Skip to main content
. 2022 Jun 8;2022:9171343. doi: 10.1155/2022/9171343

Table 2.

Convolution neural network model.

Layer Output Parameter
i_1 [(N, 125, 125, io1)] P0
c2d (N, 125, 125, co1) P1
mp2d (N, 62, 62, mpo2) p01
c2d_1 (N, 62, 62, c2do1) P2
mp2d _1 (N, 31, 31, mp2o1) p02
c2d2 (N, 31, 31, c2o2) P3
m2d_2 (N, 15, 15, m2do) p03
Fl (N, flo) P4
Dl (N, det5) 14746112
Dt (N, dot5) p05
dns_1 (N, dnst5) 262656
Dot (N, dot5) d05
dense_2 (N, 1) 513
Total 15,102,529
Trainable 15,102,529
Non-trainable 0

Note: _1 = “input1”, c2d = “convolutional2d”, mp2d = “ max_poolint2d”, c2d_1 = “convolutional2d1”, mp2d _1 = “max_poolint2d1”, c2d2 = “convolutional2d2 “, m2d_2 = “max_poolint2d2 “, f1 = “Flatten Layers”, d1 = “ dropout”, dt = “ dense1”, dns_1 = “dense2”, dot = “dropout1”. io1 = “3”, co1 = “ “, mpo2 = “ 32”, c2do1 = “64 “, mp2o1 = “64 “, c2o2 = “128 “, m2do = “ 128”,flo = “ 28800”, det5 = “512 “, dot5 = “512 “, dnst5 = “ 512”, p0 = “0”, p1 = “ 896”, p01 = “0”, p2 = “ 18496”, p02 = “0”, p3 = “ 73856”, p03 = “0”, p4 = “ 0”, p05 = “0”, d05 = “0”.