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Background. Pancreatic cancer (PC) is a malignant tumor of the digestive tract. It presents with atypical clinical symptoms and
lacks specific diagnostic indicators. This study is aimed at exploring the potential biomarkers of PC. Methods. TCGA database
pancreatic cancer dataset was normalized and used to identify differentially expressed genes (DEGs). Survival, independent
prognostic, and clinical correlation analyses were performed on DEGs to screen for key genes. DNA methylation, mutation,
and copy number variation (CNV) analyses were used to analyze genetic variants in key genes. GSEA was performed to
explore the functional enrichment of the key genes. Based on the expression of key genes, construction of a competing
endogenous RNA (ceRNA) network, analysis of the tumor microenvironment (TME), and prediction of chemotherapeutic
drug sensitivity were performed. Furthermore, the GEO database was used to validate the reliability of key genes. Results. Two
key genes (ECT2 and COL17A1) were identified, which were highly expressed in PC. The mRNA expression of ECT2 and
COL17A1 was associated with DNA methylation and CNV. The cell cycle, proteasome, and pathways in cancer were enriched
in the high-COL17A1 and ECT2 groups. The TME results showed that immune scores were decreased in the high-ECT2
group. CeRNA network results showed that there were eleven miRNAs were involved in the regulation of ECT2 and
COL17A1. Moreover, pRRophetic analysis showed that 20 chemotherapeutic drugs were associated with ECT2 and COL17A1
expression. Conclusions. Collectively, ECT2 and COL17A1 may be potential biomarkers for PC, providing a new direction for
clinical diagnosis and treatment.

1. Introduction

Pancreatic cancer (PC) is an aggressive malignancy with a
five-year survival rate of less than 9% [1]. It is expected that
in another decade, PC will be the leading contributor to
cancer deaths, second only to lung cancer [2, 3]. Poor sur-
vival is caused by rapid development of PC, atypical clinical
symptoms, and lack of early diagnostic biomarkers. The
best treatment for PC is surgical resection, but most
patients are diagnosed with metastases that cannot be sur-
gically resected [4]. Chemoradiotherapy, neoadjuvant ther-
apy, radiotherapy, and immunotherapy have some benefits
for patients with PC, but its side effects are equally pro-
nounced [5]. Therefore, there is the need for the effective

predictive biomarker to provide individualized treatment
for patients with PC to improve the quality of survival
and prolong survival time. With the development of the
molecular biology of tumors, predictive tools based on
diagnostic and prognostic-related genes are maturing.
These molecular markers may enable a more accurate indi-
vidualized diagnosis and treatment.

Molecular regulation of tumorigenesis is the most
important mechanism of pancreatic carcinogenesis. The
development of high-throughput sequencing technology
and bioinformatics analysis has confirmed the contribution
of key genes in predicting the overall survival and develop-
ment of PC [6–10]. Song et al. found PRMT1 to be a risk fac-
tor for PC development and poor prognosis [7]. Tu et al.
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found that S100A16 was a potential biomarker for PC affect-
ing patient prognosis [11]. Furthermore, Chen et al. identi-
fied a prognostic model consisting of four miRNAs that
reliably predicted the prognosis of PC patients and screened
for two potential prognostic genes (COL12A1 and COL5A2)
[12]. Ye et al. revealed the role of miR-7 as a tumor suppres-
sor and predicted it as a prognostic biomarker in PC [13].

In this study, we screened and validated PC prognosis-
related genes using bioinformatics analysis of The Cancer
Genome Atlas (TCGA; http://cancergenome.nih.gov/) and
the Gene Expression Omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/) database. R language packages and TCIA
(https://tcia.at/home) database were used to explore poten-
tial mechanisms and treatment sensitivity of key genes in
pancreatic cancer. This may help to reveal the pathogenesis
of PC and also provide new biomarkers for the diagnosis
and treatment of PC.

2. Materials and Methods

2.1. Data Collection. The gene expression data and corre-
sponding clinical features of PC and pan-cancer genomic
sequencing data were downloaded from TCGA database.
And GEO database dataset was used as the test group to ver-
ify the results. The advanced search was conducted using the
following keywords “pancreatic cancer,” “PAAD,” “sur-
vival,” and “Homo sapiens.” “Cell lines” were excluded from
the search as an exclusion criterion. The GSE62452 [14]

which consisted of 69 tumor tissues and 61 normal tissues
was selected and downloaded for subsequent validation
analysis. The selected dataset met the following require-
ments: (1) human pancreatic cancer tissue, (2) tumor and
nontumor tissue specimens, and (3) >100 samples. All data
were normalized using the robust multiarray average algo-
rithm [15] and log2-transformed for further analysis.

