
Emerging phenotyping strategies will advance our 
understanding of psychiatric genetics

Sandra Sanchez-Roige1,*,

Abraham A Palmer1,2,*

1Department of Psychiatry, University of California San Diego, La Jolla, CA 92093

2Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093

Abstract

Over the last decade, genome-wide association studies (GWAS) of psychiatric disorders have 

identified numerous significant loci. Whereas these studies initially depended on cohorts 

ascertained for specific disorders, there has been a gradual shift in the ascertainment strategy 

towards population-based cohorts (PBCs) for which both genotype and heterogeneous phenotypic 

information are available. One of the advantages of PBCs is that, in addition to clinical diagnoses 

and various proxies for diagnoses (“minimal phenotyping”), many of them also provide non-

clinical phenotypes, including putative endophenotypes, that can be used to study domains of 

normal function in addition to, or instead of, clinical diagnoses. By studying endophenotypes it 

is possible to both dissect psychiatric disorders (“splitting”) and to combine multiple phenotypes 

(“clumping”), which can either reinforce or challenge traditional diagnostic categories. Such 

endophenotypes may also permit a deeper exploration of the neurobiology of psychiatric 

disorders. A coordinated effort to fully exploit the potential of endophenotypes is overdue.

For decades, the field of psychiatric genetics largely failed to identify replicable 

associations. A watershed moment occurred several years ago, with the first successful 

genome-wide association study (GWAS) for schizophrenia1. Since then, numerous GWAS 

for other psychiatric disorders have enjoyed similar success2. It has now become clear 

that very large sample sizes are needed because common psychiatric diseases are highly 

polygenic, perhaps even omnigenic3. Whereas the initial focus was on identifying individual 

genes and loci4, larger samples and polygenic methodologies have emphasized the 

importance and utility of sub-genomewide significant signals. In addition, recent evidence 

has confirmed an important role for rare and even de novo variants5–8. Well-powered case 

control studies have been essential to understand the genetics of psychiatric disorders, and 

ascertaining more cases and controls will certainly yield more genome-wide significant 

associations. But is that all that we should be doing?

In recent psychiatric genetics studies, the largest and most rapid growth in sample size has 

not come from ramping up ascertainment of cases, but rather from utilizing increasingly 

abundant population-based cohorts (PBCs), such as UK Biobank (UKB), Million Veterans 
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Project (MVP), and cohorts from genetics-focused companies such as deCode Genetics 

and 23andMe (Box 1). In some cases, PBCs have simply provided additional cases and 

controls. For example, the first successful GWAS for schizophrenia included cases and 

controls from deCode Genetics1. Much more recently, MVP has provided by far the largest 

cohorts for diseases such as alcohol use disorder (AUD)9, opiate use disorder (OUD)10, 

and post-traumatic stress disorder (PTSD)11 by using electronic health records as a source 

of phenotypic information12,13. Moreover, self-reported clinical diagnosis collected by 

23andMe (e.g. “Have you ever been diagnosed with clinical depression?”) provided the 

majority of the data for a recent GWAS for MDD14. Self-reported case status was also 

used for replication in a recent GWAS of ADHD15. Finally, both UKB and 23andMe 

have been rich sources of non-disease phenotypes, such as neuroticism16, insomnia17 and 

risk tolerance18, which are continuously distributed and can therefore be measured in the 

general population but are still relevant to multiple psychiatric disorders (Figure 1). In 

this perspective, we will explore how PBCs are changing ascertainment and phenotyping 

strategies in ways that create new challenges but may also provide opportunities for a deeper 

understanding of psychiatric disorders.

