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Cell-free RNA from liquid biopsies can be analyzed to deter-
mine disease tissue of origin. We extend this concept to iden-
tify cell types of origin using the Tabula Sapiens transcriptomic 
cell atlas as well as individual tissue transcriptomic cell atlases 
in combination with the Human Protein Atlas RNA consensus 
dataset. We define cell type signature scores, which allow the 
inference of cell types that contribute to cell-free RNA for a 
variety of diseases.

Cell-free RNA (cfRNA) represents a mixture of transcripts 
reflecting the health status of multiple tissues1, thereby affording 
broad clinical utility. Existing applications span oncology and bone 
marrow transplantation2,3, obstetrics1,4,5, neurodegeneration6 and 
liver disease7. However, several aspects about the physiologic origins 
of cfRNA, including the contributing cell types of origin, remain 
unknown, and current assays focus on tissue-level contributions at 
best1,3,4,5–7. Incorporating knowledge from cellular pathophysiology, 
which often forms the basis of disease8, into a liquid biopsy would 
more closely match the resolution afforded by invasive procedures.

We first characterized the landscape of cell-type-specific sig-
nal from healthy donor plasma using published exome-enriched 
cell-free transcriptome data6 (Fig. 1a). After removing low-quality 
samples (Extended Data Fig. 1 and Methods), we intersected the 
set of genes detected in healthy individuals (n = 75) with a database 
of cell-type-specific markers defined in context of the whole body9. 
Marker genes for blood, brain, and liver cell types were readily 
detected, as previously observed at tissue level1,3,4,6,7, as well as the 
kidney, gastrointestinal tract, and pancreas (Fig. 1b).

We then sought to deconvolve the fractions of cell-type-specific 
RNA using support vector regression, a deconvolution method 
previously applied to decompose bulk tissue transcriptomes into 
fractional cell type contributions10,11. We used Tabula Sapiens ver-
sion 1.0 (TSP)12, a multiple-donor whole-body cell atlas spanning 
24 tissues and organs, to define a basis matrix whose gene set accu-
rately and simultaneously resolved the distinct cell types in TSP. The 
basis matrix was defined using the gene space that maximized lin-
ear independence of the cell types and does not include the whole 
transcriptome but rather the minimum discriminatory gene set to 
distinguish between the cell types in TSP. To reduce multicollinear-
ity, transcriptionally similar cell types were grouped (Extended Data 
Fig. 2). We observed that the basis matrix defined by this gene set 
appropriately described cell types as most similar to others from 
the same organ compartment and corresponded to the highest 
off-diagonal similarity (Fig. 1c). We also confirmed that the basis 
matrix accurately deconvolved cell-type-specific RNA fractional 
contributions from several bulk tissue samples13 (Extended Data 
Fig. 3 and Supplementary Information).

We used this matrix to deconvolve the cell types of origin in 
the plasma cell-free transcriptome (Fig. 1d and Extended Data  

Figs. 4 and 5). Platelets, erythrocyte/erythroid progenitors and leu-
kocytes comprised the majority of observed signal, whose respec-
tive proportions were generally consistent with recent estimates 
from serum cfRNA2 and plasma cfDNA14. Within this set of cell 
types, we suspect that the observation of platelets as a majority cell 
type, rather than megakaryocytes2, likely reflects annotation differ-
ences in reference data. We observed distinct transcriptional con-
tributions from solid tissue-specific cell types from the intestine, 
liver, lungs, pancreas, heart, and kidney (Fig. 1d and Extended Data 
Fig. 4). Altogether, the observation of contributions from many 
non-hematopoietic cell types underscores the ability to simultane-
ously non-invasively resolve contributions to cfRNA from disparate 
cell types across the body.

