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O P T I C S

All-optical graph representation learning using 
integrated diffractive photonic computing units
Tao Yan1,2†, Rui Yang1,3,4†, Ziyang Zheng1,3,4, Xing Lin2,3,5,6*,  
Hongkai Xiong4*, Qionghai Dai1,2,5,6*

Photonic neural networks perform brain-inspired computations using photons instead of electrons to achieve 
substantially improved computing performance. However, existing architectures can only handle data with regular 
structures but fail to generalize to graph-structured data beyond Euclidean space. Here, we propose the diffractive 
graph neural network (DGNN), an all-optical graph representation learning architecture based on the diffractive 
photonic computing units (DPUs) and on-chip optical devices to address this limitation. Specifically, the graph 
node attributes are encoded into strip optical waveguides, transformed by DPUs, and aggregated by optical couplers 
to extract their feature representations. DGNN captures complex dependencies among node neighborhoods during 
the light-speed optical message passing over graph structures. We demonstrate the applications of DGNN for 
node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work 
opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency pro-
cessing large-scale graph data structures using deep learning.

INTRODUCTION
Deep learning technologies (1) have achieved enormous advances 
in a wide range of artificial intelligence (AI) applications, including 
computer vision (2), speech recognition (3), natural language pro-
cessing (4), autonomous vehicles (5), biomedical science (6), etc. The 
core is to leverage multilayer neural networks to learn hierarchical 
and complicated abstracts from big data, driven by the continuous 
development of integrated electronic computing platforms, such as 
central processing units (7), graphics processing units (GPUs) (8), 
tensor processing units (9), and field-programmable gate arrays (10). 
However, the electronic computing performance is approaching its 
physical limit and faces large difficulties to keep pace with the in-
crease in demand of AI development, which is a common plight in 
a broad range of applications requiring large-scale deep neural models. 
In recent years, there has been growing research of interest in pho-
tonic computing to use photons as the computing medium to con-
struct photonic neural networks using its advanced properties of high 
parallelism, minimal power consumption, and light-speed signal 
processing.

Numerous photonic neural network architectures have been pro-
posed to facilitate complex neuro-inspired computations (11, 12), 
such as diffractive neural networks (13–19), optical interference 
neural networks (20, 21), photonic spiking neural networks (22, 23), 
and photonic reservoir computing (24, 25). Existing architectures 
have been most successful in processing data with regular structures 
in the form of vectors or grid-like images. Nevertheless, various 
scientific fields analyze data beyond such underlying Euclidean 

domain. As typical representatives, graph-structured data, which 
encode rich relationships (i.e., edges) between entities (i.e., nodes) 
within complex systems, are ubiquitous in the real world, ranging 
from chemical molecules (26) to brain networks (27). To process 
the graph-structured data, graph neural networks (GNNs) (28–32) 
have been developed as a broad new class of approaches that are 
able to integrate local node features and graph topology for repre-
sentation learning. Among these models, message passing–based GNNs 
have major advantages of flexibility and efficiency by generating 
neural messages at graph nodes and passing along edges to their 
neighbors for feature updates. It has been successfully applied in many 
graph-based applications, including molecule property prediction 
(26), drug discovery (33), skeleton-based human action recognition 
(34), spatiotemporal forecasting (35), etc. However, how to effec-
tively take advantage of photonic computing to benefit graph-based 
deep learning still remains largely unexplored.

Here, we propose the diffractive GNN (DGNN), a novel photon-
ic GNN architecture that can perform optical message passing over 
graph-structured data. DGNN is built upon the foundation of inte-
grated diffractive photonic computing units (DPUs) for generating 
the optical node features. Each DPU comprises the successive dif-
fractive layers implemented with metalines (36, 37) to transform the 
node attributes into optical neural messages, where the strip optical 
waveguides are deployed to encode the input node attributes and 
output the transformed results. The optical neural messages sent 
from node neighborhoods are aggregated using optical couplers. In 
DGNN architecture (Fig. 1), the DPUs can be cascaded horizontally 
to enlarge the receptive field to capture complex dependencies from 
the arbitrary size of neighboring nodes. Besides, the DPUs can also 
be stacked vertically to extract higher-dimensional optical node fea-
tures for increasing its learning capacity, inspired by the multihead 
strategy used in numerous modern deep learning models, e.g., trans-
former (38) and graph attention networks (30). On the basis of this 
scalable optical message passing scheme, we first demonstrate the 
semisupervised node classification task, where the DGNN-extracted 
optical node features are fed into an optical or electronic output 
classifier to determine the node category. The results show that our 
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optical DGNN achieves competitive and even superior classifica-
tion performance with respect to the electronic GNNs on both syn-
thetic graph models and three real-world graph benchmark datasets, 
i.e., two citation networks and one Amazon copurchase graph. Fur-
thermore, DGNN also supports graph-level classification, where the 
additional DPUs are used to aggregate all-optical node features into 
a graph-level representation for classification. The results on skeleton-
based human action recognition demonstrate the effectiveness of our 
architecture for the task of graph classification.

RESULTS
General GNN design principle
A graph structure of N nodes is represented as a tuple G = (V, ℰ, A), 
where ​V  = ​ {​v​ i​​}​i=1​ N  ​​ is the node set with i denoting the node indices, 
ℰ ⊆ V × V is the edge set, and A∈ℝN×N is the adjacency matrix encoding 
the connection between graph nodes. Figure 1A shows a toy exam-
ple of a graph with six nodes, where each node vi ∈ V is attached with 
a three-dimensional (3D) attribute xi. One prominent and powerful 
approach in most existing GNNs to learn effective node representations 
is the message passing scheme (28–31), as depicted in Fig. 1B. Each 
node aggregates neural messages sent from local neighborhoods during 
each iteration l (l = 1, …, L) of the message passing procedure

	​​ m​j​ (l)​  = ​ MSG​​ (l)​(​h​j​ (l−1)​)​	 (1)

	​​ h​i​ 
(l)​ = ​AGG​​ (l)​(​h​i​ 

(l−1)​, {​m​j​ (l)​∣j ∈ N(i )})​	 (2)

where ​​m​j​ (l)​​ is the neural message of jth node, N(i) is the neighboring 
node indices of node vi, ​​h​i​ 

(l)​​ is the updated features of node vi after l 
iterations of message passing, ​​h​i​ 

(0)​  = ​ x​ i​​​ is the initial node attributes, 
MSG(l)( · ) is a neural network shared across graph nodes to perform the 
feature transformation and generate neural messages, and AGG(l)( · ) 
is a function that aggregates messages sent from local neighbor-
hoods. To generate the graph-level representation hG, a read-out func-
tion Read − out( · ) can be applied to aggregate all node features into 
a vector after L rounds of message passing

	​​ h​ G​​  =  Read − out(​h​i​ 
(L)​∣​v​ i​​  ∈  V)​	 (3)

With the extracted node/graph-level features, we can perform node/
graph-level classification task by feeding the features to the output 
classifier and jointly learn model parameters via the end-to-end error 
backpropagation training method. In the following, we elaborate 
the design of DGNN to implement these critical operations using 
on-chip optical devices and modules.