Advantages and caveats of population-based cohorts

Whereas genetic studies have traditionally ascertained cases for a particular disorder, PBCs 

may contain individuals who can serve as cases (and controls) for numerous different 

disorders. However, several limitations need to be considered. The ascertainment of PBCs, 

while not focused on a specific diagnosis, is never random and therefore does not represent 

the general population19. For example, 23andMe and UKB20 research participants are more 

highly educated and have higher SES than the general population. In addition, similar 

to traditionally ascertained genetic cohorts, current PBCs are overwhelmingly made up 

of individuals of European ancestry; although MVP is a notable exception21. Another 

limitation of PBCs is that certain disorders are underrepresented; for example, in UKB, 

the frequency of schizophrenia (524 research participants with ICD codes for schizophrenia 

out of 410,293) is lower than the general population22, perhaps reflecting the lower rate 

at which schizophrenia patients volunteered to participate in such a rigorous study. The 

age of subjects in PBCs is another potential limitation. For example, the use of diagnoses 

for childhood onset disorders like ADHD and autism have changed dramatically over the 

past few decades, meaning that older subjects will have a lower than expected prevalence 

of these diagnoses. In addition, the prevalence of environmental exposures (e.g. smoking), 

which modulate the prevalence of many traits and diseases, have changed over time, which 

may confound various genetic studies. Lastly, privacy and intellectual property concerns 

restrict the sharing of raw data and even the results obtained from some PBCs, these 

restrictions impede data sharing. Despite these limitations, PBCs are attractive because they 

are economical, offer the potential to dramatically increase sample size, provide a much 

greater diversity of phenotypes, and lend themselves to innovative study designs.

In some PBCs, clinical diagnoses are not available. However, self-reported clinical 

diagnoses may be available. For obvious reasons, these self-reported diagnoses must be 

interpreted with caution; however, the strength of the genetic correlation between gold-

standard diagnoses and self-reported diagnoses helps to address this concern. For example, 
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self-reported MDD and clinician assigned MDD showed a robust genetic correlation (rg 

= 0.86)14. In other cases, self-reported diagnoses are unavailable, but screening tools can 

be used to approximate diagnoses. For example, scores from the Alcohol Use Disorder 

Identification Test (AUDIT23), which is as a screening tool for AUD, were available in 

research participants from 23andMe and UKB. Sanchez-Roige et al24 found that when 

AUDIT scores were converted into a case control phenotype, they were highly genetically 

correlated with AUD (rg = 0.82)25. These examples demonstrate that, even when clinical 

diagnoses are not available, there is still significant value in using self-reported information 

from PBCs for genetic studies of psychiatric disorders.

Minimal phenotyping and endophenotypes for refining psychiatric genetics

In general, there is a tradeoff between phenotyping depth and sample size (Figure 2). 

The quest for larger sample sizes has led to the adoption of “minimal phenotyping” 

where a complex disease or trait may be reduced to a single yes or no question. 

Minimal phenotyping is sometimes criticized because it implicitly assumes that minimal 

phenotypes are merely noisy measurements of a true underlying phenotype26. Cai et al26 

sought to empirically examine this question by considering both self-reported diagnosis 

of MDD and clinician measurements of the cardinal symptoms of MDD and found that 

minimal phenotyping yielded a qualitatively different trait. Another empirical examination 

of minimal phenotyping used a multivariate framework (Genomic SEM27) to evaluate 

several psychiatric disorders and self-report measures of their cardinal symptoms28. That 

study identified large genetic correlations between some disorders and symptom pairs (e.g. 

MDD, depressive symptoms), but very modest genetic correlations between other pairs (e.g. 

bipolar disorder and manic symptoms; schizophrenia and psychotic symptoms). Despite 

these limitations, robust genetic signals -- of something -- can be obtained using minimal 

phenotyping; how useful these signals will be for understanding the pathophysiology of 

psychiatric disorders is a matter of ongoing debate, but when large, minimally phenotyped 

datasets exist, it seems natural that they should be analyzed.

Regardless of whether diagnoses are made by an expert clinician, a structured interview, 

or self-report, there is a broader question about whether or not the current diagnostic 

categories are optimal for genetic research, given that the DSM was never intended to be 

a research tool. A recent review summarized this issue with the memorable phrase “our 
genes don’t seem to have read the DSM”29. Initiatives such as the National Institute of 

Mental Health (NIMH) Research Domain Criteria (RDoC)30 and Hierarchical Taxonomy of 

Psychopathology (HiTOP31) provide new ways of classifying psychiatric disorders based on 

dimensions of observable behavioral and neurobiological measures, rather than diagnostic 

categories. These approaches have not been universally accepted32. Even before RDoC, 

there was widespread enthusiasm for genetic studies of endophenotypes (Box 2); however, 

studies of endophenotypes flourished in the era of candidate genes, when the necessity of 

large sample sizes was not generally understood. This may have fostered undue skepticism 

about the utility of endophenotypes for genetic research.

