Table 2.
Convolution neural network model.
| Layer | Output | Parameter |
|---|---|---|
| i_1 | [(N, 125, 125, io1)] | P0 |
| c2d | (N, 125, 125, co1) | P1 |
| mp2d | (N, 62, 62, mpo2) | p01 |
| c2d_1 | (N, 62, 62, c2do1) | P2 |
| mp2d _1 | (N, 31, 31, mp2o1) | p02 |
| c2d2 | (N, 31, 31, c2o2) | P3 |
| m2d_2 | (N, 15, 15, m2do) | p03 |
| Fl | (N, flo) | P4 |
| Dl | (N, det5) | 14746112 |
| Dt | (N, dot5) | p05 |
| dns_1 | (N, dnst5) | 262656 |
| Dot | (N, dot5) | d05 |
| dense_2 | (N, 1) | 513 |
| Total | — | 15,102,529 |
| Trainable | — | 15,102,529 |
| Non-trainable | — | 0 |
Note: _1 = “input1”, c2d = “convolutional2d”, mp2d = “ max_poolint2d”, c2d_1 = “convolutional2d1”, mp2d _1 = “max_poolint2d1”, c2d2 = “convolutional2d2 “, m2d_2 = “max_poolint2d2 “, f1 = “Flatten Layers”, d1 = “ dropout”, dt = “ dense1”, dns_1 = “dense2”, dot = “dropout1”. io1 = “3”, co1 = “ “, mpo2 = “ 32”, c2do1 = “64 “, mp2o1 = “64 “, c2o2 = “128 “, m2do = “ 128”,flo = “ 28800”, det5 = “512 “, dot5 = “512 “, dnst5 = “ 512”, p0 = “0”, p1 = “ 896”, p01 = “0”, p2 = “ 18496”, p02 = “0”, p3 = “ 73856”, p03 = “0”, p4 = “ 0”, p05 = “0”, d05 = “0”.