Fig. 1. The architecture of optical DGNN. (A) An exemplar graph with six nodes and five edges. Each node has 3D attributes. (B) The schematic illustration of a single 
round message passing of the GNN for target graph nodes, including the feature transformation and aggregation. (C) An all-optical architecture illustration for graph 
representation learning, where node features are encoded into amplitude or phase of the light in optical waveguides and transformed by the integrated DPUs. The trans-
formed optical node features are aggregated using the optical couplers. The architecture is scalable for large graphs with a large number of nodes. (D) A multihead 
strategy is adopted to extract high-dimensional optical node features, based on which the node and graph classification tasks are performed using either electronic or 
optical DPU classifier, resulting in the DGNN-E or DGNN-O architecture. Each head is a structure similar to (C) that produces 2D optical features.
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DGNN architecture for optical message passing
The DGNN architecture is illustrated in Fig.  1  (C  and  D), which 
comprises all-optical devices and modules to implement the MSG( · ), 
AGG( · ), and Read − out( · ) functions in Eqs. 1 to 3. Specifically, the 
input node attributes are encoded by modulating the amplitude or 
phase of the coherent light, which can be realized via on-chip optical 
modulators, e.g., Mach-Zehnder interferometers (MZIs) (20). The 
input optical field of each node attribute passes through a single-
mode waveguide with transverse-electric polarization and is cou-
pled into the integrated DPU module. The DPU module achieves 
the MSG( · ) function using successive layers of 1D metalines as the 
diffractive layers to modulate the input optical field (see Materials 
and Methods and figs. S1 to S4). The metaline is a 1D etched rectangle 
silica slot array in the silicon membrane of silicon-on-insulator (SOI) 
substrate that forms as diffractive meta-atoms. The modulation co-
efficients of a diffractive meta-atom in metaline are determined by 
the height and width of the slot (see fig. S1). The neural message of 
each node is generated by coupling the output optical field of DPU 
with the single-mode or tapered output waveguides (see Materials 
and Methods and figs. S5 to S7), where the number of optical wave-
guides m determines the message dimensionality. We set m = 2 to 
avoid the waveguide crossing during the aggregation of neural in-
formation from neighboring nodes in this work, which can be scaled 
to arbitrary size in principle for further increasing the learning 
capability (see fig. S8).

The AGG( · ) function is realized by the optical Y-coupler (see 
Fig. 1C), where the feature aggregation of 2D optical neural messages 
over two nodes would not cause the waveguide crossing. Thus, the 
architecture can aggregate information from arbitrary size of neighbor-
hood by stacking the building block of DPU horizontally. The only 
waveguide crossing happens during the injection of light from the 
coherent source to DPU modules (see fig. S9), which can be well-
addressed by the existing waveguide crossing technology to mini-
mize the signal cross-talk and energy loss (39). To further enhance 
the expressive power of 2D node features, P independent heads can 
be vertically stacked in parallel as shown in Fig. 1D to produce 
2P-dimensional optical features for graph nodes following the multi-
head strategy. Besides, the procedure of a single round optical mes-
sage passing for feature updating can be further stacked to perform 
multiple rounds of message passing.

To enable graph-level learning, the read-out function Read − 
out( · ) can be realized by applying additional DPUs to aggregate all 
multihead optical node features into the optical graph features. First, 
each head of a graph node in Fig. 1D for producing optical node 
features is cascaded with a read-out DPU with two input waveguides 
and two output waveguides. Then, we aggregate the updated 2P-
dimensional optical node features of all nodes over each indepen-
dent head using the optical Y-coupler to perform a two-by-two optical 
aggregation, which obtains the 2P-dimensional optical graph features. 
By feeding the extracted node/graph-level features into the output 
optical or electronic classifier, corresponding to the DGNN-O or 
DGNN-E, respectively, the node/graph classification tasks are per-
formed. The modulation coefficients of all diffractive meta-atoms are 
jointly optimized via the end-to-end error backpropagation train-
ing method.

Node classification using semisupervised learning
We apply the DGNN for semisupervised node classification, which 
is one of the major AI tasks that GNNs have achieved notable 

success so far. Given the graph where each node is attached with 
vector-based attributes and a subset of graph node labels, the node 
classification task is to infer the labels for the remaining nodes. To 
scale-up GNNs for tackling large graph datasets, we adopt the PPRGo 
(31) model to directly capture the high-order neighborhood infor-
mation with a single AGG( · ) process (see Materials and Methods). 
This avoids the exponential neighborhood expansion problem during 
the multiple rounds of message passing and eliminates the nonlinear 
transition function. For each target node vi, we use the DPU to im-
plement MSG(xi) and then aggregate optical features of nodes with 
the top-k largest scores according to its personalized PageRank vector. 
After the training process of DGNN with the DPU settings detailed 
in Materials and Methods, the optical modulation coefficients are 
optimized, and the slot width of diffractive meta-atoms in the metalines 
are determined. We validate the superior classification performance 
of the DGNN on both the synthetic graph data and three real-world 
large-scale graph datasets, i.e., Cora-ML (40), Citeseer (41), and 
Amazon Photo (42), using both photonic finite-difference time-domain 
(FDTD) and analytical model evaluation.