There are several recent examples of adequately powered genome-wide (rather than 

candidate gene) association studies of endophenotypes. For example, impulsivity, which has 
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been defined as “actions which are poorly conceived, prematurely expressed, unduly risky or 
inappropriate to the situation, and that often result is undesirable consequences”33 appears 

to meet the criteria for an endophenotype for multiple psychiatric disorders, including 

attention-deficit/hyperactivity disorder (ADHD) and several substance use disorders (SUD). 

Numerous genetic studies have now shown that various measures of impulsivity34–36 

and sensation seeking39 are heritable and that they are genetically correlated with both 

ADHD and various substance use related traits34,35. In addition, risk tolerance (“would 
you describe yourself as someone who takes risks?”), which has also been proposed as an 

endophenotype for both ADHD and substance use disorders, was recently measured in over 

one million individuals (primarily from UKB and 23andMe18). Although risk tolerance was 

measured using a minimal phenotype (a single vaguely worded question), risk tolerance 

was clearly heritable and the large sample size allowed identification of 124 genome-wide 

significant loci18. Some of these loci have also been implicated in clinically defined traits25. 

Furthermore, risk tolerance was positively genetically correlated (rg > 0.3) with numerous 

clinically relevant traits (e.g. ADHD, SUD). This study illustrates the power of minimal 

phenotyping to capture an endophenotype that informs complex disorders and also conforms 

to the RDoC framework. In a third example, Ibrahim-Verbaas et al37 performed a GWAS 

for executive function, which can be considered an endophenotype for multiple psychiatric 

traits. Intriguingly, GWAS of sensation seeking35, risk tolerance18 and executive function37 

all identified a locus that included the gene CAMD2, which was subsequently associated 

with AUD9. Whether all of these associations are due to a single locus or multiple loci is 

far from clear38, but the index SNPs for these studies are typically co-inherited (LD is ~0.9), 

consistent with a single causal locus.

Another example of an intriguing endophenotype is self-reported loneliness (e.g. “Do you 

often feel lonely?”), which is a strong predictor of mortality and life satisfaction and appears 

to precede the onset of MDD39. Several recent GWAS of loneliness40–42 have identified 

several significant loci and shown that a genetic predisposition to loneliness is genetically 

correlated with psychiatric, cardiovascular, and metabolic disorders. By assigning polygenic 

risk scores to individuals for whom electronic medical records were also available, Dennis et 

al43 showed that genetic liability for loneliness increased the risk to develop coronary artery 

disease more robustly than MDD. Thus, loneliness is an endophenotype that is relevant to 

both MDD and a variety of somatic disorders.

While some endophenotypes may be amenable to minimal phenotyping, others represent 

extremely deep and rich data types. For example, by passively collecting data from wearable 

devices and smartphones, certain endophenotypes relevant to psychiatric disorders can 

be measured44. In a recent GWAS of circadian rhythm, wearable devices were used to 

gather objective measures of sleep timing, duration and quality45. More recently, structural 

connectivity from fMRI was proposed as endophenotype for IQ46. Elliott et al47 used 

3,144 functional and structural brain imaging phenotypes from UKB to conduct GWAS that 

identified novel associations that included genes relevant to brain development, pathway 

signaling and plasticity.
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A path forward for researching endophenotypes

Despite compelling examples like these, there has not been a coordinated effort to define 

and explore the endophenotype space. Whereas psychiatric disorders require ascertainment 

of cases and controls, endophenotypes are continuous and could therefore be measured at 

scale in PBCs (Figure 1). The Psychiatric Genomics Consortium (PGC) has subdivided 

psychiatric genetic studies into working groups for each major diagnostic category; in 

contrast, while individual groups have been formed around specific projects (e.g. the Social 

Science Genetic Association Consortium, https://www.thessgac.org; the Cognitive Genomics 

Consortium), there is no coordinated effort to establish a similar set of working groups 
focused on GWAS of endophenotypes or RDoC traits; however, we feel such an effort is 
overdue.

