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Abstract

Background: Most available 4D-MRI techniques are limited by insufficient image quality and 

long acquisition times or require specially designed sequences or hardware that are not available in 

the clinic. These limitations have greatly hindered the clinical implementation of 4D-MRI.
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Purpose: This study aims to develop a fast ultra-quality (UQ) 4D-MRI reconstruction method 

using a commercially available 4D-MRI sequence and dual-supervised deformation estimation 

model (DDEM).

Methods: Thirty-nine patients receiving radiotherapy for liver tumors were included. Each 

patient was scanned using a TWIST-VIBE MRI sequence to acquire 4D-MR images. They also 

received 3D T1-/T2-weighted MRI scans as prior images and UQ 4D-MRI at any instant was 

considered a deformation of them. A DDEM was developed to obtain a 4D deformable vector 

field (DVF) from 4D-MRI data, and the prior images were deformed using this 4D-DVF to 

generate UQ 4D-MR images. The registration accuracies of the DDEM, VoxelMorph (normalized 

cross-correlation (NCC) supervised), VoxelMorph (end-to-end point error (EPE) supervised), and 

the parametric total variation (pTV) algorithm were compared. Tumor motion on UQ 4D-MRI was 

evaluated quantitatively using region-of-interest (ROI) tracking errors, while image quality was 

evaluated using the contrast-to-noise ratio (CNR), lung–liver edge sharpness, and perceptual blur 

metric (PBM).

Results: The registration accuracy of the DDEM was significantly better than those of 

VoxelMorph (NCC supervised), VoxelMorph (EPE supervised) and the pTV algorithm (all, p 
< 0.001), with an inference time of 69.3 ± 5.9 ms. UQ 4D-MRI yielded ROI tracking errors of 

0.79 ± 0.65, 0.50 ± 0.55, and 0.51 ± 0.58 mm in the superior–inferior, anterior–posterior, and mid–

lateral directions, respectively. From the original 4D-MRI to UQ 4D-MRI, the CNR increased 

from 7.25 ± 4.89 to 18.86 ± 15.81; the lung–liver edge full-width-at-half-maximum decreased 

from 8.22 ± 3.17 to 3.65 ± 1.66 mm in the in-plane direction and from 8.79 ± 2.78 to 5.04 ± 1.67 

mm in the cross-plane direction, and the PBM decreased from 0.68 ± 0.07 to 0.38 ± 0.01.

Conclusion: This novel DDEM method successfully generated UQ 4D-MR images based on 

a commercial 4D-MRI sequence. It shows great promise for improving liver tumor motion 

management during radiation therapy.
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1. Introduction

Primary liver cancer and the metastasis of other cancers to the liver are leading causes of 

cancer-related death worldwide. Liver cancer accounted for 4.7% (905,677) of new cases 

and 8.3% (830,130) of deaths from all cancers in 20201. Radiation therapy (RT) is a major 

treatment modality for cancer. Historically, however, the role of RT in liver cancer has 

been limited to mostly palliative applications due to the potential for radiation-induced liver 

disease (RILD)2. The recent introduction of stereotactic body radiation therapy (SBRT) for 

liver cancer treatment3, however, has led to local tumor control rates of up to 86% at 3 

years4, indicating its effectiveness. Despite these exciting improvements, RT is associated 

with Grade ≥ 3 toxicity event rates as high as 38%5, especially for patients with large tumors 

and poor liver function6. Use of an imaging modality with good soft tissue contrast during 

planning can help to manage tumor motion and improve the accuracy of beam delivery to 

the target, thus sparing normal tissues and reducing treatment toxicity.
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Currently, four-dimensional computed tomography (4D-CT) is the standard imaging 

technique used for respiratory motion management in RT, especially when treating tumors 

in the chest region7. Unlike conventional CT, 4D-CT can show the motion trajectories of 

tumors during respiration; additionally, the internal target volumes (ITVs) defined on 4D-CT 

are significantly smaller than those on conventional CT8, 9, while maintaining the dose 

coverage10, 11. However, management of liver tumor motion using 4D-CT is difficult due to 

the poor soft-tissue contrast of CT. Also, the radiation dose received by patients in 4D-CT 

can be up to one order of magnitude higher than that in conventional 3D CT since multiple 

scans at the same couch position are needed for respiratory phase sorting12. To address these 

difficulties, various 4D-MRI techniques have been proposed13 and can be categorized as 

either retrospective or prospective 4D-MRI.