The synthetic graph in Fig. 2A is generated using the stochastic 
block model (SBM) (43) to simplify the task and reduce the compu-
tational complexity for FDTD evaluation (see Materials and Meth-
ods). In this example, the DGNN is trained by configuring a single 
head, i.e., P = 1, that generates a 2D neural message for each target 
node from a 3D node attribute. The layout of the DPU module is 
shown in Fig. 2B(bottom), which includes the corresponding input 
and output tapered or single-mode waveguides and three layers of 
metalines. Each metaline has 150 diffractive meta-atoms, with each 
meta-atom size of 300 nm (see Fig. 2C). We set the binary modula-
tion for meta-atoms with every three consecutive elements to be the 
same, i.e., the same silica slot width and height, to consider the fab-
rication capability of existing silicon photonics foundry (see Materials 
and Methods) and reduce the modulation error of the analytical model 
with respect to FDTD (see fig. S2). The comparisons of output opti-
cal neural message of DPU module between the analytical model and 
FDTD are evaluated in figs. S3 and S4. Figure 2B(top) shows the 
optical field propagation of the DPU module using FDTD evalua-
tion for an exemplar node, where the amplitude of input light source 
mode in three input waveguides represents the node attributes, i.e., 
the 0.7674, 0.8795, and 0.6225, from top to down, respectively.

We use the DGNN-E for node classification of the synthetic graph 
that feeds the intensity detection of the calculated optical node fea-
tures to an electronic fully connected layer, where the numbers of 
input nodes and output neurons are equivalent to the feature 
dimension and category number, respectively. We further update 
each node’s representation by aggregating features with different k 
values to retrain the output electronic classifier for validating the 
effectiveness of the optical node representation. The classification 
results of DGNN-E with single-mode and tapered output wave-
guide under different k values are shown in Fig. 2D and fig. S5, re-
spectively. With the optimization of taper angle (see Materials and 
Methods), each tapered output waveguide couples larger regions, 
i.e., 2 m, of the output optical field for improving the DPU power 
transmission rate without decreasing the classification performance. 
Besides, Fig. 2D shows that the DGNN-E evaluated with FDTD 
achieves comparable performances with respect to the analytical 
model with system errors included (see Materials and Methods), 
and both are competitive or superior to the electronic PPRGo-S 
GNNs and multilayer perceptrons (MLPs) under the same number 
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of learnable parameters. Performing computations with complex-
valued optical fields, i.e., photons carrying both amplitude and 
phase information, extends an orthogonal dimension for each opera-
tion and can introduce advanced properties to our architecture. 
Numerous researches (44–47) have verified that the complex-valued 
neural networks enable the capabilities of faster learning (45), richer 
feature representation (45, 46), and better generalization character-
istics (47) than the real-valued counterpart networks. It has also been 
demonstrated that complex-valued photonic neural networks can 
achieve higher learning capability and model performance (21, 48). 
In DGNN, the DPU modules extract the complex-valued optical node 
representations to facilitate the node classification task.

On real-world benchmark graph databases, we construct the DGNN 
architecture by setting the top-k node number for feature aggrega-
tion to 8 and the head number to 4, i.e., k = 8, P = 4. Thus, each node 
generates 8D optical features in total, two dimensions for each head, 
from the preprocessed node attributes (see Materials and Methods 
and table S1). For the DGNN-E with electronic output classifier, the 
intensity of optical features detected with photodetectors is fed into 
an electronic fully connected layer, similar to the process on the 
synthetic graph. For the DGNN-O with optical output classifier, the 
eight output waveguides of optical features are directly coupled with 
a classifier DPU module composed of six diffractive layers with other 
settings the same as the DPU modules for generating optical neural 
messages. The classification results are detected by the photodetectors, 
each corresponding to one category, where the category of input is 
determined by finding the target photodetector with the maximum 
detected optical signal (13).

We report in Table 1 the analytical test accuracies of semisupervised 
node classification, i.e., the transductive learning, of DGNN on 
three benchmark graphs and compare them to electronic computing 

approaches of linear principal components analysis (PCA), nonlinear 
MLPs, and nonlinear PPRGo GNNs, including PPRGo-S and PPRGo-
WS (see Materials and Methods). Both the MLP and feature trans-
formation of PPRGo are configured using fully connected neural 
networks with two hidden layers and settings to have the same num-
ber of learnable parameters. The test accuracy convergence plots of 
DGNN-O and DGNN-E are shown in Fig. 3 (A and B, respectively). 
Besides, we also evaluate the DGNN-E using binary diffractive 
modulations with system errors by including the different amounts 
of Gaussian noise in fig. S10. Although the convergences fluctuate 
because of the rounding operation, the retraining scheme can be 
adopted to achieve stability and obtain even higher accuracy by fixing 
the learned modulation coefficient and retraining the output classi-
fier. The confusion matrices of test results using binary diffractive 

Fig. 2. Semisupervised node classification on a synthetic graph. (A) Top: The synthetic SBM graph with 300 nodes, where different colors denote different communi-
ties, i.e., categories. Bottom: The 3D node attributes of different communities are generated from different multivariate Gaussian distributions and normalized to [0,1]. 
(B) Top: The electric field of the DPU evaluated with FDTD that performs the MSG( · ) function on a target node of the synthetic SBM. Bottom: The corresponding DPU 
module is implemented in the silicon membrane of the SOI chip. The beginning core widths of tapered and single-mode output waveguides are set to be 2 m and 
500 nm, respectively. (C) The geometric diagram of the diffractive meta-atom that is formed by etching the rectangle silica slot in the silicon membrane of SOI substrate. 
(D) Classification accuracy of DGNN-E under different top-k nodes for feature aggregation with comparisons to MLP and PPRGo electronic models.

Table 1. Semisupervised node classification results on three 
benchmark graphs. The classification accuracy (%) of DGNN architecture 
are obtained by setting k = 8 and P = 4. 

