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abstract

PURPOSE The customary approach to early-phase clinical trial design, where the focus is on identification of the
maximum tolerated dose, is not always suitable for noncytotoxic or other targeted therapies. Many trials have
continued to follow the 3 + 3 dose-escalation design, but with the addition of phase I dose-expansion cohorts to
further characterize safety and assess efficacy. Dose-expansion cohorts are not always planned in advance nor
rigorously designed. We introduce an approach to the design of phase I expansion cohorts on the basis of
sequential predictive probability monitoring.

METHODS Two optimization criteria are proposed that allow investigators to stop for futility to preserve limited
resources while maintaining traditional control of type I and type II errors. We demonstrate the use of these
designs through simulation, and we elucidate their implementation with a redesign of the phase I expansion
cohort for atezolizumab in metastatic urothelial carcinoma.

RESULTS A sequential predictive probability design outperforms Simon’s two-stage designs and posterior
probability monitoring with respect to both proposed optimization criteria. The Bayesian sequential predictive
probability design yields increased power while significantly reducing the average sample size under the null
hypothesis in the context of the case study, whereas the original study design yields too low type I error and
power. The optimal efficiency design tended to have more desirable properties, subject to constraints on type I
error and power, compared with the optimal accuracy design.

CONCLUSION The optimal efficiency design allows investigators to preserve limited financial resources and to
maintain ethical standards by halting potentially large dose-expansion cohorts early in the absence of promising
efficacy results, while maintaining traditional control of type I and II error rates.

JCO Precis Oncol 6:e2100390. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Designs of phase I clinical trials in oncology were devised
to assess safety and identify themaximum tolerated dose
and recommended phase II dose of the drug under
study. These trials are typically small, single-arm studies
in heavily pretreated patient populations. Phase I trials
are most commonly implemented using the rule-based
3 + 3 design to conduct dose-escalation. In the modern
treatment era, phase I dose-expansion cohorts are being
used with greater frequency to further characterize the
safety and assess the efficacy of drugs in disease-
specific cohorts, or to compare across doses in set-
tings where nomaximum tolerated dosemay exist. Manji
et al1 found that the use of expansion cohorts in single-
agent phase I cancer trials increased from 12% in 2006
to 38% in 2011. Bugano et al2 expanded on this work to
show that drugs tested in phase I trials with expansion
cohorts had higher rates of success in phase II.

But dose-expansion cohorts are not always planned in
advance nor designed with statistical rigor. For example,

Manji et al1 found that only 74% of trial protocols in-
cluded a stated objective regarding the expansion co-
hort. Dose-expansion cohorts that aim to assess efficacy
do not always provide sample size justification, and as a
result, sample sizes in expansion cohorts have at times
been too small to meet the study aims, while at other
times they have exceeded those of traditional phase II
trials. For example, the KEYNOTE-001 trial of pem-
brolizumab included multiple protocol amendments
and ultimately enrolled a total of 655 patients across five
melanoma expansion cohorts and 550 patients across
four non–small-cell lung cancer expansion cohorts.3

Guidance is needed to formalize the statistical designs
of phase I expansion cohorts to allow for early stopping
for futility as a mechanism to ensure that the trial is
ethical for participants and makes efficient use of
resources, while also operating within well-defined
statistical criteria for control of type I error and
power. This article proposes optimization metrics for
designing sequential dose-expansion cohorts using
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Bayesian predictive probability monitoring in a manner that
satisfies traditional criteria for type I error and power. We
demonstrate the design through simulation studies and
apply the methodology to redesign a case study on the
basis of an expansion cohort studying atezolizumab in
metastatic urothelial bladder cancer.

METHODS

Simon’s two-stage designs provide methodology for de-
signing clinical trials with a single look for futility. The de-
cision threshold applied at the interim analysis is selected to
minimize the maximum sample size (minimax design) or the
expected sample size under the null hypothesis (optimal
design).4 These designs are the predominate approach to
phase II trials in oncology, and are increasingly applied to
phase I dose-expansion cohorts, but are limited to having a
single interim look for futility. By incorporating more frequent
interim looks for futility, it may be possible to stop trials
considerably earlier, thus conserving valuable human and
financial resources and preventing patients from being
subject to ineffective treatments.