The approach we are proposing will be orthogonal to the efforts of the PGC because 

RDoC traits and endophenotypes “split” diagnostic categories into discrete units of analysis. 

The SUD field provides a good example of how a complex disorder can be split into 

smaller, more biologically meaningful units. SUD develop in accordance with an obligate 

longitudinal pattern: drug experimentation → regular use → harmful use → transition 

to compulsive use → quit attempts → relapse (Figure 3a). Approaching SUD with a 

case control framework merges the genetic liability for each of these stages into a single 

phenotype, obscuring the distinct biological factors relevant at each stage. In contrast, 

several recent projects have focused on individual stages of SUD, which can help to 

address this limitation. For example, GSCAN used data from almost 1 million individuals to 

examine a number of SUD-related traits, including smoking initiation48. In another example, 

the genetic relationship between alcohol consumption and AUD was explored using the 

AUDIT, a 10-item questionnaire that measures alcohol use and misuse24. By dissecting 

the genetic contribution for alcohol consumption (first 3 items) vs problematic use (final 

7 items), Sanchez-Roige et al24 and Kranzler et al9 showed a surprisingly low correlation 

between alcohol consumption and AUD (rg=0.33 and 0.52, respectively); however, the 

correlation between problematic alcohol use and AUD was stronger (rg=0.63)24.

Even when the temporal stages of a psychiatric disorder cannot be so clearly delineated, 

it can be helpful to split diagnoses into endophenotypes that are associated with the 

disease of interest. For example, a recent GWAS of insomnia17, which is a core symptom 

of multiple psychiatric disorders and a DSM criterion for MDD, identified 202 loci 

and showed strong genetic correlations with MDD (rg=0.5) and several other psychiatric 

conditions. Similarly, neuroticism, which shares a common genetic basis with MDD but 

can be more easily measured, could serve as a clinical stratifying factor for antidepressant 

actions16. However, it can be difficult to determine what level of dissection is required; 

a recent study suggested that neuroticism reflected two genetic dimensions, one capturing 

depressed affect, and another capturing worry49. Another example comes from several 

GWAS of impulsive personality35, which has been proposed as an endophenotype for 

several psychiatric disorders including ADHD. The UPPS-P is a self-reported questionnaire 

that measures 5 different aspects of impulsive personality. Only two of those five were 

significantly associated with ADHD; in contrast, all three subscales of BIS-11, which is 

another impulsive personality questionnaire, were significantly associated with ADHD35. 
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These examples illustrate how disease phenotypes can be dissected into component parts. 

Nonetheless, despite the original claim that endophenotypes would have a simpler genetic 

architecture50, all studies conducted to date have shown that both disease diagnoses and 

endophenotypes are highly polygenic.

Once the traits that reflect domains of normal function have been measured (“split”) 

in genotyped cohorts, it becomes possible to explore their empirical relationships with 

one another (“clumping”) beyond those that are already defined by traditional psychiatric 

nosology (see Figure 3b). Genomic SEM27 and related techniques are now being used 

in a number of such efforts. Luningham et al51 used genomic SEM to test multiple 

models of psychopathology among fourteen psychiatric disorders and related traits. They 

identified three factors (namely Externalizing, Internalizing, and Thought Problems), and an 

uncorrelated Neurodevelopmental Disorders factor. These factors showed distinct patterns 

of genetic correlations and accounted for substantial genetic variance. These empirically 

identified clusters may provide better targets for GWAS than individual disorders. In another 

example, Baselmans et al52 showed that it was possible to increase power by using Genomic 