Dataset Cora-ML Citeseer Amazon Photo

PCA 79.4 70.9 90.6

MLP 81.5 71.3 93.1

PPRGo-S 87.2 74.3 95.0

PPRGo-WS 88.2 75.9 95.1

DGNN-O 86.5 74.4 94.0

DGNN-E 88.5 75.0 95.0

DGNN-E (binary 
modulation, 
with error)

86.7 74.4 93.8
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modulation with a system error, implemented by including the stan-
dard deviation (SD) of 0.3 of Gaussian noise, on three benchmark 
databases are shown in Fig. 3 (D to F), which achieves test accuracies 
of 86.7, 74.4, and 93.8% on Cora-ML, Citeseer, and Amazon Photo, 
respectively. Overall, the results in Table 1 reveal the following facts: 
(i) Models that exploit the graph structure substantially outperform 
models that ignore the graph structure; (ii) the all-optical inference 
of DGNN-O achieves competitive performance with the PPRGo-S; 
(iii) DGNN-E achieves 1.3% higher classification accuracy than PPRGo-S 
on the Cora-ML database, showing that the optical modules of DGNN 
for implementing MSG( · ) and AGG( · ) are even more effective than 
the electronic message passing; and (iv) as the feature aggregation is 
essentially a low-pass filter (49) that can suppress the noise to a certain 
extent, the binary diffractive modulation with system error included 
also achieves competitive performance on all the graph benchmarks, 
demonstrating the robustness of architecture to system noise.

Furthermore, we conduct ablation studies of DGNN-E architec-
ture on the neighborhood size k for feature aggregation and the 
number of heads P for the output classifier (fig. S11). Note that k = 1 
refers to the architecture without message passing, which degenerates 
to the plain diffractive neural network (13). By increasing k from 
1 to 8, the test accuracy on Cora-ML monotonically increases and 
gains over 9% compared with the diffractive neural network (fig. S11A), 
demonstrating the functionality of feature aggregation for node clas-
sification. Besides, the multihead scheme substantially improves the 
test accuracy by generating a higher dimension of optical features 
(fig. S11B). We also demonstrate that input node attributes can be 
flexibly encoded into the amplitude or phase of input optical fields 

with comparable model performance (fig. S11C). In addition, the 
importance of diffractive modulation for performing the feature trans-
formation is shown in fig. S11 (D and E). We further evaluate the 
classification performance of DGNN-E with respect to the individual 
geometric parameters of DPUs on the Cora-ML graph database, 
including the number of diffractive layers, the distance between 
successive diffractive layers, and the number of meta-atoms per dif-
fractive layer (see fig. S12). The results demonstrate the robustness 
of DGNN-E with respect to the geometric parameters of DPUs within 
a large range, which indicates that the computing region size of DPU 
modules has the potential to be further optimized for improving the 
integration density. To visualize the generated optical feature repre-
sentations for all graph nodes, we apply the t-distributed stochastic 
neighbor embedding (t-SNE) (50) on the detected intensity values 
of optical node features for DGNN-E with k = 8 and P = 4. As illus-
trated in Fig. 3C and fig. S13, the t-SNE plots show that the node 
features exhibit discernible clustering across different classes in the 
projected 2D space, verifying the effectiveness of the optical imple-
mentations of MSG( · ) and AGG( · ) functions in DGNN architecture. 
In addition to semisupervised transductive learning, we also evaluate 
the inductive reasoning aptitude of DGNN (see Materials and Methods). 
The inductive node classification results on the three benchmarks 
are shown in fig. S14 and table S2, where DGNN still outperforms 
or achieves competitive performance with the electronic counterpart.

Graph classification for skeleton-based human action recognition
We validate the performance of DGNN on graph-level classification 
by applying it for the task of skeleton-based human action recognition. 

Fig. 3. Semisupervised node classification on three benchmark graph databases. (A) Test accuracy convergence plots of DGNN-O with optical DPU output classifier. 
(B) Test accuracy convergence plots of DGNN-E with electronic output classifier. (C) t-distributed stochastic neighbor embedding (t-SNE) visualization of node representations 
of DGNN-E on the Amazon Photo dataset. (D to F) Confusion matrices of DGNN-E classification result on three graphs with binary modulation and system errors by includ-
ing Gaussian noise with an SD of 0.3.
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The skeleton data are sequences of frames with each frame contain-
ing a set of 3D joint coordinates of the target recorded by sensors, 
with which the task is to predict the category of action in each se-
quence. In this work, we adopt the UTKinect-Action3D database (51) 
for evaluation, which contains the RGB, depth, and skeleton videos 
of 10 participants performing each action two times that are cap-
tured by a single stationary Kinect V1 at a frame rate of 30 frames/s. 
Here, we select 6 of 10 types of actions from the skeleton-based data, 
including walk, sit down, stand up, pick up, wave hands, and clap 
hands. The graph structure of a skeleton is shown in Fig. 4A, which 
contains the (x, y, and z) locations of 20 joints at each frame.

The workflow of DGNN architecture is illustrated in Fig. 4B. We 
implement the MSG( · ) and AGG( · ) functions using four heads 
that generate an 8D optical node feature for each joint, where the 
neural messages at each joint are aggregated from their direct neigh-
bors. At each skeleton frame, the head is cascaded with a DPU to 
perform Read − out( · ) that aggregates all node features into an 8D 
optical graph feature. Similar to the previous work (16), we divide 
each sequence with a length of M into numbers of subsequences 
with the same length of n (n ≪ M). Then, n graph-level represent
ations are concatenated to be fed into the output classifier for action 
recognition of the subsequence. We set n = 6 in this study, resulting 
48D optical features for each subsequence, which are fed into an 
electronic fully connected neural network layer to determine the sub-
sequence category. The video category is obtained by applying the 
winner-takes-all strategy (16, 25) on all video subsequences. To en-
sure the credibility of the evaluation, we perform fivefold cross-
validation on the 20 participants with six actions, i.e., 120 videos 
and 2512 subsequences, and report the average subsequence accu-
racy and video accuracy.

Our DGNN architecture achieves test subsequence accuracy of 
83.3% and video accuracy of 90.0%, verifying the effectiveness of 
the proposed method on graph-level learning. We visualize the 
results of subsequence action recognition for the categories of the 
walk and wave hands, as shown in Fig. 4C and fig. S15, respectively. 
It is obvious that the optical MSG( · ), AGG( · ), and Read − Out( · ) 
functions learn substantially different patterns for these two catego-
ries of actions. Specifically, taking the feature maps obtained by 
MSG( · ) as a close look, the DGNN learns the largest intensity val-
ues for the joint of index 16 and 20, corresponding to the left foot 
and right foot, respectively, for the action category of walking, but 
the joint of index 8, corresponding to the left hand, for the action 
category of waving hands. This can be interpreted as the critical of 
the joints for recognizing these two actions, which is consistent with 
the human consciousness. In Fig. 4D, the categorical voting matrix 
of one round in fivefold cross-validation, corresponding to 95.8% 
video accuracy, is provided to visualize the classification results on 
all the test subsequences. The percentage of votes for the six actions 
in each test video is calculated, and the videos are reordered so that 
the diagonal blocks of the matrix represent the correct classifica-
tion. The test result shows that only one video, indicated by the 
arrow, is misclassified.