The Bayesian statistical paradigm provides the funda-
mental theory of sequential statistical learning, and allows
flexibility in both the number and timing of interim looks.
Posterior distributions reflect the synthesis of prior ex-
pectation and experimental evidence acquired in the trial
and form the basis for statistical inference. Posterior
probabilities, which arise from applying a clinically relevant
threshold to the posterior distribution, describe the prob-
ability that the response rate exceeds the null on the basis
of the data accrued so far in a trial. At any interim analysis,
the trial’s final result can be predicted by computing the
posterior predictive probability (PPP), which represents the
probability that the treatment will be declared efficacious at
the end of the trial when full enrollment is reached, con-
ditional on the currently observed data. A sequential pre-
dictive probability monitoring design can stop the trial if the

predictive probability drops below a predefined predictive
threshold.5-8 Predictive probability thresholds closer to zero
lead to less frequent stopping for futility, whereas thresh-
olds near one lead to frequent stopping unless there is
almost certain probability of success on the basis of the
accrued data. See the section Appendix 1 for the mathe-
matical details of the calculation of PPP. A Beta(0.5, 0.5)
prior was used for all calculations in this manuscript.

To design a trial using sequential predictive probability
monitoring that controls type I error and achieves ac-
ceptable power, we must examine designs on the basis of a
range of combinations of posterior and predictive thresh-
olds and choose the design that best meets our desired
operating characteristics. Here, we only consider static
thresholds across all interim monitoring times. We propose
two optimization metrics for identifying optimal threshold
combinations. The first optimization criterion considers a
design’s accuracy. An accurate expansion cohort design
minimizes type I and type II errors. We can visualize the
accuracy of any design using a scatterplot displaying type I
error rate on the x-axis and power (1 -type II error rate) on
the y-axis. A perfectly accurate design approaches the
point (0, 1), representing no type I error and power of one.
Designs can be compared for accuracy on the basis of their
Euclidean distance to the ideal design. We refer to the
design with nearest proximity to the ideal design as the
optimal accuracy (OA) design.

The second optimization criterion considers a design’s
efficiency. An efficient expansion cohort design stops early
for futility when the null hypothesis is true while maximizing
patient enrollment when the drug achieves its targeted
response rate. We can visualize a design’s efficiency using
a scatterplot of the average sample size under the null
(x-axis) versus the average sample size under the alter-
native (y-axis). The Euclidean distance to the upper left
point on this plot provides a quantitative measure of

CONTEXT

Key Objective
Dose-expansion cohorts are being usedmore frequently in phase I oncology clinical trials to further characterize safety and get

preliminary data on efficacy of new treatments. This paper uses Bayesian sequential predictive probability futility monitoring
for the design of phase I expansion cohort studies, and proposes two optimization criteria for selecting a design with
acceptable frequentist operating characteristics.

Knowledge Generated
In comparison to the traditional Simon’s two-stage design or a Bayesian sequential posterior probability futility monitoring

design, a Bayesian sequential predictive probability futility monitoring design selected using the proposed optimization
criteria yielded higher power while reducing the average sample size under the null hypothesis.

Relevance
The use of a Bayesian sequential predictive probability futility monitoring design selected using the proposed optimization

criteria will allow phase I expansion studies to be designed with high power to detect active drugs, while minimizing the
number of patients treated with inactive drugs.
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efficiency. We refer to the design that comes closest to a
minimal sample size under the null and a maximal sample
size under the alternative as the optimal efficiency (OE)
design. Note that identification of the OE design is subject
to the additional constraints of an acceptable range of type I
error and a minimum power threshold. Without such
constraints, it is possible to identify an optimal design with
very low power and/or very high type I error that would not
be an acceptable design option in practice.