SEM to integrate multiple traits (life satisfaction, positive affect, neuroticism, depressive 

symptoms) into a measure of “well-being spectrum”. By aggregating data from different 

sources of correlated traits, they reached a sample size of over 2.3 million individuals, which 

allowed them to identify 304 independent signals associated with well-being; a similar 

analysis suggested a two factor model that distinguishes “lower end” and “higher end” 

well-being factors53. In a third example, Thorp et al54 used Genomic SEM to identify two 

factors, which they referred to as “psychological” and “somatic” from the 9-item Patient 

Health Questionnaire (PHQ-9). Recently, several related methods have been developed (e.g. 

reverse GWAS, RGWAS55 and BUHMBOX56). Using RGWAS, Dahl et al55 proposed 

a stress subtype in MDD, and identified three novel subtypes of metabolic traits. Using 

BUHMBOX (Breaking Up Heterogeneous Mixture Based On Cross-locus correlations), Han 

et al56 found that seropositive and seronegative rheumatoid arthritis could be subdivided to 

form a new subgroup within seronegative-like cases. Conversely, they identified a genetic 

correlation between MDD and SCZ, but there was no evidence that this correlation was due 

to subgroup heterogeneity.

Clumping has been used to test the hypothesis, originally suggested by twin studies, that 

psychiatric disorders share a single common genetic factor (the “p-factor”)57. One of the 

earliest studies to use GWAS data to test this hypothesis showed that SNPs associated 

with schizophrenia were also associated with bipolar disorder58. Specific genes have 

been identified that confer risk for multiple psychiatric disorders (e.g. CACNA1C59–61). 

Evidence that the risk for substance abuse is shared across multiple substances (e.g. alcohol, 

tobacco48) is also consistent with earlier results from twin studies showing both substance-

specific and substance-independent genetic risk. An example of this genetic overlap is the 

gene CADM2, which has been associated several substances (alcohol use24,62, tobacco 

and cannabis initiation63) and risky behavior18,35. Joint analysis of correlated traits may 

outperform that of single phenotypes and allows the possibility to disentangle genetic effects 

that are specific to each trait from those that capture a latent construct (Figure 3b).
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Clumping can also lead to new splits. For example, Bansal et al64 used GWAS results from 

two correlated traits: schizophrenia (a disorder) and educational attainment (a continuously 

distributed non-disorder trait) to propose two distinct etiologies of schizophrenia, one that 

resembled bipolar disorder and was characterized by high education, and another that 

reflected a cognitive disorder and was independent of education. Studies like this one 

provide greater flexibility to explore the phenotypic space, which can lead to novel insights 

and challenge established nosologies.

The utility of endophenotypes for translation to cellular and animal models

Throughout this perspective, we have alluded to GWAS producing novel biological insights; 

however GWAS have numerous limitations65 and do not themselves produce actionable new 

knowledge. The influence of locus on a phenotype may be due to a coding difference 

or a regulatory difference. The former can be directly identified from sequence data 

(although the interpretation of sequence variants is still challenging), whereas regulatory 

polymorphisms are typically identified by using complementary data from GTEx66, 

PsychENCODE (resource.psychencode.org), CommonMind (https://www.synapse.org/#!

Synapse:syn2759792/tables/) and Brainspan (http://www.brainspan.org/); or protein QTLs 

(pQTLs; e.g. 67). Once identified, the protein products of such genes can be intensively 

studies and evaluated as possible drug targets68. Another way to follow up on GWAS results 

is to use cellular and animal models. However, these approaches have been challenging 

because psychiatric diseases cannot be recapitulated in cells or non-human animals. On the 

contrary, certain endophenotypes can be more readily modeled in animals, which provides 

an opportunity to evaluate the role of genes identified by GWAS at the molecular, cellular 

and circuit level56. Individual genes can also be manipulated in animal models by using 

viral vectors, genetically engineered null alleles (knock outs), over expression alleles, 

conditional alleles or knockins of humanized alleles. These approaches provide a gene-by-

gene approach to translation -- what is still lacking are robust methods for examining 

the polygenic nature of complex traits in animal models. In contrast, methods for using 

human-derived cellular models to examine the polygenic signals obtained from GWAS are 

better established. The ability to more directly model endophenotypes in experimental model 

systems will be critical in extracting biological insights from GWAS and thus realizing the 

full potential of psychiatric genetic studies.