Most 4D-MRI techniques are retrospective, which means that images are continuously 

acquired over the whole region of interest (ROI) and retrospectively sorted into respiratory 

phases. For example, Yang et al. evaluated the correlation between diaphragm and liver 

tumor motion14, 15 and performed T2/T1-weighted 4D-MRI at a speed of 10–15 s per slice 

using a body area-based sorting method15. Liu et al.16 developed a k-space re-ordering 

method that uses breathing signals as the surrogate and verified its feasibility through studies 

of digital phantoms and healthy volunteers. Keijnemans et al.17 sorted images based on 

the liver dome position and achieved a total image acquisition time of 5 minutes. Other 

types of contrasts, including T2-weighted (T2w) imaging18, diffusion-weighted imaging 

(DWI)19, and quantitative magnetic resonance fingerprinting (MRF)20, can also be obtained 

via similar approaches. Despite these successes, retrospective 4D-MRI still faces challenges. 

First, sorting algorithms are sensitive to patients’ irregular breathing patterns, resulting 

in image artifacts, such as stitching artifacts. Second, the spatiotemporal resolution is 

compromised, especially with respect to large slice thicknesses (>5 mm) obtained with 

2D acquisition-based methods. Third, long acquisition times (typically 10–15 minutes) are 

typically needed to satisfy the data sufficiency requirement in each phase bin.

Prospective 4D-MRI is achieved by using fast 3D acquisition or respiratory-gated 2D 

acquisition. For example, Yuan et al. 21 used a 3D spoiled gradient-echo sequence to image 

the abdomen for motion monitoring, with a temporal resolution of 0.615 s and voxel size 

of 2.7 mm × 2.7 mm × 4 mm. Due to the emphasis on imaging speed, prospective methods 

mainly use gradient-echo sequences and provide T1w images and are thus susceptible 

to field inhomogeneity. As the image quality and contrast are also compromised by the 

highly undersampled data, these images cannot be used for treatment planning. Using 

respiratory surrogates, Li et al. 22 proposed a prospective T2w 4D-MRI method involving 

2D acquisition. Although the authors overcame the issue of data incompetency in sorting, 

scanning was time-consuming (~10 minutes), and the effects of irregular respiration on 

image quality were not resolved.

Despite recent advances in 4D-MRI development, current techniques still lack sufficient and 

consistent image quality for use in clinical applications due to at least one of the following 

deficiencies: inconsistent tumor contrast, image artifacts caused by breathing variations, 

and inadequate spatiotemporal resolution. In addition, some advanced 4D-MRI techniques 

require specially designed sequences or hardware and advanced image reconstruction 
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methods that are not available in the clinic. These limitations have greatly hindered the 

clinical implementation of 4D-MRI.

This study aims to overcome the aforementioned deficiencies of existing 4D-MRI 

techniques by developing a ultra-quality (UQ) 4D-MRI method that uses a novel dual-

supervised deformation estimation model (DDEM) based on a commercially available low-

quality (LQ) 4D-MRI sequence. Specifically, respiratory motion patterns in LQ 4D-MRI 

were estimated using the DDEM and then applied to pre-aligned 3D-MRI data to reconstruct 

UQ 4D-MR images. We successfully generated T1w and T2w UQ 4D-MR images that 

exhibited significantly improved image quality and accurate tumor motion trajectory when 

compared with the original LQ 4D-MR images. Therefore, this new technique shows 

promise for wide clinical application.

2. Materials and Methods

2.1 Patient Data

The data used in this study were obtained from 39 patients undergoing RT for liver tumors. 

The study protocol was approved by the institutional review board. Among the 39 patients, 

29 were male and 8 were female. 22 patients were diagnosed with primary liver cancer and 

15 patients were diagnosed with liver metastases, and their age at diagnosis was 54.9 ± 10.9 

years old.

Each patient underwent 4D-MRI using the TWIST volumetric interpolated breath-hold 

examination (TWIST-VIBE) MRI sequence23, which utilized view sharing technique with 

20% central region and 20% sampling density in the peripheral region; hereafter, this 

is referred to as “original 4D-MRI.” This commercially available sequence was initially 

designed for fast volumetric imaging rather than 4D imaging. In this study, we decreased 

the acquisition time to 0.69s and continuously acquired 72 3D frames to achieve a 4D-MRI 

scan. Of the 39 patients, 27 also underwent regular T1w (free-breathing) and T2w (breath-

holding) 3D MRI scans. Details of the imaging parameters are listed in Table 1. All the 

MR scans were done by a 3T scanner (Skyra, Siemens, Erlangen, Germany). All of the 

image intensities were normalized to 0-1 as pre-processing. For DDEM training, the original 

4D-MR images were sorted into 10 phase bins based on the body area15 and paired up 

with a phase distance of 1, 2, 3, and 4, respectively. As a results, every patient contributes 

40 image pairs. Patients with a low breathing amplitude or whose data contained severe 

artifacts were excluded from training. Cross-validation was conducted to fully utilize the 

data. Consequently, 25 patients were divided into 5 groups, each containing 5 patients. In 

each time, 4 groups with 800 image pairs were used for training and the remaining one with 

200 image pairs was used for evaluation. Image binning was not needed for UQ 4D-MRI 

reconstruction, as deformations were directly estimated on time-resolved original 4D-MRI 

frames.