2.2. Identification of Differentially Expressed Genes (DEGs).
DEGs between PC and normal samples were identified using
the limma package of R [16]. Genes with adjusted P values <
0.05 and jlog FCj > 2 were identified as DEGs between
tumor tissues and normal tissues. Volcano plots and heat-
maps were visualized using ggplot2 and pheatmap packages.

2.3. Identification of Key Genes. The DEGs were filtered for
survival analysis using the Cox and Kaplan-Meier algo-
rithms. Genes with P values < 0.001 for all algorithms were
further analyzed. Next, a multi-Cox regression analysis was
used to analyze the relationship between prognosis and gene
expression. The screening criterion for the genes was P <
0:001. Finally, the correlation between genes and clinical
characteristics was analyzed. The cutoff value for clinical
correlation filtering was set at P < 0:05. Genes meeting the
above three screening conditions were used as key genes
for PC for subsequent analysis.

2.4. Clinical Value Evaluation. Based on the expression of
key genes, PC samples were divided into high- and low-
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Figure 1: The workflow diagram of this study.
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Figure 2: Identification of the differentially expressed genes. (a) The volcano plots of differentially expressed genes. (b) The heatmap of top
30 differentially expressed genes.
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expression groups. Survival and Survminer packages were
used to analyze the overall survival (OS) rate and visualize
it using Kaplan-Meier plots [17]. To assess the diagnostic
value of key genes, the pROC package in R was used to con-
duct the ROC curve [18].

2.5. The DNA Methylation, Mutation, and Copy Number
Variation (CNV) Analysis of Key Genes. The DNA methyla-
tion and mutation of key genes were analyzed by the cBio-
Portal database [19] (https://www.cbioportal.org/). The
CNV data of PC were obtained from TCGA database, and
the CNV of genes was counted by Perl script. The genes with
differences in CNV were screened by chi-square test and
visualized by chromosome loop diagram.

2.6. Gene Set Enrichment Analysis (GSEA). Based on the
expression level of ECT2 and COL17A1, the PC samples
were divided into high- and low-expression groups. The ref-
erence gene set c5.go.v7.4.symbols.gmt; c2.cp.kegg.v7.4.sym-
bols.gmt were selected, and the clusterProfiler package was
used for GSEA [20]. The results with P < 0:05 were consid-
ered statistically significant.
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Figure 3: Evaluation of the clinical value of key genes. (a) The ROC curves for ECT2. (b) The ROC curves for COL17A1. (c) The Kaplan-
Meier plot for overall survival based on ECT2 expression. (d) The Kaplan-Meier plot for overall survival based on COL17A1 expression.
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Figure 4: Independent prognostic analysis of key genes in PC.
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2.7. Estimation of Tumor Microenvironment (TME). The
stromal and immune scores were evaluated using the ESTI-
MATE algorithm to establish the relationship between
ECT2, COL17A1, and TME [21]. The results were presented
using the ggpubr package in R. Immune cell identification
was performed on the LUAD dataset using the ssGSEA algo-
rithm [22].

2.8. Construction of ceRNA Network. The STARBASE data-
base (https://starbase.sysu.edu.cn) contains data on miRNA
targets and RNA-RNA interactions. We used the STAR-
BASE database to predict miRNAs of key genes, and miR-
NAs with a programNum > 2 were selected. Next,
coexpression analysis was performed for key genes and miR-

NAs with the criteria of correlation coefficient > 0:2 and P
< 0:001. The ceRNA network results were visualized using
the Cytoscape software (version 3.8.0).

2.9. Immunotherapeutic and Chemotherapeutic Prediction.
Immunotherapy sensitivity data for PC were downloaded
from TCIA database, and the selected data meet the follow-
ing criteria: (1) TCGA and (2) PAAD. The results of immu-
notherapy sensitivity were visualized using the violin plot.
Chemotherapy is the primary treatment for terminal PC.
The pRRophetic package in R was used to estimate the
half-maximal inhibitory concentration (IC50) of the drugs
on patients with PC to predict chemotherapy response [23].
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Figure 5: The genetic variation of key genes. (a) Correlation between ECT2 DNA methylation and mRNA expression. (b) Correlation
between COL17A1 DNA methylation and mRNA expression. (c) The analysis of CNV on COL17A1 and ECT2.
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Figure 6: Continued.
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2.10. Pan-Cancer Analysis and Verification. Transcriptomic
and clinical data for pan-cancer were downloaded from
TCGA database. The expression and survival of key genes