Some cell types likely present in the plasma cell-free transcrip-
tome were missing in this decomposition because the source tis-
sues were not represented in TSP. Although, ideally, reference gene 
profiles for all cell types would be simultaneously considered in this 
decomposition, a complete reference dataset spanning the entire 
cell type space of the human body does not yet exist. To identify cell 
type contributions possibly absent from this analysis, we intersected 
the genes measured in cfRNA missing from the basis matrix with 
tissue-specific genes from the Human Protein Atlas (HPA) RNA 
consensus dataset15. This identified both the brain and the testis as 
tissues whose cell types were not found during systems-level decon-
volution and additional genes specific to the blood, skeletal muscle 
and lymphoid tissues that were not used by the basis matrix (Fig. 1e 
and Methods).

As an example of how to analyze cell type contributions from 
tissues that were not present in TSP, we used an independent brain 
single-cell atlas along with HPA to define cell type gene profiles and 
examined their expression in cfRNA (Fig. 2a and Extended Data 
Figs. 6 and 7). There was a strong signature score from excitatory 
neurons and a reduced signature score from inhibitory neurons. 
We observed strong signals from astrocytes, oligodendrocytes 
and oligodendrocyte precursor cells. These glial cells facilitate 
brain homeostasis, form myelin and provide neuronal structure 
and support8, consistent with evidence of RNA transport across 
and the permeability of the blood–brain barrier16,17 and that some 
brain regions are in direct contact with the blood18. Similarly, we 
used published cell atlases for the placenta19,20, kidney21 and liver22 
to define cell-type-specific gene profiles (Extended Data Figs. 6  
and 8) for signature scoring. These observations augment the reso-
lution of previously observed tissue-specific genes reported to date 
in cfRNA1–7 and formed a baseline from which to measure aberra-
tions in disease.

Cell-type-specific changes drive disease etiology8, and we asked 
whether cfRNA reflected cellular pathophysiology. We considered 
trophoblasts in preeclampsia23,24, proximal tubules in chronic kidney  
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disease (CKD)25,26, hepatocytes in non-alcoholic steatohepatitis 
(NASH)/non-alcoholic fatty liver disease (NAFLD)27 and multiple 
brain cell types in Alzheimer’s disease (AD)28,29. As an example of 
why whole-body cell type characterization is relevant, we observed 
that a previous attempt to infer trophoblast cell types from cfRNA 
in preeclampsia24 used genes that are not specific or readily mea-
surable within their asserted cell type (Extended Data Fig. 9 and 
Supplementary Information). However, we found several other 
cases where cellular pathophysiology can be measured in cfRNA.

The proximal tubule is a highly metabolic, predominant kidney 
cell type and is a major source for injury and disease progression 
in CKD25,26. Tubular atrophy is a hallmark of CKD nearly indepen-
dent of disease etiology30 and is superior to clinical gold standard 
as a predictor of CKD progression31. Using data from Ibarra et al., 
we discovered a striking decrease in the proximal tubule cell signa-
ture score of patients with CKD (ages 67–91 years, CKD stage 3–5 
or peritoneal dialysis) compared to healthy controls (Fig. 2b and 
Extended Data Fig. 10a,b). These results demonstrate non-invasive 
resolution of proximal tubule deterioration observed in CKD histol-
ogy31 and are consistent with findings from invasive biopsy.

Hepatocyte steatosis is a histologic hallmark of NASH and 
NAFLD phenotypes, whereby the accumulation of cellular stress-
ors results in hepatocyte death27. We found that several genes dif-
ferentially expressed in NAFLD serum cfRNA7 were specific to the 
hepatocyte cell type profile derived above (P < 10−10, hypergeomet-
ric test). Notable hepatocyte-specific differentially expressed genes 
(DEGs) include genes encoding cytochrome P450 enzymes (includ-
ing CYP1A2, CYP2E1 and CYP3A4), lipid secretion (MTTP) and 
hepatokines (AHSG and LECT2)32. We further observed striking 
differences in the hepatocyte signature score between healthy and 
both NAFLD and NASH cohorts and no difference between the 
NASH and NAFLD cohorts (Fig. 2c and Extended Data Fig. 10).

