Skip to main content
. 2022 Jun 15;82(1):1289–1311. doi: 10.1007/s11042-022-12678-6

Table 3.

Comparative analysis of performance with different handcrafted features with conventional learning and deep learning approach for facial age prediction techniques: MAE, is measured for AGE Regression(R) while recognition error or accuracy is evaluated for age group Classification(C)

Authors Dataset Feature Extraction R/C MAE Accuracy
Conventional learning Kwon et al. [56] Private Statistics Method C −−−
Ramesha et al. [51] Private Global,Grid C 90%
Pirozmand [79] FG-NET Gabor-PCA+LDA C 90%
Chikkala [17] FGNET WFPDP-GLCM C 96.5%
MORPH 97.5%
Hong et al. [46] MORPH-II Bisection Search R 3.64
tree(BST)
Guo et al. [40] YGA BIF,age manifold R 3.91
FG-NET 4.77
Guo et al. [39] YGA BIF+MFA(Marginal R 2.63
Fisher Analysis)
Guo et al. [37] MORPH Kernel Partial Least R 4.18
Squares (KPLS)
Chang et al.[12] MORPH-II BIF Scattering R 3.74
Transform
Hsu et al. [47] MORPH CBIF(Component R 3.21
FG-NET Bioinspired feature) 3.38
Suo et al. [89] FG-NET AND-OR Graph R 4.68
Geng et al. [35] FG-NET AAM R 6.77
Chao et al. [14] FG-NET AAM R 4.4
Geng et al. [33] FG-NET IIS-LLD R 5.77
Fu et al. [31] UIUC-IFP Discriminative R 3.0
Aging Manifold
Luu et al. [70] FG-NET Contourlet R 4.12
appearance
Thukral et al. [91] FG-NET 2Dshape Grass- R 6.2
mann manifold
Deep learning Wang et al. [96] FG-NET CNN R 4.26
MORPH-II 4.77
Niu et al. [75] MORPH-II CNN R 3.42
Rothe et al. [81] LAP CNN R 5.007
Rothe et al. [83] MORPH-II DEX R 3.25
MORPH-II DEX (fine 2.68
FG-NET tune IMDB-WIKI) 3.09
Chen et al. [16] MORPH Ranking CNN R 2.96
Pan et al. [77] FG-NET CNN R 2.68
MORPH-II 2.16
Zhang et al. [104] FG-NET AL-RoR-34 R 2.39
MORPH 2.36
Liu et al. [66] MORPH LSDML-ResNet 101 R 3.08
Taheri et al. [90] FG-NET DAG-VGG16 R 3.08
MORPH 2.81
FG-NET DAG-GoogLeNet R 3.05
MORPH 2.87
Li et al. [62] FG-NET BridgeNet R 2.56
MORPH 2.38
Agbo et al. [5] FG-NET Lightweight CNN R 3.05
MORPH 2.31
Liu et al. [67] FG-NET MA-SFV2 R 3.81
MORPH 2.38
Wang et al. [97] FG-NET CSC+STD R 4.01
MORPH Pooling 3.66
Liao [64] FG-NET Deep SRC+HSVR R 4.65
MORPH 3.64