DISCUSSION
Scarce training labels
We analyze the effectiveness of DGNN under the limited size of 
training labels, which is a common case in semisupervised learning. 
With the same architecture settings, we compare the performance 

of DGNN with respect to the baselines of electronic models under 
different sizes of training labels, including 1, 5, 10, 15, 20, and 25 
labels per class. We plot the bar graph of test accuracy with error 
bars by performing 10 times evaluations for each size of training 
label in Fig. 5. The mean values of the results are shown in table S3, 
where binarizing the diffractive modulation layer facilitates over-
coming the local minimum problem during the network training 
and improves the classification accuracy. The DGNN architecture 
outperforms all baselines for all label-scarce settings, especially at the 
small training-set size, e.g., only one label per class, which demon-
strates the higher generalization ability with respect to other electronic 
computing approaches.

DPU with tapered output waveguides
Tapered waveguides are used to couple larger regions of output 
optical fields to the output ports of integrated DPU. The improved 
coupling efficiency of the tapered output waveguide enables the 
photodetectors to receive more optical power and increases the signal-
to-noise ratio (SNR) during the photoelectric conversion. Higher 
SNR provides a higher quality of input signals to the classifier and 
ensures the stability of the classification tasks. The quantitative evalua-
tions of the output energy distribution and model performance of 
tapered and single-mode waveguides are shown in fig. S6. we use 
the FDTD to evaluate the power distribution of optical features on 
the test nodes of synthetic SBM graph with the trained DGNN-E 
models. The beginning core widths of tapered output waveguides are 
optimized and set to be 2 m (see Materials and Methods and fig. 
S7) instead of 500 nm used in the single-mode output waveguides. 
For each test graph node, the power transmission rate of DPU is 
obtained by calculating the proportion of the output power of two 
ports with respect to the input light source power, with which the 
frequency histogram of transmission rate on all graph nodes are ob-
tained (see fig. S6, A and B). The average power transmission rate of 
DPU with tapered output waveguide is 2.01%, which is ~5.6 times 
higher than the single-mode output waveguide of 0.36%.

With the estimated power transmission rate of DPU, we evaluated 
the photocurrent SNR of the on-chip photodetector, formula de-
tailed in Materials and Methods, under different input light source 
powers (see fig. S6C). We further evaluated the test accuracy of the 
DGNN-E model with respect to the SNR, under the top-k neighbor-
ing node setting of 16, by including the photodetector noise to the 
node features and retraining the electronic classifier (fig. S6D). In-
creasing the input light source power and the power transmission 
rate of DPU improves the photocurrent SNR and achieves more stable 
model performance on the synthetic SBM graph. In this work, the 
PPRGo model with a single round of message passing is adopted to 
directly capture the high-order neighborhood information. The 
computing energy efficiency of DGNN is calculated on the basis of 
the input light source power of 10 mW, which achieves the suffi-
cient photocurrent SNR of 34.6 and 20.2 dB with the tapered and 
single-mode output waveguides, corresponding to the model test 
accuracy of ~94.4 and ~92.3%, respectively.

Computing precision of DPU
The quantization bits, determining the computing precision of DPU, 
can be inferred from the photocurrent SNR. In digital signal process-
ing, the quantization error is introduced during the quantization of 
analog-to-digital converter. Assuming that the signal has a uniform 
distribution covering all quantization levels, the signal–to–quantization 
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noise ratio can be formulated as SQNR = 20log10(2Q) = 6.02Q dB, 
where Q represents the number of quantization bits. Therefore, the 
photocurrent SNR of 34.6 dB using tapered output waveguides with 
10 mW of input light source power corresponds to ~6 quantization bits.

Computing density and energy efficiency
It is worth noting that once the DGNN architecture design is opti-
mized and fabricated physically, the on-chip optical devices for the 
computation of node and graph representations as well as the optical 
output classifier during the inference are all passive. Such the infer-
ence process for graph-based AI tasks is processed at the speed of 
light, limited only by the input data modulation and output detection 

rates, and consumes little energy compared with electronic GNNs. 
To be specific, assuming that the DGNN transforms n-dimensional 
attributes into the m-dimensional optical neural messages for each 
node with MSG( · ), aggregates optical features of k nodes with 
AGG( · ), and stacks P heads for a C-class classification task. There-
fore, the MSG( · ) module of each node contains an n × m weight 
matrix for each node, the AGG( · ) module in each head contains 
the sum of k nodes of m-dimensional vectors, and the classifier con-
tains an mP × C weight matrix. Therefore, each inference cycle of 
DGNN contains (2nmk + mk)P operations (OPs) for feature extractions 
and 2mPC operations for the classification, i.e., having the total opera-
tions of (2nk + k + 2C)mP. Considering a 30-GHz data modulation 

Fig. 4. Graph classification of the DGNN on the task of action recognition. (A) Graph structure of skeleton data captured by Kinect V1. (B) The schematic of DGNN 
architecture for skeleton-based human action recognition. (C) Visualizing results of a selected subsequence from the test set for performing the action category of the 
walk. The normalized amplitude of each frame processed after optical MSG( · ), AGG( · ), the L2-normalized intensity values after optical Read − Out( · ), and the classification 
result are shown. (D) The inference results of all the test subsequences in one round of fivefold cross-validation. The arrow indicated slot is the only misclassified video of 
the database.
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and photodetection rate based on the existing silicon photonic foundry 
(52), the computing speed of DGNN is (6nk + 3k + 6C)mP × 1010 OPs/s. 
Assuming the typical light source power of 10 mW, the energy effi-
ciency of DGNN is (6nk + 3k + 6C)mP × 1012 OPs/J. For the node 
classification settings with n = 20, m = 2, k = 8, P = 4, C = 8, the 
computing speed is 82.6  TOP/s (Tera-Operations/s) and energy 
efficiency is 8.26 POP/s (Peta-Operations/s) per watt. For the DPU 
module in Fig. 2 with a computing region size of 61.5 m by 45 m, 
performing the MSG( · ) function with a 3× 2 weight matrix, the com-
puting density is 130 TOP/s per square millimeter. The correspond-
ing implementation of the same 3×2 weight matrix using the on-chip 
MZI photonic devices would require the computing region size of 
300 m by 200 m that is ~21.7 times larger, assuming each MZI 
with a size of 100 m by 100 m (21). Notice that the energy effi-
ciency and computing density of the state-of-the-art GPU Tesla V100 
are 100 GOP/s per watt and 37 GOP/s (Giga-Operations/s) per square 
millimeter, respectively (53). DGNN architecture achieves more than four 
orders of magnitude improvements on energy efficiency and more 
than three orders of magnitude improvements on computing speed.