We also note that Euclidean distances can be computed
with equal weighting between the axes or with unequal
weighting to reflect a preference for one versus the other
(eg, minimizing type I v type II error rates). Our imple-
mentation only compares designs on the basis of equal
weighting. All statistical analyses were conducted using R
statistical software.9 Calculations for the Simon’s two-stage
design were made using the clinfun package.10 Calcula-
tions for the sequential predictive probability design, in-
cluding optimization and plotting, were made using the
ppseq package.11

RESULTS

Simulated Data Example

To demonstrate the use of sequential predictive probability
monitoring, consider the setting of a one-sample dose-
expansion cohort comparing an experimental treatment
to the established response rate of a standard-of-care
treatment. The end point is tumor response measured as
a binary variable. The null, or unacceptable, response rate
is 0.1 and the alternative, or acceptable, response rate is
0.3. The Simon’s two-stage minimax design on the basis of
these response rates, and assuming a type I error of 0.05
and a power of 0.8, enrolls a maximum of 25 patients.
Fifteen patients are enrolled in the first stage and if , 2
responses are observed, the trial is stopped for futility.
Otherwise, enrollment continues to 25 and the trial is de-
clared a success if six or more responses are observed. We
also compare to Simon’s two-stage optimal design with a
total sample size of 25, which has a type I error of 0.075 and
a power of 0.8. This design enrolls 10 patients in the first
stage, and stops for futility if , 2 responses are observed.
Otherwise, enrollment continues to 25, and the trial is
declared a success if five or more responses are observed.

For comparability with these Simon’s two-stage designs, we
plan a sequential predictive probability design with a
maximum sample size of 25. We monitor for futility after
every five patients and simultaneously consider the pos-
terior threshold that would be used to determine efficacy at
the end of the trial, and the predictive threshold that would
be used to stop for futility at a given interim look. We ex-
amine each possible combination of thresholds and cal-
culate the associated type I error and power so that we can
ultimately select a design with desirable operating char-
acteristics. In this simulation, we considered posterior
thresholds of 0, 0.7, 0.74, 0.78, 0.82, 0.86, 0.9, 0.92, 0.93,

0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 0.9999, 0.99999,
and 1, and we considered predictive thresholds of 0.05, 0.1,
0.15, and 0.2.

Finally, we compare to a Bayesian posterior probability
monitoring design12 that uses the same total sample size of
25 and cohort size of five patients. Multc Lean Desktop
software program (downloaded from Biostatistics Software13

on December 15, 2021) was used to generate decision rules
for each of the above-listed posterior thresholds, using a
constant standard treatment response rate of 0.1 and a
Beta(0.5, 0.5) prior distribution for the experimental treat-
ment response rate.

We generate 10,000 null data sets where the true response
probability is 0.1 and 10,000 alternative data sets where the
true response probability is 0.3. For each simulated data
set, we apply the Simon’s two-stage minimax and optimal
design rules, the posterior probability monitoring design
rules for each posterior threshold, and the sequential
predictive probability design for each combination of
posterior and predictive thresholds. For each design, we
calculate the proportion of simulated data sets that stop
early for futility, the proportion of simulated data sets that
are declared efficacious, and the average sample size
enrolled across the simulated data sets. In null data sets,
the proportion of simulated data sets that are declared
efficacious represents the type I error rate. In alternative
data sets, the proportion of simulated data sets in which the
experimental treatment is declared efficacious represents
the power.

