
controls.

In a report by Tessitore,10 30 patients with Parkinson’s
disease (PD) and 24 controls were analyzed using VBM
(SPM8) and SBM (FreeSurfer, version 4.5). For the sta-
tistically significant threshold, the P value with a multi-
ple-comparison correction was set to 0.05 in both
methods. In SBM, statistically significant results indicat-
ing a thicker cortex were shown in the anterior cingulate
and orbitofrontal cortices in PD patients. In contrast, in
VBM, no significant GM loss was seen in the patients

compared with in the controls. In addition, the study’s
discussion expressed that cortical thickness in SBM may
be more sensitive than the findings in VBM in revealing
PD-related structural changes. Pereira11 also reported the
superior detection in SBM for PD and highlighted the
following reasons: this difference in sensitivity between
the two methods has been related to limitations of VBM
in cortical GM assessments, as it merges information
regarding morphology, size, and position; and conse-
quently, the final measurements were comprised of a
combination of thickness and cortical folding, therefore
producing less specific results.11 In reports by Tessitore10

and Pereira,11 superior detection by SBM compared with
that by VBM was shown in PD patients.

In a report by Hyde,12 superior detectability was found
in SBM compared with in VBM by group comparison.
They used CIVET software for cortical thickness analysis
and VBM analysis.12 The study participants were 15
young adult men with autism and 13 controls. The VBM
results converged with the cortical thickness findings of an
increased orbital frontal gyrus and decreased pre- and
post-central gyri. Moreover, the cortical thickness analysis
also revealed GM differences in various other cortical
areas, consistent with previous findings in autistic indivi-
duals. The researchers expressed that an estimation of
cortical thickness was more sensitive in detecting subtle
cortical differences in autism.12

Cases finding VBM and SBM equivalent
In a report by Bär,13 26 patients with anorexia nervosa and 26
healthy controls were analyzed using VBM (SPM8) and
SBM (FreeSurfer, version 5.3.0). In both VBM and SBM,
significant GM reductions were observed in the midcingulate
cortex and posterior cingulate cortex in the patients with
anorexia nervosa compared with the healthy controls. In
addition, in the patients, significant GM reductions were
observed in the supplementary motor area by VBM, whereas
significant cortical thickness reductions were observed in
some gyri (i.e., middle frontal, superior frontal, and superior
temporal gyrus) by SBM.

In a report by Baima,14 18 patients with obstructive sleep
apnea syndrome and 32 healthy controls were analyzed using
VBM (SPM12) and SBM (CAT12). Significant GM reduc-
tions were observed in the superior temporal gyrus, temporal
pole, cerebellum, and thalamus in the patients with obstruc-
tive sleep apnea syndrome compared with the healthy con-
trols in VBM. By contrast, significant cortical thickness
reductions were observed in the precentral gyrus in the
patients by SBM.

In a report by Klauser,15 69 patients with an at-risk mental
state (ARMS) for psychosis and 32 healthy controls were
analyzed using VBM (SPM8) and SBM (FreeSurfer, version
5.1.0). Using VBM, a significant GM volume increase in the
precentral gyrus and decrease in the frontal inferior gyrus
were observed in the patients with ARMS compared with the
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healthy controls. In contrast, using SBM, increased cortical
thickness was observed in the frontal pole of the patients
with ARMS.

Based on these reviews of three classes of VBM and
SBM studies, a summary on the use of VBM and SBM
follows. In some diseases such as MDD, schizophrenia,
and AMD, VBM outperformed SBM in the detection of
cortical morphological changes, while SBM showed super-
ior detection power over VBM in other diseases, including
methcathinone abuse, PD, and autism. That is, the appro-
priate method appears to depend on the target disease with
further reports for each disease expected. However, we
should remember that even when SBM (as the first choice)
detected group differences, VBM may contribute to the
detection of other regions of significant difference, and
vice versa. In summary, VBM and SBM can serve as com-
plimentary methods for the detection of morphological
changes in the cortex.

Future Directions for the Estimation of
Cortical Morphological Changes

Based on our review, we posit that both VBM and SBM are
useful for the detection of the brain morphological change.
In the future, if a new method that offers the advantages of
both VBM and SBM is developed, it will be the first choice
for the brain morphometry. In the following section, we
describe two recent methods that are candidates for becom-
ing the preferred new method. The first method is multi-
modal parcellation, in which several types of images—T1-
weighted, T2-weighted, functional, and diffusion-weighted
MR images—are captured using several types of MRI pulse
sequences and used for the analysis of cortical morpholo-
gical changes; however, the effect of spatial misregistration
exists in each type of contrast image, thereby complicating
the results of the analysis. In the present report, parcellation
means the division of the cortex into a larger number of
small areas, and segmentation means the division of tissue
into GM and WM. The second method is multi-contrast
segmentation using synthetic MRI data, and is called syn-
thetic segmentation. In synthetic MRI, several types of
contrast—for example T1-, T2-, and proton density-
weighted MRI—are obtained for one pulse sequence. In
this process of segmentation with multi-contrast images of
synthetic MRI, no effect of spatial misregistration occurs
between contrast images, thereby not complicating the
results of the analysis.