Scalability of architecture
The proposed DGNN architecture performs AGG( · ) only once to 
directly consider high-order node features, which avoids the expo-
nential neighborhood expansion issue in extracting long-range neigh-
borhood information and facilitates the scalability for learning 
larger graphs. In principle, the head number of architectures can be 
scaled to arbitrary size, and the basic DPU modules, e.g., in Fig. 1C, 
can be horizontally stacked and interconnected with Y-couplers 
and strip waveguides to aggregate optical neural messages from the 
arbitrary size of neighborhoods. Moreover, the architecture has the 
flexibility to extend with multiple rounds of optical message passing 
by further stacking DPU modules. The DPU module can be scaled 
up by increasing the numbers of metaline layers and meta-atoms at 
each layer, and the input and output numbers of the DPU can be 
scaled up with additional optical modulators and waveguide cross-
ings, e.g., in fig. S8. The working wavelength of our architecture can 
be extended from a single wavelength to multiple wavelengths for 

further enhancing the computing throughput. The accumulation of 
system error can be alleviated by retraining the output classifier, 
e.g., in fig. S10. Besides, the in situ training approach (16) can also 
be applied to address the system errors and improve the training 
efficiency by developing the on-chip DPU modules with program-
mable modulation coefficients, e.g., using a 1D indium tin oxide for 
modulation (54).

Limitations and future works
In this study, the optical feature aggregation in DGNN is realized 
using the 2 by 1 optical Y-coupler with a combining ratio of 50 : 50, 
which does not support the assigning of different weights for differ-
ent neighboring nodes, i.e., the weighted sum. Although the average 
feature aggregation has already achieved remarkable performance in 
both node- and graph-level classification tasks, message passing with 
weighted sum could further boost the model capacity and can be 
implemented using the on-chip amplitude modulator, e.g., phase chang-
ing materials (22). Another limitation is that the proposed DGNN 
architecture uses a linear model for optical message passing. Although 
existing works have demonstrated the possibility of implementing 
the optical nonlinear activation functions (55, 56), the nonlinear 
operation is not critical in GNNs as studied in the previous work 
(49). This can be proved by the remarkable model performance that 
DGNN has already achieved in the real-world benchmark datasets. 
For example, DGNN almost achieves the state-of-the-art performance 
on Amazon Photo under large scarce training labels and significantly 
outperforms the electronic GNNs under the scarce label settings. There-
fore, including nonlinear activation function in DGNN is left for 
future work as the potential to further enhance the model learning 
capability.

In summary, we take the first step to present the optical deep 
learning architecture, i.e., DGNN, that can perform the all-optical 
graph representation learning over the graph-structured data for 
the high-accurate node- and graph-level classification tasks. The 
architecture is designed using the integrated DPU for extracting op-
tical neural messages of graph nodes and on-chip optical devices for 
passing and aggregating the messages. We verify the functionalities 

Fig. 5. Classification on Amazon Photo with scarce training labels. Performance of architecture under different training-set sizes is evaluated. The DGNN architecture 
consistently outperforms the electronic PPRGo GNN model, which demonstrates its superior robustness and generalization ability.
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of DGNN with both the analytical and FDTD evaluations. The re-
sults demonstrate the comparable and even superior classification 
performance than the electronic GNN and achieve orders of magni-
tude improvement on computing performance than the electronic 
computing platform. We expect that our work will inspire the 
future development of advanced optical deep learning architectures 
with integrated photonic circuits beyond the Euclidean domain for 
high-efficient graph representation learning.

MATERIALS AND METHODS
PPRGo GNN model
PPRGo (31) implements the MSG( · ) with a neural network to trans-
form node attributes and performs a single round AGG( · ) for each 
target node to directly aggregate information from the top-k neigh-
boring nodes ordered by the nodes’ personalized PageRank score. 
The personalized PageRank matrix is analytically defined as: ​  =   ​
(I − (1 −  ) ​  A​)​​ 

−1
​​, where  ∈ (0,1] is the teleport probability of per-

sonalized PageRank, ​​  A​  = ​ (D + I)​​ −1/2​(A + I ) ​(D + I)​​ −1/2​​ is the sym-
metric normalized adjacency matrix with added self-loops, A denotes 
the adjacency matrix, D denotes the degree matrix, and I denotes 
the identity matrix. The ith row of , denoted by i, is the personal-
ized PageRank scores of all the graph nodes with respect to node vi. 
PPRGo performs the AGG( · ) for node vi by only summing the fea-
tures of nodes that are the top-k largest entries in i, where the 
aggregated node features are fed to the output classifier to predict 
the label of node vi. Note that the calculation of i is a procedure of 
data preprocessing, which only needs to be calculated once and can be 
implemented with fast algorithms (31). We applied two variants 
of PPRGo, i.e., the PPRGo-S and PPRGo-WS (see Table 1). PPRGo-S 
uses the aggregator that directly sums up the neighboring features. 
In contrast, PPRGo-WS uses the aggregator that performs the 
weighted sum of neighboring features according to the personalized 
PageRank scores.

Generating the synthetic graphs
The SBM (43) is a widely used generative graph model in network 
analysis. We evaluated the effectiveness of our all-optical graph rep-
resentation learning by generating the synthetic SBM graph with 
300 nodes to reduce the computational complexity and the require-
ment of computing resources during the architecture evaluation using 
FDTD. Specifically, the 300 nodes were assigned to three communi-
ties (categories), and node attributes of each community were generated 
from the corresponding 3D multivariate Gaussian distribution. The 
simplest SBM has two parameters p and q, corresponding to intra-
class link probability and interclass link probability, respectively, with 
the graph generation rule as follows

	​​ ​a​ ij​​∣​y​ i​​, ​y​ j​​ ~ ​{​​​ 
Bernoulli(p), if ​y​ i​​ = ​y​ j​​

​  
Bernoulli(q), if ​y​ i​​ ≠ ​y​ j​​

​​​	 (4)

where yi and yj denote the category of nodes vi and vj, respectively, 
with aij as the indicator variable for the edge connection of two 
graph nodes. In this work, we set p = 0.1 and q = 0.005. We randomly 
selected five labeled nodes per category for training, and the left 
285 nodes were used for the test. The generated graph is illustrated 
in Fig. 2A.