in pan-cancer dataset were analyzed, and the threshold was
set at P < 0:05. The GSE62452 dataset was used to validate
the expression and survival of the key genes in PC.
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Figure 6: GSEA for key genes. (a) GSEA for the top 5 pathway in the high-ECT2 group; (b) GSEA for the top 5 biological functions in the
high-ECT2 group; (c) GSEA for the top 5 pathway in the high-COL17A1 group; (d) GSEA for the top 5 biological functions in the high-
COL17A1 group.

7Disease Markers



3. Results

3.1. Identification of the DEGs and Key Genes. The study was
conducted as shown in Figure 1. The R package was applied
to the dataset for the analysis of differential genes between
the PC and normal samples. A total of 241 DEGs were iden-
tified, including 81 upregulated and 160 downregulated
genes. The results were visualized using a volcano plot
(Figure 2(a)), and the top 30 DEGs were illustrated on a
heatmap (Figure 2(b)). To screen for key genes in PC, sur-
vival analysis filtering was performed for the DEGs. A total
of 83 survival related genes were identified (P < 0:001), and
these genes were then filtered through independent prognos-
tic analysis and clinical correlation filtering. ECT2 and
COL17A1 were identified as key genes for further analysis
(P < 0:05). Detailed results of the screening were presented
in Supplementary Table 1.

3.2. Evaluation of the Clinical Value of Key Genes. To assess
the clinical value of ECT2 and COL17A1 in PC, ROC and
survival analyses were performed. The results showed that
the AUC values of ECT2 and COL17A1 were greater than
0.8, and the overall survival (OS) rate decreased with an
increase in gene expression (P < 0:05) (Figure 3). Next, the
results of multivariate Cox regression analysis showed that
ECT2 and COL17A1 were high-risk factors for PC and
could be independent prognostic factors (P < 0:05)
(Figure 4). The clinical correlation of key genes was ana-
lyzed, and the results showed that the expression of ECT2
and COL17A1 was significantly correlated with tumor grade
(P < 0:05) (Supplementary figure 1).

3.3. DNA Methylation, CNV, and Mutation Analysis of Key
Genes. To investigate the potential mechanisms underlying
dysregulation of gene expression in PC, DNA methylation,
CNV, and mutation analyses were performed. The cBioPor-

tal database was used to explore the relationship between
DNA methylation and mRNA expression levels. DNA meth-
ylation of ECT2 and COL17A1 negatively correlated with
mRNA expression (P < 0:05) (Figures 5(a) and 5(b)). Mean-
while, CNV results showed that the CNVs of ECT2 and
COL17A1 were significantly higher than those of the normal
group (P < 0:05) (Figure 5(c)). As shown in Supplemental
figure 2, missense mutations were observed in ECT2 and
COL17A1 in PC.

3.4. GSEA for Key Genes. To further explore the potential
functions of ECT2 and COL17A1 in PC, GSEA of the PC
dataset was performed. The dataset was divided into high-
and low-expression groups based on ECT2 and COL17A1
expression. The KEGG results showed that the cell cycle,
pathways in cancer, and proteasome were greatly enriched
in the high-expression group of ECT2 and COL17A1
(P < 0:05) (Figures 6(a) and 6(c)). Meanwhile, it was found
that the biological functions in the high-ECT2 group were
mainly enriched in cell junction and cellular response to
stimulus (P < 0:05) (Figure 6(b)), and in the high-
COL17A1 group, the biological functions were enriched in
chromosome segregation and epidermal cell differentiation
(P < 0:05) (Figure 6(d)).

3.5. Estimation of TME. To explore the relationship between
the key genes and immune infiltration, the TME analysis was
performed on the PC dataset. The results showed that the
immune scores were decreased in the high-ECT2 group
(P < 0:05), while there was no significant difference in
COL17A1 expression (Figure 7). The results of immune
infiltrating cells showed no significant difference between
the PC and normal groups for twenty-one immune cells
(Supplemental figure 3), which may be related to the
immune escape mechanism of PC.
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Figure 7: Tumor burden mutation analysis for key genes. (a) Distribution of TMB among high- and low-ECT2 groups. (b) Distribution of
TMB among high- and low-COL17A1 groups.
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3.6. Construction of ceRNA Network. The miRNAs were pre-
dicted using the STRABASE database, and ceRNA networks
were constructed based on the expression matrix of miRNAs
and ECT2 and COL17A1. All the networks are shown in
Figure 8. In ECT2, ten miRNAs were found to downregulate
ECT2 expression, and one miRNA was found to upregulate
ECT2 expression (P < 0:001). As for COL17A1, seven miR-
NAs were identified that could downregulate COL17A1
expression and four miRNAs were identified that could
upregulate COL17A1 expression (P < 0:001).