2.2 UQ 4D-MRI Reconstruction

The retrospective 4D-MRI method provides good spatial resolution and image contrast, 

while the prospective 4D-MRI method provides fine temporal resolution with few irregular 
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breathing-induced artifacts. To combine the advantages of both methods, a prior image-

based UQ 4D-MRI method was proposed. An overview of the method is shown in Figure 

1. 3D MR images were deformed to each corresponding frame of the original 4D-MRI to 

reconstruct UQ 4D-MRI. Two aspects of this approach are challenging: potential differences 

in the respiratory phases of the 3D MR images used as prior images and those of the 

4D-MRI frames, and the use of deep learning for image registration with several different 

types of image contrast24–26. Therefore, an automatic frame selection strategy was used 

instead of registering 3D MR images to every original 4D-MRI frame. Cross-correlation 

was computed between all 4D-MRI frames and the corresponding 3D MRI (T1w or T2w). 

The 4D-MRI frame of the highest cross-correlation value was considered at the closest 

respiratory phase of the corresponding 3D MRI, which was then registered to the 3D MRI 

using Elastix (Available at https://github.com/raacampbell/matlab_elastix) to account for 

residual mismatches. The registration is hierarchical and includes rigid, affine, and non-rigid 

B-spline stages to address coarse-to-fine deformations. Normalized correlation coefficient 

is the cost function because of the multi-parametric MRI registration. More details can be 

found at Mengler et al.’s work27. The alignment was manually verified before UQ 4D-MRI 

reconstruction. After these pre-processing procedures, the aligned frames were considered 

representations of the 3D MR images and registered to all other original 4D-MRI frames 

using DDEM to obtain the deformations along with the respiratory cycles (i.e., a 4D-DVF), 

which were then applied to the 3D MR images to reconstruct UQ 4D-MR images at 

corresponding frames.

2.3 DDEM

The original 4D-MR images were subject to noise and artifacts due to acquisition 

limitations, and thus, unsupervised training was challenging. Dual supervision was used to 

provide more accurate DVFs for UQ 4D-MRI reconstruction28. From each original 4D-MR 

image pair, a reference DVF was calculated using the parametric total variation (pTV) 

algorithm with the local correlation coefficient as the cost function29. This method was 

designed explicitly for respiratory motion registration and has achieved the best performance 

to date on the benchmark DIR-Lab30, 31. A difference map between the image pair was 

also fed to the DDEM to improve registration accuracy28, 32 Consequently, each training 

sample consisted of a moving phase, a fixed phase, a difference map, and a reference 

DVF. During training, the 4D-MR images and reference DVFs were cropped to fit the 

patients’ body shapes and resized to 128 × 128 × 64 voxels to save GPU memory. In 

addition to the end-to-end point error (EPE) between the reference deformation DVFr and 

the predicted deformation DVFp, the negative normalized correlation coefficient (NCC) 

between the warped volume Vw and fixed volume Vf was also included in the loss function 

L to compensate for potentially imperfect reference DVFs:

L = α × EPE(DV Fr, DV Fp) − β × NCC(V w, V f) (1.1)

EPE(DV Fr, DV Fp) = DV Fr − DV Fp 2 (1.2)
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NCC(V w, V f) =
p Ω

pi (V f(pi) V f(p))(V w(pi) V w(p)) 2

pi V f(pi) V f(p) 2 V w(pi) V w(p) 2 , (1.3)

where p represents a voxel in space Ω; V (p) denotes the local mean intensity around 

p, V (p) = 1
W 3 piV (pi); and the window size W = 9. α and β are weighting factors and 

varied dynamically during training. A larger α during the initial training can encourage 

convergence, and a larger β during fine-tuning at a later stage can further optimize the 

registration. We empirically set α = 1 and β = 1 during the first 150 epochs, and α = 1 and β 
= 5 during the last 50 epochs.