Figure 1 displays the resulting accuracy and efficiency of
the Simon’s minimax, Simon’s optimal, posterior proba-
bility, and predictive probability designs. Optimal designs
were selected from those with type I error between 0.05 and
0.1 and power of at least 0.7. The Simon’s two-stage
minimax design had empirical type I error 0.03 and em-
pirical power 0.81 while enrolling an average of 19.4 and
24.6 participants under the null and alternative hypothe-
ses, respectively. The Simon’s two-stage optimal design
had empirical type I error 0.03 and empirical power 0.74
while enrolling an average of 13.9 and 22.8 participants
under the null and alternative hypotheses, respectively. The
posterior probability designs all had very low type I er-
ror , 0.001 and low power , 0.4. The OA design is the
sequential predictive probability design with posterior
threshold 0.93 and predictive threshold 0.1, which had
type I error 0.087 and power 0.89 (Fig 1A). This design
enrolls an average of 16.7 and 24.3 participants under the
null and alternative hypotheses, respectively. The OE de-
sign is the sequential predictive probability design with
posterior threshold 0.86 and predictive threshold 0.2,
which had type I error 0.065 and power 0.77 (Fig 1B). This
design enrolls an average of 11 and 21.3 participants under
the null and alternative hypotheses, respectively. On the
basis of these results, we may choose the OE design since it
will optimize our resource utilization by controlling the
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sample size while still maintaining desirable operating
characteristics. If we required a minimum power of 0.8, the
previously described OA design would also have OE.

Once a design has been selected in this way, we can map
the design’s posterior and predictive thresholds into a set of
decision rules that would be used at each sequential
monitoring point in the trial to avoid interim statistical
computation. The decision rules associated with the se-
lected OE design are shown in Table 1.

Case Study

The basket trial of atezolizumab, an anti-programmed
death-ligand 1 (PD-L1) treatment, enrolled patients with a
variety of cancers and included dose-expansion cohorts
with the primary aim of further evaluating safety and the
secondary aim of investigating preliminary efficacy
(NCT01375842). An expansion cohort in metastatic uro-
thelial carcinoma was not part of the original protocol
design, but was added later via protocol amendment and
ultimately enrolled a total of 95 participants.14,15 Other
expansion cohorts included in the original protocol were
planned with a sample size of 40 and a single interim futility
analysis that would stop the trial if 0 responses were seen in
the first 14 patients enrolled. According to the trial protocol,
this futility rule is associated with at most a 4.4% chance of
observing no responses in 14 patients if the true response
rate is 20% or higher.

On the basis of these pieces of information about the
original design of the atezolizumab expansion cohorts, we
investigate a variety of scenarios (Table 2). These scenarios
include combinations of a null response rate of 0.1 or 0.2,
an alternative response rate of 0.2 or 0.3, and a sample size

of 40 or 95. For the protocol design, we use the originally
planned single futility look, stopping the trial if 0 responses
are observed in the first 14 patients. The trial is declared to
have a positive result if the total number of responses meets
or exceeds the ceiling of the alternative response rate times
the total sample size for a given scenario. For the sequential
predictive probability designs, we conduct interim analyses
after every five patients. We consider the same posterior
and predictive thresholds as in the simulated data example.
Only designs with type I error between 0.01 and 0.2 and
with power of at least 0.7 were considered for design op-
timization. 1,000 simulated data sets were generated under
both the null and alternative hypotheses.

The potential design options are plotted according to accuracy
and efficiency in Figures 2A and 2B, respectively, and detailed

TABLE 1. Decision Rules to Conduct the Selected OE Design From the
Simulated Data Example
n r

5 0

10 0

15 1

20 2

25 4

NOTE. The null response rate is 0.1, interimmonitoring is done after
every five patients up to a total of 25, and the posterior and predictive
thresholds are 0.86 and 0.2, respectively. Stop the trial if there are ≤ r
responses out of n patients at a given interim look. At the end of the
trial, when N = 25, the treatment would be declared promising if there
are . r responses.
Abbreviation: OE, optimal efficiency.
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FIG 1. Optimal expansion cohort design options for the simulated data example on the basis of (A) type I error and power where the red
point indicates the OA design and (B) sample size under the null and alternative hypotheses where the red point indicates the OE design.
OA, optimal accuracy; OE, optimal efficiency.
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operating characteristics of the optimal and protocol designs
are presented in Table 3. In all cases, we can identify an OE
sequential predictive probability design with higher power and
lower average sample size under the null compared with the
protocol design. The OE designs all have acceptable type I
error when the sample size is 95. By comparison, the protocol
designs have unreasonably low type I error of, 0.01 and low
power of around 50%. When the planned sample size is only
40, none of the designs perform particularly well in the two
caseswhere there is only a 0.1 difference between the null and
alternative response rates (ie, 0.1 v 0.2, or 0.2 v 0.3).