Multi-modal parcellation
Multi-modal parcellation is a new analysis method based on
the definition of ROIs with fine division, which is used for
the evaluation of the brain morphological and functional
changes. In comparison with conventional VBM and SBM,
more than double number of ROIs are used in multi-modal
parcellation. In addition, unlike geometric registration of

pre-determined ROIs, multi-modal information such as T1-
weighted, T2-weighted, functional, and diffusion-weighted
MRI provides more reliable ROI configuration.
Consequently, fine and reliable ROIs enable us to obtain
new findings. For example, Glasser et al. showed 180 areas
(97 new areas in addition to 83 previously reported areas) in
one hemisphere with multi-modal parcellation.93 These new
areas, especially the language-related area (known as Area
55b), provide new knowledge.94–96

The Human Connectome Project (HCP) developed a
method and released a software tool for a typical multi-
modal parcellation, which uses T1-weighted, T2-weighted,
functional, and diffusion-weighted MRI.97 The minimal pre-
processing of the HCP pipelines is comprised of three parts:
HCP Structural Pipelines, HCP Functional Pipelines, and
Diffusion Preprocessing Pipelines. Based on the pipeline,
the HCP atlas of multi-modal parcellation, version 1.0
(HCP_MMP1.0), was released to the public by Washington
University (USA).93 Sample images of areal parcellation
captured using structural and resting-state functional MRI
are shown in Fig. 4. Fig. 4A and 4B shows parcellation
results in different subjects, which indicate individual-level
differences. Fig. 4B and 4B2 shows repeatability of analysis
and reanalysis. The parcellation results changed slightly
between analysis and reanalysis, and the myelin map did
not change (Fig. 4B and 4B2). The slight differences were
caused by randomness introduced in the algorithm.
Parcellation analyses (Fig. 4) were conducted with the fol-
lowing methods that are the same as those used by Osada
et al. and Suda et al..98,99 Each image data type in a subject
was transferred to normalized space in the single-modal
analysis, and several types of image data in a subject were
transferred to normalized space in the multi-modal analysis.
In general, this normalization scheme may yield registration
error modality by modality. Therefore, accurate spatial nor-
malization is more difficult in multi-modal than single-
modal analysis. However, we suggest that the accuracy of
spatial normalization in HCP pipelines is at a sufficient level
in clinical settings, as previous reports have shown its use-
fulness in patients.94–96,98,99

Synthetic segmentation: multi-contrast segmentation
using synthetic MRI
Recently, 3D quantification involving an interleaved Look–
Locker acquisition sequence along with a T2 preparation
pulse (3D-QALAS) sequence was developed for the simul-
taneous quantification of relaxation times (longitudinal T1
and transverse T2 relaxation times) and proton density100;
and this method has been applied in the brain.101,102 Using
information obtained through T1, T2, and proton density
maps, the synthetic MRI method using SyMRI software
(SyntheticMR, Linköping, Sweden) can capture any type of
contrast image, including T1-weighted, T2-weighted, proton
density-weighted, and inversion recovery images.103

Therefore, VBM with synthetic MR images overcomes
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problems, such as additional image scan time and misalign-
ment between different images, incurred during multi-con-
trast segmentation. Moreover, in image analysis with VBM
and SBM, synthetic MR images have fewer drawbacks, such
as signal intensity nonuniformity and low-contrast-to-noise

ratio, compared with conventional MR images because syn-
thetic images are generated by quantitative values, namely,
T1, T2, and proton density maps.104

A previous study demonstrated improved accuracy of the
brain extraction by using synthetic segmentation.30 We

Fig. 5 Representative image of segmented gray matter image in (a) synthetic (T1- and proton density-weighted) segmentation and (b) single
contrast (T1-weighted) segmentation. (c) is a T1-weighted image and (d) is a proton density-weighted image. Red and blue arrows showmis-
segmentation in single-contrast segmentation.

Fig. 4 Sample images of the myelin map (upper) and parcels (lower) displayed on an inflated cortical surface in the left hemisphere.
Individual differences between subject A and subject B were visually found in both the myelin map and parcels. B_2 shows the results of the
reanalysis of subject B. Slight differences between the results in B and B_2 were visually found in the parcels inside the circle with the dotted
line but were not found in the myelin maps.
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additionally note that the accuracy of GM segmentation was
also improved by using the synthetic segmentation.105 Sample
images are shown in Fig. 5. Sample images were processed
with the following methods: based on the 3D-QALAS data,
SyMRI software (version 0.45.14) was used to create images
with two contrast mechanisms (T1-weighted and proton den-
sity-weighted). Multi-contrast (T1-weighted + proton density-
weighted) segmentations were performed using the SPM 12
software. In the putamen and dural sinus, mis-segmentation
was decreased by using synthetic segmentation (Fig. 5). It is
easy for mis-segmentation to arise in the putamen and dural
sinus when using the single-contrast method.106 Reasons for
mis-segmentation are that signal intensity differences between
anterior and posterior parts in putamen, and signal intensity is
similar in the dural sinus and cortex. Proton density-weighted
images have a lower signal intensity variation in the putamen
as well as dissimilar signal intensities in the dural sinus and
cortex. Then, multi-contrast segmentation with proton den-
sity-weighted images has lower mis-segmentation in the dural
sinus and cortex, compared with single-contrast (T1-
weighted) segmentation.

Conclusion

Based on our reviews, we suggest that using both VBM
(GM volume) and SBM (cortical volume, area, and thick-
ness) can help researchers and clinicians to obtain a
better understanding of the neurobiological processes of
the brain. Moreover, VBM can contribute to the detection
of group differences in morphological changes in the
cortex, even when SBM showed superior detection
power in some diseases (i.e., methcathinone abuse, PD,
and autism). In addition, VBM has superior detection
abilities for the brain morphological changes in other
diseases (i.e., MDD, schizophrenia, and AMD). That is,
VBM and SBM can serve as complimentary methods for
the detection of morphological changes in the cortex.
Therefore, the use of both VBM and SBM has the poten-
tial to improve the accuracy of the detection of morpho-
logical changes in the cortex. Finally, we described two
recent methods, multi-modal parcellation and synthetic
segmentation, which may open new horizons for the
brain morphometry. Recent reports on these methods
provide new knowledge of the estimation of cortical
morphology.
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