The network architecture of DDEM was based on VoxelMorph33, as shown in Figure 2. It 

receives two phases of the original 4D-MRI as moving and fixed volumes and a difference 

map between them. The first half of the DDEM is an encoder consisting of 4 sequential 

convolutional blocks used to extract image features. The first three blocks have a 3 × 3 × 

3 convolutional layer, with a stride of 2, followed by a leaky rectified linear unit (ReLU) 

activation layer, while the stride in the last one is 1. The numbers of convolutional kernels 

in these blocks are 16, 32, 32, and 32, respectively. Using the decoder, the extracted image 

features were then processed to generate a DVF between the moving and fixed images. The 

decoder uses similar convolutional blocks with 32 kernels each, and 2 × 2 × 2 up-sampling 

layers are applied after each ReLU activation to expand the feature volume. The two 

parts are linked by concatenation connections, which convey local information captured 

by the encoder to the decoder to better utilize the features. The last convolutional layer 

contains 3 convolutional kernels, and the resulting three output channels represent motion 

in the x-, y-, and z-directions. The deformation was then applied to the moving volume to 

generate a warped volume Vw as another output. Another two models with the identical 

network architecture but supervised by NCC and EPE were trained as comparison baselines, 

respectively. All models were trained by an ADAM optimizer for 200 epochs at an initial 

learning rate of 10−4, which was halved every 50 epochs. Training was conducted using with 

Pytorch 1.7.0 on an Nvidia RTX 3090 GPU and an Intel I7-9700K CPU.

2.4 Evaluation

The registration performances of DDEM, VoxelMorph, and pTV algorithm on the original 

4D-MRI data were evaluated using intensity-based metrics, including the structural 

similarity index (SSIM), peak signal-to-noise ratio (PSNR), mean squared error (MSE), 

and NCC. Each image was restored to its original shape prior to the metric calculations. 

T-tests were performed on the metrics to evaluate the significance with a threshold of 0.05. 

The inference times of the methods were also recorded for comparison.

4D imaging is used primarily for motion management, and therefore, motion accuracy is 

an essential component of UQ 4D-MR images. A region matching-based method for ROI 

tracking was developed in MATLAB. 3D ROI bounding boxes were defined on the first 

frames of 4D images and used to screen subsequent volumetric frames to identify the 

locations with maximum image similarity in each frame. The displacements between the 
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positions of the initial bounding box and the positions in subsequent frames were calculated 

as the ROI motion trajectory. 4D images were interpolated before measurement to ensure 

a motion measurement resolution of 0.33 mm. ROI motion amplitude was recorded in the 

superior–inferior (SI), anterior–posterior (AP), and mid–lateral (ML) directions, and the 

relative motion error was calculated as the difference in ROI motion amplitude between the 

original and the UQ 4D-MR images.

The contrast-to-noise ratio (CNR) was used to quantify tumor contrast enhancement in the 

UQ 4D MR images. Precisely, the mean voxel intensities of the tumor and surrounding 

normal liver tissue were calculated, and the difference between these values was divided by 

the standard deviation sampled from the normal liver tissue.

A no-reference perceptual blur metric (PBM) proposed by Crete et al.34 was used to evaluate 

the overall image quality of the original and UQ 4D MR images. Briefly, PBM compares 

variations in the intensities of neighboring voxels between the original image and an image 

to which a low-pass filter has been applied to cause blurring. Less variation in intensity 

represents a more blurred original image, resulting in a higher PBM value.

The lung–liver edge full-width at half-maximum (FWHM) was also used to quantify the 

sharpness of the organ boundaries35. Linear profiles were taken at the liver–lung interfaces 

on MR images in the cross-plane and in-plane directions, and curves were fitted along with 

them:

f(p; a0, a1, a2, s) = a1

1 + 10s(a0 − p) + a2, (2)

where p is the voxel position; f is the voxel intensity at p; a0, a1, and a2 are fitted constants; 

and s represents the sharpness of the curve. Thresholds of 5% and 95% of the maximum 

were applied to the curves to define an edge, and the distance between the two thresholds 

was considered the FWHM of the edge.

Because the CNR and edge FWHM calculations involved manually selected ROIs, each 

measurement was repeated three times, and the average value was reported. Some patients 

had already undergone surgery before RT, and their MR images did not have solid tumors. 

In such cases, another organ, such as the gallbladder, was chosen as a substitute ROI in the 

motion trajectory measurement, and the CNR was not calculated.

3. Results

3.1 Performance of the DDEM

The results of a comparison of the registration performance of the DDEM, VoxelMorph, and 

reference pTV algorithm are shown in Table 2. Both the DDEM and VoxelMorph models 

had a faster inference time than the pTV algorithm. In terms of image similarity, the DDEM 

had significantly better NCC, MSE, PSNR, and SSIM than VoxelMorph (NCC supervised), 

VoxelMorph (EPE supervised), and pTV algorithm (p< 0.001 for all metrics). These results 

Xiao et al. Page 7

Med Phys. Author manuscript; available in PMC 2022 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest that dual supervision can help the model to converge and surpass the reference 

labels.