3.7. Prediction of Potential Drug. Immune checkpoint block-
ade therapy could significantly improve the survival of
patients with cancer. The high-ECT2 group showedmore sen-
sitivity in response to anti-PD-1 therapy (P < 0:05) (Figure 9
(a)), while this was not found for COL17A1 (Figure 9(b)).

Chemotherapy is an important treatment option for PC.
The relationship between ECT2 and COL17A1 and chemo-
therapeutic agents was further explored. The results showed
that the IC50 values of 20 drugs such as bortezomib and
rapamycin were correlated with the expression of ECT2
and COL17A1 (P < 0:05) (Figure 9, Supplementary
figure 4).

3.8. Verification of Key Genes. The reliability of ECT2 and
COL17A1 was verified by the GEO dataset. The results
showed that the expressions of ECT2 and COL17A1 were
upregulated in PC (P < 0:05) (Figures 10(a) and 10(b)).
Meanwhile, the results of ROC and survival analysis showed
that ECT2 was significant for the diagnosis and prognosis of
PC (P < 0:05) (Figures 10(c) and 10(e)). However, in
COL17A1, there was no significant difference in overall
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Figure 8: ceRNA network of key genes. (a) The ceRNA network of ECT2. (b) The ceRNA network of COL17A1.
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survival (Figures 10(d) and 10(f)). In addition, the expres-
sion and survival of ECT2 and COL17A1 were analyzed in
pan-cancer. The results indicated that the expression of
ECT2 was different in 19 tumors and correlated with overall
survival in 13 tumors (P < 0:05) (Supplementary figure 5-6).
As for COL17A1, its high expression implied poor prognosis
in two tumors and was differentially expressed in 18 tumors
(P < 0:05) (Supplementary figure 5-6).

4. Discussion

In this study, DEGs were screened between normal and PC
samples from TCGA database. Then, survival, independent
prognostic, and clinical correlation analyses were performed
on DEGs, and two key genes (ECT2 and COL17A1) were fil-
tered out. To identify diagnostic and prognostic markers for
PC, ROC and survival analyses were conducted on key
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Figure 9: Prediction of potential drug responses. (a) Sensitivity of PD-1 treatment in high- and low-ECT2 groups. (b) Sensitivity of PD-1
treatment in high- and low-COL17A1 groups. (c) Differential chemotherapeutic responses in high- and low-ECT2 groups. (d) Differential
chemotherapeutic responses in high- and low-COL17A1 groups.
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genes. The results showed that the AUC values of ECT2 and
COL17A1 > 0:8 and high expression of ECT2 and COL17A1
were significantly associated with poor PC prognosis. Con-
sistent results were obtained in the GEO database validation;
however, there was no significant difference in the survival
analysis of COL17A1, which might be due to the small num-

ber of specimens. Moreover, the analysis of independent
prognostic and clinical correlations demonstrated that
ECT2 and COL17A1 could not only be independent prog-
nostic factors of PC but also positively correlated with tumor
grade. It was suggested that ECT2 and COL17A1 might be
potential biomarkers for the development of PC.
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Figure 10: Verification of key genes in GEO dataset. (a) The mRNA expression of ECT2. (b) The mRNA expression of COL17A1. (c) The
ROC curves for ECT2. (d) The ROC curves for COL17A1. (e) The Kaplan-Meier curves for overall survival based on ECT2 expression. (f)
The Kaplan-Meier curves for overall survival based on COL17A1 expression.
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ECT2 is a guanine nucleotide exchange molecule of the
Rho family of GTPases that catalyzes the exchange of GDP
with GTP to activate downstream signals involved in cell
proliferation and rRNA synthesis [24]. ECT2 acts as an
oncogene and is involved in the proliferation and metastasis
of several tumors. Sun et al. found that ECT2 was involved
in the development of esophageal cancer through the
RhoA-ERK signal pathway [25]. Zhi et al. found that ECT2
promoted the proliferation of glioma cells by upregulating
PTTG1 expression [26]. In this study, the genetic variation
in ECT2 was analyzed and found that CNV of ECT2 was sig-
nificantly increased and DNA methylation was decreased.
This might be related to upregulation of ECT2 expression.
Furthermore, GSEA results showed that cell cycle, cell
junction-related functions, and pathways were significantly
enriched in the high-ECT2 group. Cell cycle dysfunction is
an important hallmark of tumorigenesis [27]. It was found
that inhibition of ECT2 promoted apoptosis of cholangio-
carcinoma stem cells and inhibits tumor progression [28].
Therefore, we hypothesized that ECT2 and its related genes
act in the cell cycle, which in turn affects the proliferation
and metastasis of cancer cells.