Conclusion

Over the last 10 years, GWAS for psychiatric disorders have turned a corner and begun 

to identify numerous significant loci for all major psychiatric disorders. It is generally 

understood that larger samples will extend on these successes. In this perspective, we have 

considered additional study designs that go beyond disease diagnoses. Although they are 

not without limitations, PBC are quickly becoming the predominant ascertainment strategy. 

Direct-to-consumer genetic companies, which collectively account for millions of research 

participants (https://thednageek.com/dna-tests/), are the largest PBCs. Publicly funded PBC 

already account for millions of research participants and are linked to electronic health 

records and other rich data types (e.g. questionnaire data, imaging data, epigenetics). Unlike 

previous ascertainment strategies, PBC have provided adequate sample sizes for GWAS 
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of endophenotypes. This has allowed for increasingly sophisticated study designs. These 

resources are already leading to neurobiological insights about the molecular, cellular and 

circuit underpinnings associated with psychiatric disorders that will facilitate the translation 

of psychiatric genetic insights to other fields of neuroscience.
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Box 1.

Some of the major population-based cohorts in psychiatric genetics

• UK Biobank (UKB): prospective cohort with rich phenotypic information 

including biological, lifestyle, biomarkers, and imaging data and genetic 

information from approximately 500,000 volunteer research participants 

across the United Kingdom. Participants are predominantly of European 

ancestry, middle age and older69, and with higher socioeconomic 

backgrounds than the general population70.

• Million Veterans Project (MVP): observational cohort study in the 

Department of Veterans Affairs (VA) health care system containing deep 

phenotyping, including the VA electronic health records, and genotypes21. 

At the time of this writing more than 450,000 individuals have already been 

genotyped. Most participants are male, with a mean age of 64. While the 

majority of the participants are of European ancestry, this cohort also contains 

significant numbers of individuals from other ancestral groups.

• deCODE Genetics, Inc.: biopharmaceutical company based in Reykjavík, 

Iceland, funded in 1996 to study genetic risk factors for several diseases 

(https://www.decode.com). deCODE contains genotypic and medical data 

from >160,000 volunteer participants, comprising about half of the adult 

population in Iceland.

• 23andMe, Inc: direct-to-consumer genetic company with over 5 million 

genotyped individuals71; research participants tend to have higher education 

levels and socioeconomic status than the general population (e.g. 34).
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Box 2:

criteria for a trait to be considered an endophenotype, as defined by50

1. The endophenotype is associated with illness in the population [genetic 

correlation].

2. The endophenotype is heritable.

3. The endophenotype is primarily state-independent (manifests in an individual 

whether or not illness is active).

4. Within families, endophenotype and illness co-segregate.
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Figure 1. Case control vs continuous phenotypes.
Psychiatric disorders require ascertainment of cases and controls and because of their binary 

nature they do capture variability within the two classes, a problem that is addressed by a 

continuous phenotype.
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Figure 2. The trade-off between phenotyping depth and sample size.
Deep phenotyping is more expensive and time consuming; therefore, when the available 

budget is fixed, greater phenotyping depth comes at the expense of sample size. In contrast, 

scalable phenotyping strategies, which are more commonly used in PBCs, allow for larger 

sample sizes.
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Figure 3. Splitting vs clumping.
Psychiatric disorders can be further dissected or “split” into discrete units of analysis; 

for example, SUDs can be split into smaller, more biologically meaningful traits, that 

manifest into an obligate longitudinal pattern: drug experimentation → regular use → 
harmful use → transition to compulsive use → quit attempts → relapse. The empirical 

correlations among these traits can be examined (“clumping”) beyond those that are already 

defined by traditional psychiatric nosology. Recently, The Externalizing Consortium has 

sought to analyze the genetic correlations between different traits from the externalizing 

spectrum (https://osf.io/xkv36/), including sexual and drug-related phenotypes, impulsivity, 

and attention-deficit/hyperactivity disorder, with the goal of identifying loci involved in a 

shared underlying liability to externalizing versus genes unique to specific phenotypes.
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