3.2 UQ 4D-MRI

The original 4D-MR and reconstructed UQ T1w and T2w 4D-MR images of an example 

patient in the axial and sagittal views are shown in Figure 3(a) and (b), respectively. 

Six consecutive frames are presented, and the arrows indicate the tumor position in the 

first frame. As shown, the original 4D-MR images have insufficient image contrast, such 

that the tumor is almost invisible, with a tumor CNR of only 1.9. Motion artifacts can 

also be observed, resulting in inhomogeneous patterns in the liver and blurred lung–liver 

boundaries. The PBM of those images was 0.700, and the FWHM of the lung–liver 

edge was 8.92 and 12.64 mm in the cross-plane and in-plane directions, respectively. In 

comparison, the reconstructed UQ T1w 4D-MR images exhibit better tumor contrast, with a 

higher CNR of 7.7, and less severe motion artifacts. In the reconstructed UQ T1w images, 

the PBM decreased to 0.426, and the FWHM of the lung–liver edge decreased to 11.86 

and 7.38 mm in the cross-plane and in-plane directions, respectively. Additional comparison 

reveals that the tumor visibility was further improved in the UQ T2w 4D-MR images, 

with the highest CNR of 14.4, a considerable increase in lung–liver edge sharpness, and a 

reduction in motion artifacts. The PBM decreased to 0.397, and the FWHM of the lung–liver 

edge decreased to 5.12 and 3.21 mm in the cross-plane and in-plane directions, respectively.

In addition to image quality, motion was accurately reflected in the generated UQ 4D-MR 

images. Figure 3(c) shows the motion amplitude of the tumor in 6 consecutive frames. As 

expected in respiration, the motion amplitude was largest in the SI direction. In the UQ T1w 

and T2w 4D-MR images, the tumor motion matched well with that in the original 4D-MR 

images, and most of the relative motion errors were within 2 mm. The respective mean 

motion errors in all 72 frames in the AP, ML, and SI directions were 0.70, 0.76, and 0.62 

mm for the UQ T1w 4D-MR images and 0.87, 0.90, and 0.82 mm for the UQ T2w 4D-MR 

images.

3.3 Statistical Results

UQ T1w and T2w 4D-MRI were obtained on 27 patients who had both 4D-MRI and 3D 

MRI scans, and ROI motion amplitude was measured on all of them. The results of the 

statistical analysis of the mean motion error are shown as box plots in Figure 4(a, b). The 

relative ROI motion errors of UQ T1w 4D-MRI in the SI, AP, and ML directions were 0.80 

± 0.36, 0.50 ± 0.36, and 0.50 ± 0.39 mm, respectively. The relative ROI motion errors of 

UQ T2w 4D-MRI in the SI, AP, and ML directions were 0.78 ± 0.42, 0.51 ± 0.36, and 0.52 

± 0.43 mm, respectively. For both contrasts, relative ROI motion errors were 0.79 ± 0.65, 

0.50 ± 0.55, and 0.51 ± 0.58 mm in the SI, AP, and ML directions. The relative ROI motion 

errors were < 1 mm in all directions. The images of 19 of these 27 patients contained visible 

solid tumors, and CNR was measured only in these images. The results of statistical analysis 

of the tumor CNR in different MR images are shown as box plots in Figure 4(c). The CNR 

increased from 7.25 ± 4.89 in the original 4D-MR images to 7.86 ± 5.37 and 18.86 ± 15.81 

in the UQ T1w and T2w 4D-MR images, respectively. Plots of the lung–liver edge FWHM 

in the in-plane and cross-plane directions are displayed in Figure 4(d) and Figure 4(e), 
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respectively. The lung–liver edge FWHM in the in-plane direction was reduced from 8.22 ± 

3.17 mm in the original 4D-MR images to 4.51 ± 1.98 mm and 3.65 ± 1.66 mm in the UQ 

T1w and T2w 4D-MR images, respectively. In the cross-plane direction, the lung–liver edge 

FWHM was reduced from 8.79 ± 2.78 mm in the original 4D-MR images to 7.27 ± 2.71 mm 

and 5.04 ± 1.67 mm in the UQ T1w and T2w 4D-MR images, respectively. The PBM results 

of different 4D-MR images are shown in Figure 4(f). The PBM in the original 4D-MRI was 

0.68 ± 0.07, and this value decreased to 0.38 ± 0.01 and 0.40 ± 0.01 in the UQ T1w and T2w 

4D-MR images, respectively.