XVII collagen is an adhesion protein present in basal
epithelial cells, encoded by COL17A1, that affects the growth
and migration of cells [29]. COL17A1 is associated with
poor prognosis in several tumors [30, 31]. Pulari et al. found
that high expression and hypomethylation of COL17A1
were associated with poor prognosis in epithelial carcinoma
[32]. Yan et al. found that XVII collagen increased glioma
aggressiveness and was associated with glioma recurrence
[33]. In this study, DNA methylation of COL17A1 was neg-
atively correlated with mRNA expression and the CNV of
COL17A1 was significantly increased. This suggested that
the expression of COL17A1 might be affected by DNA
methylation and CNV. To explore the mechanism of
COL17A1 in PC, the GSEA was performed. The results
showed that COL17A1 was associated with epithelial cell
development and cell cycle. The transition from a single-
layer epithelial structure to a multilayer epithelial structure
is an important sign of carcinogenesis [34]. The study iden-
tified COL17A1 as an important factor in the formation and
maintenance of multilayered epithelial structures [29]. It was
suggested that COL17A1 could be involved in development
of PC by affecting the differentiation and proliferation of
epithelial cells.

The TME is a critical factor influencing tumorigenesis,
and tumor cells shape the TME by secreting various cyto-
kines to promote tumor development [35]. A previous study
showed that immune cell interactions in the TME could pro-
mote tumorigenesis [36]. In this study, the results showed
that the immune scores decreased in the high-ECT2 group,
while there was no significant difference in COL17A1. This
indicated that ECT2 might be involved in the pathogenesis
of PC by affecting immune cell infiltration.

It has been shown that miRNA was involved in the pro-
gression of PC. Tian et al. found that miRNA-107 regulated
TGFBR3 to promote the proliferation and metastasis of PC
[37]. It was reported that miRNA-320b could inhibit PC
proliferation through FOXM1 [38].To reveal the potential

regulatory mechanisms of ECT2 and COL17A1 in PC, the
ceRNA network was constructed. Eleven miRNAs regulated
the expression of COL17A1, and ten miRNAs downregu-
lated ECT2 expression. This might help enrich the ceRNA
regulatory mechanism of ECT2 and COL17A1 and reveal
the therapeutic potential of noncoding RNAs in PC.

Recently, immune checkpoint blockade therapy has
shown remarkable performance in the treatment of many
types of tumors, but little success has been achieved for PC
[39]. Some studies have shown that the combination of
anti-PD-1 antibody immunotherapy with chemotherapy
has been effective in PC [40, 41]. Thus, we made predictions
for immune checkpoints and chemotherapeutic drugs. The
high-ECT2 group showed more sensitivity in response to
anti-PD-1 therapy and 20 chemotherapeutic agents associ-
ated with ECT2 and COL17A1. This might provide new
ideas for the individualized treatment of PC.

In this study, we investigated the relationship between
ECT2, COL17A1, and PC, suggesting that ECT2 and
COL17A1 might be used as diagnostic and prognostic
markers for PC. However, there are many limitations to
our study. Due to the complexity of the data, we were unable
to consider the effect of ethnicity, age, gender, and tumor
stage on the results. Then, we have found that ECT2 and
COL17A1 were involved in pancreatic carcinogenesis, but
more biological experiments were needed to verify the
mechanism. In addition, bioinformatic analysis alone could
not fully explain the prognostic role of ECT2 and COL17A1
in PC, and we will further investigate it in a large-scale
population.

In conclusion, we found that ECT2 and COL17A1 were
associated with the development and prognosis of PC. ECT2
and COL17A1 might serve as potential biomarkers for PC,
providing additional ideas for clinical diagnosis and individ-
ualized treatment. However, further experiments are
required to investigate the clinical value of ECT2 and
COL17A1.
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