Preprocessing of benchmark graphs for node classification
Cora-ML and Citeseer are the document cocitation networks in 
which each node represents a document and edges are citations be-
tween them. Amazon Photo is a segment of the Amazon copurchase 
graph (42), where nodes represent goods and edges denote that the 
two goods are frequently bought together. All three graphs have node 
attributes encoded by bag-of-words. Following previous works for node 
classification on benchmark graphs (57), we randomly selected 1000 nodes 
as the test set for each benchmark dataset with the remaining nodes for 
training. To reduce the number of input strip waveguides for the 
DPU, we adopted the PCA to preprocess the node attributes and 
reduce their dimensions. We set the dimension of the node attri-
bute to be 20, and the values were scaled to be compatible with the 
optical system, i.e., encoding the node attributes into either the am-
plitude (rescale to [0,1]) or phase (rescale to [0,2)) of coherent optical 
waves. The overview of dataset statistics is summarized in table S1.

DPU settings
The integrated DPU uses the successive layers of diffractive metalines 
to modulate the optical wavefront. Each metaline comprises diffrac-
tive meta-atoms, i.e., the array of rectangle silica slots etched in the 
silicon membrane of SOI substrate, as shown in fig. S1A. The height 
and width of a slot determine the phase and amplitude modulation 
coefficients of a diffractive meta-atom. We adopted the Rayleigh-
Sommerfeld diffraction for analytical modeling the optical wave 
propagation and modulation (13), and the FDTD evaluations were 
performed via Lumerical FDTD software (Lumerical Inc.). The 
working wavelength of our architecture was set to be 1550 nm. To 
facilitate the training of DPU and improve the modulation accura-
cy, we used the subwavelength height for the silica slot and fixed it 
to be 400 nm, with which the silica slot width was optimized within 
[0, 100] nm under the fixed slot period of 300 nm, corresponding to 
the optimizing of the phase modulation range of [0, 1.55] rad (see 
figs. S1, B and C). Moreover, considering the fabrication capability 
of existing silicon photonics foundry and to reduce the modeling 
deviation, we also adopted the binary modulation that the width of the 
slot was quantized to take value from {0,100} nm and set the slot width 
of every three consecutive meta-atoms to be the same. The input 
and output planes were divided into regular intervals with the numbers 
equivalent to the numbers of input and output waveguides, where each 
waveguide was placed at the central position of each interval.

In the task of node classification, we set the DPU module to have 
three and four layers of metalines with a layer distance of 20 and 100 m, 
respectively, to perform the feature transformation for the synthetic 
and benchmark databases, respectively; each metaline comprised 150 
and 600 meta-atoms, respectively, corresponding to the metaline length 
of 45 and 180 m, respectively. The input and output planes were 
coupled with 3 input waveguides and 2 output waveguides, respec-
tively, for the synthetic database and 20 input waveguides and 2 or 
8 output waveguides, respectively, for the benchmark database. Be-
sides, for the benchmark database, the output classifier DPU module 
of DGNN-O architecture was set to have six layers of metalines with 
other settings the same as the feature transformation DPU module. 
In the task of skeleton-based human action recognition, the feature 
transformation DPU module was set to have six layers of metalines 
and three input optical waveguides for encoding 3D joint coordi-
nates with other settings the same as the node classification on real-
world graphs. Similarly, the read-out function of each head was 
implemented with the DPU module with five layers of metalines.
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Training details of DGNN
All DGNN models were numerically implemented and trained on 
the basis of Python (v3.6.8) and TensorFlow (v1.12.0, Google), and 
the PCA was implemented using Scikit-learn (v 0.23.2). The diffractive 
wave propagation was analytically modeled with the Rayleigh-
Sommerfeld diffraction model implemented using the angular spec-
trum method (13). The modulation coefficients of diffractive layers 
were optimized during the training, where the phase modulation 
coefficient of each diffractive meta-atom was correlated with ampli-
tude modulation coefficients and determined by the slot width (see 
fig. S1C). We adopted the Adam optimizer (58) to perform the gradient 
descent and error backpropagation. The loss function of DGNN-E 
was the softmax cross-entropy between the electronic output and 
the one-hot ground-truth labels, while the loss function of DGNN-O 
was the mean squared error between the detected intensity values 
on the output plane and the target, i.e., 1 for the position of the tar-
get detection region and 0 for the others regions. The learning rate 
was set to 0.1, 0.01, and 0.005 for the node classification with DGNN-O, 
node classification with DGNN-E, and skeleton-based human action 
recognition, respectively. The retraining procedure used a learning 
rate of 0.1. We used the full-batch training fashion in the node clas-
sification, while the batch size was set to 32 in the task of skeleton-
based action recognition. Besides, for training DGNN-E with binary 
modulation, the modulation coefficient of each meta-atom was 
computed with an extra rounding operation.

Optimizing the taper angle of output waveguides
The taper angle of output waveguides was optimized on the basis of 
the evaluation of both classification accuracy of DGNN-E and power 
transmission rate of DPU (see fig. S7). We search the optimal taper 
angle by fixing the length of tapered output waveguides to 20 m 
and varying the input width of tapered waveguides from 1 to 8 m 
with a step size of 1 m, corresponding to the taper angle from ~0.7° 
to ~10.6°. Notice that 500-nm input width corresponds to the 
single-mode waveguide with a taper angle of 0°. For each input width 
setting, the DGNN-E is retrained and tested on the synthetic SBM 
graph to evaluate the model classification accuracy (see fig. S7A). 
To obtain the averaged power transmission rates of DPU (see fig. 
S7B), we set the input light source power of 10 mW and calculate 
the proportion of the output power of two ports with respect to the 
input power for each test graph node using FDTD, with which the 
frequency histogram of power transmission rate on all graph nodes 
is obtained (see fig. S7C). With the difference of DPU structure and 
coupling efficiency of tapered output waveguides under different 
taper angles, the results demonstrate that the optimal input width of 
tapered output waveguides is 2 m, corresponding to the taper angle 
of ~2.1°, which achieves the model test accuracy of 93.7% and power 
transmission rate of 2.01%.