4. Discussion

In this paper, we report the initial results of UQ 4D-MRI using a DDEM based on 

a commercially available 4D-MRI sequence. The registration performance of DDEM 

outperformed those of VoxelMorph (NCC supervised), VoxelMorph (EPE supervised), and 

the pTV algorithm, and the reconstructed UQ 4D-MR images showed significantly improved 

image quality compared with that of commercial 4D-MRI and yielded accurate tumor 

motion measurements with a fast processing time.

The use of dual supervision is believed to explain the superior performance of DDEM 

over VoxelMorph (NCC supervised), VoxelMorph (EPE supervised), and the pTV algorithm. 

Medical image registration has been a hot research topic for decades, and numerous methods 

have been proposed. Despite huge successes, low-quality image registration remains a 

big challenge, and the accuracy of both iterative and deep learning methods worsens as 

the down-sampling factor increases36. Guidance from reference DVFs can encourage the 

convergence and improve the performance of DDEM., even if the original 4D-MR images 

are noisy and blurred. On the other hand, guidance from image similarity can further 

fine-tune the registration and help surpass the reference DVFs. Fan et al.28 demonstrated 

a similar improvement in registration accuracy with dual supervision, although their model 

was patch-based and evaluated using high-quality brain MR images. We extended our 

method to predict the deformation of the whole ROI and 4D-MR images with respiratory 

motion. Preparing reference DVFs can be time-consuming and may limit the application 

of dual supervision24–26. However, the reference DVFs were only needed during model 

training and dual supervision did not introduce any additional latency in inference, as shown 

in Table 2.

The reconstructed UQ 4D-MR images generated via DDEM exhibited significant 

improvements in image quality, including tumor CNR and image texture, compared with 

the original 4D-MR images. In particular, the lung–liver edges were sharper, and blurring 

artifacts were considerably decreased. The tumor motion trajectories derived from UQ 

4D-MR images were comparable to those derived from the original 4D-MR images, with 

a mean error < 1 mm in all directions, suggesting that our method accurately reflects 

tumor motion. Also, the motion trajectories show no significant difference between UQ 

T1w and T2w 4D-MRI, which is expected since they were derived from the same DVT. 

However, potential errors might exist in pre-processing, such as inaccurate alignment in 

frame selection. The consistent tumor motion trajectories in both UQ 4D-MR images can 

be a quality assurance of the entire workflow. The image quality of reconstructed UQ 
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4D-MRI is inherited from 3D MRI, and so are the artifacts. For example, the T1w 3D MRI 

was acquired under free-breathing and volume-averaging artifacts present, especially at the 

lung-liver interface. The T2w 3D MRI was acquired under breath-holding with multiple 

concatenations (typically 4~5), resulting in the bright or dark slabs. The reconstructed UQ 

4D-MRI also shows these artifacts. However, these artifacts do not affect the accuracy of 

DDEM and UQ 4D-MRI reconstruction, since registration was only conducted between the 

original 4D-MRI frames.

We have shown that our UQ 4D-MRI method has major advantages over current 

retrospective 4D-MRI methods, which rely on sorting algorithms and are thus vulnerable 

to irregular breathing and can cause stitching artifacts or missing slices. Furthermore, the 

spatial resolution of existing methods is often compromised due to the time efficiency 

and data sufficiency requirements of retrospective 4D-MRI, and the acquisition times 

are relatively long. In contrast, our method uses 3D MR images as prior knowledge. 

The resulting UQ 4D-MR images inherit quality from these prior images and thus can 

achieve a comparable level of image quality, which is indicated by smooth and complete 

organ surfaces and fine voxel sizes. In addition, apart from image acquisition, our method 

generates UQ 4D-MR images at a speed of 60 ms per volumetric frame, making it highly 

applicable in the clinic.G

Our UQ 4D-MRI method also has advantages over current prospective 4D-MRI methods, 

which often produce images with compromised quality, have limited image contrast choices, 

and are sensitive to field inhomogeneity. As noted above, the quality of images generated 

using our method is comparable to that of the prior 3D MR images, which can be acquired 

via sequences robust to field inhomogeneity, such as fast spin echo. Our method also 

provides versatile image contrast choices. Although only T1w and T2w 4D-MR images 

were reconstructed in this study, our method can be further extended to multiple types of 

image contrast if corresponding 3D MR images are provided.