DISCUSSION

Recent designs of phase I oncology trials have leveraged
dose-expansion cohorts to enroll sample sizes that far
exceed conventional practice, and often without a pre-
specified statistical justification. This article proposes an

approach to selecting an optimal design on the basis of
sequential predictive probability monitoring in the setting of
a phase I dose-expansion trial. Criteria were derived to
optimize either the accuracy or the efficiency of an ex-
pansion cohort design. After selecting an optimal design, a
table of decision rules for interim monitoring can be ob-
tained so that the trial may be conducted without the need
for interim statistical computation. In comparison to a
traditional Simon’s two-stage minimax or optimal design, a
Bayesian posterior probability monitoring design, and a
design used in a real-world trial with a single interim look,
an optimal sequential predictive probability design offered
superior trial operating characteristics. The simulation
studies conducted found that the OE design tended to have
more desirable properties in terms of resource conserva-
tion, subject to constraints on type I error and power,
compared with the OA design. The OE design allows in-
vestigators to preserve the limited financial resources that
are available to conduct early-phase clinical trials and to
maintain ethical standards by halting large dose-expansion
cohorts early in the absence of promising efficacy results.

Accelerated approval was awarded to atezolizumab for
patients with metastatic urothelial carcinoma in 2016 on
the basis of results of a phase II trial.16 Although the phase
III trial found a similar overall response rate to that in the
phase II trial for the atezolizumab arm, the response rate on
control treatment was much higher than the historical
control rate of 10% that had been used in the phase II

TABLE 2. Simulation Settings for the Redesign of the Atezolizumab Expansion
Cohort in Metastatic Urothelial Carcinoma
Setting Null Response Rate Alternative Response Rate Total Sample Size

A 0.1 0.2 95

B 0.1 0.3 95

C 0.2 0.3 95

D 0.1 0.2 40

E 0.1 0.3 40

F 0.2 0.3 40

TABLE 3. Operating Characteristics for Optimal Sequential Predictive Probability Designs Compared With the Protocol Design for the Redesign of the
Expansion Cohort for Metastatic Urothelial Carcinoma Included in a Phase I Trial of Atezolizumab

Null Alternative Total N Design
Posterior
Threshold

Predictive
Threshold

Type I
Error Power

Average N Under the
Null

Average N Under the
Alternative

0.1 0.2 95 OA 0.90 0.05 0.072 0.883 50.975 90.160

OE 0.95 0.15 0.041 0.723 31.740 77.990

Protocol NA NA 0.005 0.528 75.560 91.841

0.3 OA 0.96 0.05 0.029 0.992 45.330 94.595

OE 0.97 0.20 0.018 0.814 17.785 78.520

Protocol NA NA 0.000 0.499 75.560 94.595

0.2 0.3 OA 0.82 0.05 0.141 0.874 56.295 89.040

OE 0.86 0.10 0.081 0.703 38.865 75.135

Protocol NA NA 0.009 0.499 92.246 94.595

0.1 0.2 40 OA 0.78 0.05 0.174 0.816 30.040 38.700

OE 0.78 0.05 0.174 0.816 30.040 38.700

Protocol NA NA 0.035 0.563 34.072 39.012

0.3 OA 0.93 0.05 0.033 0.926 23.305 38.965

OE 0.98 0.05 0.013 0.856 18.525 38.185

Protocol NA NA 0.000 0.572 34.072 39.766

0.2 0.3 OA 0.82 0.05 0.147 0.702 28.330 37.285

OE 0.82 0.05 0.147 0.702 28.330 37.285

Protocol NA NA 0.076 0.572 38.544 39.766

Abbreviations: OA, optimal accuracy; OE, optimal efficiency; NA, not available.
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trial.17 On the basis of the phase III trial results, the ap-
proval of atezolizumab for use in this patient population
was voluntarily withdrawn by the sponsor. Similarly,
durvalumab (NCT01693562) was approved for the
treatment of stage IV urothelial cancer patients on the
basis of an interim analysis in phase I/II study.18 In phase
III study, no difference in overall survival was found in
patients with high PD-L1 treated with durvalumab com-
pared with those treated with standard chemotherapy,19