Photocurrent SNR
The photocurrent SNR of the on-chip photodetector can be formu-
lated as (59)

	​ SNR = 10 log(〈 ​I​s​ 
2​ 〉/(〈 ​i​t​ 

2​ 〉 + 〈 ​i​s​ 
2​ 〉 + 〈 ​i​d​ 2 ​ 〉))​	 (5)

where ​〈 ​I​s​ 
2​ 〉​ represents the mean square, i.e., the power, of signal 

photocurrent Is; ​〈 ​i​t​ 
2​ 〉​, ​〈 ​i​s​ 

2​ 〉​, and ​〈 ​i​d​ 2 ​ 〉​ represent the power of the typi-
cal photodetector noise sources, including thermal noise, shot noise, 
and dark current readout noise, respectively. Given the bandwidth 

(B) of the photodetector receiver, which is negatively correlated to 
the response time, the noise sources can be formulated as

	​​ ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩
​​​
〈 ​i​t​ 

2​ 〉  = ​ ​t​ 
2​ B  =  (4kT / R ) B

​  〈 ​i​s​ 
2​ 〉  = ​ ​s​ 

2​ B  =  (2q ​I​ s​​ ) B ​  

〈 ​i​d​ 2 ​ 〉  = ​ ​d​ 2 ​ B  =  (2q ​I​ d​​ ) B 

 ​​​	 (6)

where ​​​t​ 
2​  =  4kT / R​ represents the power spectral density of thermal 

noise, which is independent of the light frequency, with the Boltzmann’s 
constant k, the absolute temperature T, and the load resistance R; ​​
​s​ 

2​  =  2q ​I​ s​​​ represents the power spectral density of shot noise with 
the electron charge q and the signal photocurrent Is; ​​​d​ 2 ​  =  2q ​I​ d​​​ represents 
the power spectral density of dark current readout noise, modeled 
as the white noise, with the electron charge q and the dark current 
Id. Given the input source power P and the averaged power trans-
mission rate  of DPU without considering the insertion loss of 
waveguide circuits, the averaged photocurrents of signals can be 
represented as: Is =  × Responsivity × P. By substituting Eq. 6 to Eq. 5,  
we have

	​ SNR  =  10 log(〈 ​I​s​ 
2​ 〉 / ((4kT / R + 2q ​I​ s​​ + 2q ​I​ d​​ ) B))​	 (7)

During the calculation, we set the typical room temperature T = 
293 K and the standard load resistance R = 50 ohms. According to 
the process design kits of Chongqing United Microelectronics Center 
silicon photonics foundry (52), the device parameters of on-chip 
Germanium photodetector are as follows: Responsivity = 0.9 A/W, 
Id = 50 nA, B = 30 GHz, under the working wavelength of 1550 nm.

Training details of electronic models
Similarly, all implementations of electronic models were based on 
Python (v3.6.8), TensorFlow (v1.12.0, Google), and Scikit-learn 
(v 0.23.2). The PCA classification results were obtained using a linear 
classifier to the preprocessed node attributes. The MLPs were con-
figured using two hidden layers with the Rectified Linear Unit (ReLU) 
or tanh nonlinear activation function. The size of the second hidden 
layer was set to be 8, and the size of the first hidden layer was adjusted 
to make the model have the same number of learnable parameters 
as DGNN-E. The electronic PPRGo GNNs used the MLP for imple-
menting the feature transformation. All the electronic models used the 
softmax cross-entropy between predictions and targets as the loss 
function. The learnable parameters were optimized using an Adam 
optimizer with a learning rate of 0.01 and a training epoch of 10000.

Transductive learning and inductive learning
In the task of semisupervised node classification, which is also termed 
transductive learning, all the nodes and the graph structure are avail-
able. While in supervised learning, i.e., inductive learning, all the 
test node are unavailable. For the inductive learning in this work, all 
1000 test nodes, including their features and graph structures, are 
unseen during the training. In other words, we delete all test nodes 
with their associated edges to obtain the training set. During the test, 
we recover the original graph to perform the inference.

Analytical modeling of DPU with system errors
To reduce the modulation deviations between the analytical model 
and FDTD due to the uncontinuous change of parameters between 
adjacent meta-atoms, every three consecutive meta-atoms in the 
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metalines was restricted to be the same (see fig. S2). Other error 
sources that cause the model deviations include the mutual coupling 
between adjacent meta-atoms, the reflection between metalines, and 
the fabrication errors during the semiconductor process. During the 
evaluation, we modeled the system error by including the Gaussian 
noise with an SD of 0.3 to the trained phase modulation coefficients 
and the amplitude modulation coefficients. Moreover, the architec-
ture still performs well even under more significant Gaussian noise, 
demonstrating its robustness to the system errors (see fig. S10).

Fabrication process for photonic metalines
We considered the fabrication capability of the existing silicon photonics 
foundry (52) during the design and evaluation of DGNN architec-
ture. The fabrication process for diffractive metalines of DPU can 
be based on silicon photonic semiconductor fabrication techniques, 
including the photoresist coating, deep ultraviolet (DUV) exposure, 
developing, etching, photoresist removal, and top cladding (see fig. S16). 
The metalines are composed of rectangular silica slot arrays etched 
on SOI substrate, which can be fabricated using silicon photonic 
semiconductor fabrication techniques, e.g., the DUV lithography 
process. The top layer of the start SOI wafer is 220-nm-thick silicon. 
The prepared wafer is covered with the photoresist by spin coating 
and prebaked to drive off excess photoresist solvent. Then, the photo-
resist is exposed to the intense ultraviolet light pattern determined 
by the target structure. The DUV exposure allows the photoresist 
on the top of the slot arrays to be removed by developing, and the 
silicon is etched in areas without photoresist with wet etchants or 
plasma etchants. Last, the rest photoresist is removed with resist stripper 
or ashing process, and the chip is cladded with silica through plasma-
enhanced chemical vapor deposition to protect the structures.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn7630
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