Our method can also be used to obtain accurate 3D tumor motion trajectories, whereas 

other studies investigating prior image-based time-resolved 4D-MRI have only evaluated 

tumor motion trajectories on 2D images or projections. For example, Harris et al. modeled 

a patient’s basic deformation patterns using principal component analysis (PCA) and 

calculated the coefficients for those patterns based on a single 2-dimensional (2D) cine 

MRI37, multiple 2D cine MRI38, or on-board kV projections39. The deformation was then 

applied to a prior MR image to generate real-time volumetric cine MRI for lung tumor 

patients. Pham et al. 40 developed a similar method but used a neural network to predict 

pattern coefficients. In that study, the high contrast between the tumor and normal tissue 

in the lungs made it relatively easy to capture and model tumor motion. In contrast, we 

focused on liver tumors when developing our method, which are more challenging due to 

the poor contrast. Additionally, both of their ground truth motion trajectories were obtained 

from one or multiple 2D images and thus may not reflect accurate 3D tumor motion, 

resulting in misleading 3D image deformation. In contrast, our method directly tracks tumor 

motion on 3D images and yields more reliable results. Finally, the deformation reported in 

earlier studies involved a combination of basic patterns, and small motions may have been 
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omitted during motion modeling. Our method uses DIR for deformation estimation, which 

theoretically can capture any motion.

Our UQ method can be used to facilitate the application of 4D-MRI for clinical purposes, 

including target volume delineation and on-board treatment guidance. Zhang et al. showed 

that a fusion of multisource MRI could significantly improve the tumor CNR compared 

with a single type of contrast41, leading to improved inter-observer consistency during 

gross tumor volume delineation42. Due to monetary and temporal limitations, it may be 

impractical to require patients to undergo multiple 4D-MRI scans. Our method enables 

patients to undergo multiple 3D MRI scans and obtain UQ 4D-MR images with various 

contrasts. Current MRI-based on-board treatment guidance relies on 2D cine MRI with 

orthogonal views, which can only provide information about tumor motion on a couple of 

projections43. In contrast, our method enables real-time 4D-MRI if the temporal resolution 

of the original 4D-MRI is sufficient, thus providing more accurate information for treatment 

monitoring and tracking.

One limitation of our study is the absence of functional images. DWI and dynamic contrast-

enhanced (DCE) images provide additional information beyond anatomical images, which 

can potentially facilitate the localization of liver tumors44 and metastases45. However, 

this study focused only on T1w and T2w images to demonstrate the feasibility of our 

method. In future research, we will enroll additional patients with functional MR image 

data, including DWI and DCE images, to further verify the generalizability of our method. 

Another limitation is the temporal resolution of UQ 4D-MRI. Currently, the acquisition time 

of conventional 4D-MRI is 0.69 s per frame to achieve good image quality, which yields 

around six frames per typical respiratory cycle (~4 s). Some studies have demonstrated the 

feasibility of DVF estimation using highly undersampled images36. In the future, we will 

further reduce the acquisition time of the original commercial 4D-MRI scans to improve the 

temporal resolution. Finally, it is noted that the proposed method may benefit from more 

validation and testing before its clinical implementation. We did not introduce any specially 

designed types of processing to the dataset, and we expect that our method will be robust 

to other patient cohorts and commercial MRI sequences. In our future studies, we plan 

to use digital human phantoms, such as the 4D Digital Extended Cardiac-Torso (XCAT) 

Phantom46, 47, to comprehensively and thoroughly evaluate the robustness and accuracy 

of our proposed method. We will also enroll patients at other hospitals that use different 

scanning protocols to further evaluate the generalizability of our method.

5. Conclusion

This study developed a novel DDEM for fast UQ 4D-MRI reconstruction based on a 

commercially available 4D-MRI sequence. Compared with the original 4D-MR images, the 

reconstructed UQ 4D-MR images provided versatile image contrast, significantly improved 

image quality, and accurate tumor motion trajectories within a short processing time. This 

method overcomes the limitations of current retrospective and prospective 4D-MRI methods 

and shows great promise as a means of expanding the clinical implementation of 4D-MRI 

for liver cancer motion management during RT.
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Figure 1: 
The overall study design of the proposed UQ 4D-MRI technique. (a) The original 4D-MRI 

frames whose respiratory phases were closest to that of the 3D-MR images were selected, 

and Elastix was used to fine-tune the residual mismatching. (b) A 4D-DVF between the 

selected frames and other frames was obtained via DDEM and applied to the aligned 

3D-MR image to reconstruct the UQ 4D-MR images using corresponding frames. 4D: 

four-dimensional; DDEM: dual-supervised deformation estimation model; MRI: magnetic 

resonance imaging; DVF: displacement vector field UQ: ultra-quality.
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Figure 2: 
Architecture of the proposed DDEM. The moving volume (Vm), fixed volume (Vf), and 

map of differences map between these volumes (Vd) were input to the network. The output 

consisted of a predicted deformation (DVFp) and warped volume (Vw). The training was 

dually supervised by the reference deformation (DVFr) and Vf. 3D: three-dimensional; 

Conv: convolution; EPE: end-to-end point error; DVF: displacement vector field; NCC: 

normalized cross correlation.
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Figure 3: 
Reconstruction of an image from a sample patient using 6 consecutive frames. (a, b) 

Original 4D-MR (top), UQ T1w 4D-MR (mid), and UQ T2w 4D-MR images (bottom) 

of the patient in sagittal and axial views, respectively. Arrows indicate the tumor in the first 

frame. The images represent 3D volumes; only 2D slices are shown here for demonstration. 