and approval for this patient population was voluntarily
withdrawn. These two case studies underscore the im-
portance of understanding the expected performance of
biomarker-targeted subpopulations treated with standard-
of-care therapies. Preventing future withdrawals may ul-
timately require the inclusion of contemporary controls in
earlier phase trials, especially if they will be used as the
basis for accelerated approval. The methods presented
here can be easily extended to the context of randomized
two-arm early-phase trial designs. Alternative designs
include platform trials designed to share a common
control8,20,21 and adaptive allocation schemes that enable
efficient use of existing evidence.22,23

One limitation of the optimal sequential predictive proba-
bility designs is the non-negligible computational time
needed to optimize over a grid of posterior and predictive
thresholds. Thresholds should be selected with care to
avoid using computational time examining thresholds that
would not be clinically acceptable. Additionally, we have
developed an R statistical software9 package that is freely
available11 and comes with detailed user guides to allow for
ease of implementation of this design.24 The package in-
cludes interactive graphics that make it straightforward to
compare the resulting design options.

The methods presented here require prespecification of
both the total sample size and the schedule of interim
analyses. For designs like Simon’s two-stage, in the ab-
sence of having observed a sufficient number of responses
to proceed to the next stage, one may need to pause en-
rollment so that interim decision rules can be applied.
Although pauses are not explicitly required for Bayesian
designs on the basis of thresholds of predictive probability,
to strictly adhere to the design’s calibrated type I error rate,
predictive probability designs should follow the pre-
specified analysis schedule. Enrollment pauses may be
needed in the event of rapid patient accrual.
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FIG 2. (A) Optimal atezolizumab expansion cohort redesigns for metastatic urothelial carcinoma according to type I error and power. The red point
indicates the optimal accuracy design. (B) Optimal atezolizumab expansion cohort redesigns for metastatic urothelial carcinoma according to the
average sample size under the null and the average sample size under the alternative. The red point indicates the optimal efficiency design.
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APPENDIX 1. MATHEMATICAL DETAILS
Consider the setting of a binary outcome, where each patient, denoted
by i , enrolled in the trial either has the outcome such that xi � 1 or does

not have the outcome such that xi � 0. Then, X � �
n

i�1
xi represents the

number of responses out of n currently observed patients up to a
maximum of N total patients. Let p represent the probability of re-
sponse, where p0 represents the null response rate under no treatment
or the standard-of-care treatment and p1 represents the alternative
response rate under the experimental treatment. Most dose-expansion
studies with an efficacy aim will wish to test the null hypothesis H0 :
p ≤ p0 versus the alternative hypothesis H1 : p ≥ p1.

Here, the prior distribution of the response rate π(p) has a beta dis-
tribution Beta(a0, b0) and our data X have a binomial distribution
bin(n, p). Combining the likelihood function for the observed data

Lx (p)}px (1 − p)n−x with the prior, we obtain the posterior distribution
of the response rate, which follows the beta distribution
p
�
�x ∼ Beta(a0 + x , b0 + n − x). Using the posterior probability, which

represents the probability of success based only on the data accrued
so far, we would declare a treatment efficacious if Pr(p. p0|X ). θ,
where θ represents a prespecified posterior decision threshold. The
posterior predictive distribution of the number of future responses X p in
the remaining future patients follows a beta-binomial distribution
Beta-binomial(np, a0 + x ,b0 + n − x). Then, the PPP is calculated as

PPP � �
np

xp�0
Pr(X p � xp|x) × I(Pr(p. p0|X , X p � xp). θ). The PPP

represents the probability that the treatment will be declared effica-
cious at the end of the trial when full enrollment is reached. We would
stop the trial early for futility if the posterior predictive probability
dropped below a prespecified threshold θp, that is, PPP, θp.
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