(c) The tumor motion trajectory of this patient in the SI, AP, and ML directions. UQ 4D-MR 

images show good matching of tumor motion with the original 4D-MR data. 4D-MRI: 
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four-dimensional magnetic resonance imaging; AP: anterior-posterior; ML: mid-lateral; SI: 

superior-inferior; T1w: T1-weighted; T2w: T2-weighted; UQ: ultra-quality.
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Figure 4: 
Statistical analysis of the patient data. (a, b) Relative ROI motion error of the UQ T1w and 

T2w 4D-MR images in the SI, AP, and ML directions, respectively. (c) CNR of the original 

4D-MR and reconstructed UQ T1w and T2w 4D-MR images. (d, e) Lung–liver edge FWHM 

of the original 4D-MR and reconstructed UQ T1w and T2w 4D-MR images in the in-plane 

and cross-plane directions, respectively. (f) PBM of the original 4D-MR and reconstructed 

UQ T1w and T2w 4D-MR images. *: P-value < 0.05; **: P-value < 0.001; 4D-MRI: four-

dimensional magnetic resonance imaging; AP: anterior-posterior; CNR: contrast-to-noise 
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ratio; FWHM: full width at half maximum; ML: mid-lateral; PMB: perceptual blur metric; 

ROI: region of interest; SI: superior-inferior; T1w: T1-weighted; T2w: T2-weighted; UQ: 

ultra-quality.
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Table 1:

Imaging parameters of the enrolled patients.

Original 4D-MRI T1w 3D MRI T2w 3D MRI

No. of Patients 39 27 27

Contrast-enhanced No Yes No

Acquisition mode Free breathing Free breathing Gated

Sequence TWIST-VIBE Star-VIBE TSE

Fat suppression N/A SPAIR SPAIR

Turbo factor N/A N/A 43

Flip angle (°) 5 9 72

Echo trains per slice N/A N/A 6

Parallel imaging (factor) CAIPIRINHA (4) N/A GRAPPA

Acceleration factor (PE) 2 N/A 3

Partial Fourier 6/8 7/8 N/A

TR (ms) 3.44 2.83 1090.0

TE (ms) 1.23/2.45 1.48 84.0

Bandwidth (Hz/pixel) 1420 820 781

Matrix size 160 × 128 × 64 320 × 320 × 72 256 × 256 × 40

Voxel size (mm) 2.7 × 2.7 × 2.7 1.2 × 1.2 × 3.0 1.5 × 1.5 × 5.0

Acquisition time 0.69 s per 3D frame 173 s 60 s

No. of frames 72 N/A N/A

3D: Three-dimensional; 4D: Four-dimensional; CAIPIRINHA: Controlled aliasing in parallel imaging results in higher acceleration; GRAPPA: 
Generalized autocalibrating partial parallel acquisition; MRI: Magnetic resonance imaging; SPAIR: Spectral attenuated inversion recovery; T1w: 
T1-weighted; T2w: T2-weighted; TE: Echo time; TR: Repetition time; TSE: Turbo spin echo; TWIST: time-resolved imaging with interleaved 
stochastic trajectories; VIBE: volumetric interpolated breath-hold examination.
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Table 2:

Registration results of all of the methods applied to the test set.

MSE (10−3) NCC PSNR SSIM Time

w/o Registration 1.60±1.10 0.772±0.053 28.95±3.21 0.912±0.050 N/A

pTV algorithm 0.95±0.53 0.825±0.037 31.02±2.88 0.960±0.015 28.4±3.4 s

VoxelMorph (NCC supervised) 0.56±0.32 0.856±0.030 33.28±2.81 0.963±0.016 69.1±5.9 ms

VoxelMorph (EPE supervised) 1.00±0.54 0.817±0.038 30.78±2.79 0.955±0.018 69.9±5.3 ms

DDEM 0.43±0.28 0.908±0.022 34.72±3.16 0.978±0.009 69.3±5.9 ms

DDEM: dual-supervised deformation estimation model; EPE: end-to-end point error; MSE: Mean squared error; NCC: Normalized cross-
correlation; PSNR: Peak signal-to-noise ratio; pTV: parametric total variation; SSIM: Structure similarity index measure.
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