AD pathogenesis results in neuronal death and synaptic loss29. 
We used brain single-cell data28 to define brain cell type gene 
profiles in both the AD and the normal brain. Several DEGs 
found in cfRNA analysis of AD plasma are brain cell type spe-
cific (P < 10−5, hypergeometric test). Astrocyte-specific genes 
include those that encode filament protein (GFAP33) and ion chan-
nels (GRIN2C28). Excitatory neuron-specific genes encode solute 
carrier proteins (SLC17A728) and SLC8A234), cadherin proteins 
(CDH835 and CDH2236) and a glutamate receptor (GRM129,37). 
Oligodendrocyte-specific genes encode proteins for myelin sheath 
stabilization (MOBP29) and a synaptic/axonal membrane protein 
(CNTN229). Oligodendrocyte-precursor-cell-specific genes encode 
transcription factors (OLIG238 and MYT139), neural growth and dif-
ferentiation factor (CSPG540) and a protein putatively involved in 
brain extracellular matrix formation (BCAN41).

We then inferred neuronal death in plasma cfRNA between AD 
and healthy non-cognitive controls (NCIs) and also observed differ-
ences in oligodendrocyte, oligodendrocyte progenitor and astrocyte 
signature scores (Fig. 2d and Extended Data Fig. 10). The oligo-
dendrocyte and oligodendrocyte progenitor cells signature score 
directionality agrees with reports of their death and inhibited prolif-
eration in AD, respectively42. The observed astrocyte signature score 
directionality is consistent with the cell type specificity of a subset of 

reported downregulated DEGs6 and reflects that astrocyte-specific 
changes, which are known in AD pathology42, are non-invasively 
measurable.

Taken together, this work demonstrates consistent non-invasive 
detection of cell-type-specific changes in human health and disease 
using cfRNA. Our findings uphold and further augment the scope 
of previous work identifying immune cell types2 and hematopoietic 

Fig. 1 | Cell type decomposition of the plasma cell-free transcriptome using Tabula Sapiens. a, Integration of tissue of origin and single-cell 
transcriptomics to identify cell types of origin in cfRNA. b, Cell-type-specific markers defined in context of the human body identified in plasma cfRNA. 
Error bars denote the s.d. of number of cell-type-specific markers (n = 75 patients); the measure of center is the mean. CPM-TMM counts for a given 
gene across technical replicates were averaged before intersection. c, Cluster heat map of Spearman correlations of the cell type basis matrix column 
space derived from Tabula Sapiens. Color bar denotes correlation value. d, Mean fractional contributions of cell-type-specific RNA in the plasma cell-free 
transcriptome (n = 18 patients). e, Top tissues in cfRNA not captured by basis matrix (the set difference of all genes detected in a given cfRNA sample and 
the row space of the basis matrix intersection with HPA tissue-specific genes). Error bars denote the s.d. of number of HPA tissue-specific genes with NX 
counts >10 and cell-free CPM expression ≥ 1 (n = 18 patients); the measure of center is the mean.
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Fig. 2 | Cellular pathophysiology is non-invasively resolvable in cfRNA. For 
a given box plot, any cell type signature score is the sum of log-transformed 
CPM-TMM normalized counts. The horizontal line denotes the median; 
the lower hinge indicates the 25th percentile; the upper hinge indicates the 
75th percentile; whiskers indicate the 1.5 interquartile range; and points 
outside the whiskers indicate outliers. All P values were determined by 
a Mann–Whitney U-test; sidedness is specified in the subplot caption. 
*P < 0.05, **P < 10−2, ***P < 10−4, ****P < 10−5. a, Neuronal and glial cell type 
signature scores in healthy cfRNA plasma (n = 18) on a logarithmic scale. 
b, Comparison of the proximal tubule signature score in CKD stages 3+ 
(n = 51 samples; nine patients) and healthy controls (n = 9 samples; three 
patients) (P = 9.66 × 10−3, U = 116, one sided). Dot color denotes each 
patient. c, Hepatocyte signature score between healthy (n = 16) and both 
NAFLD (n = 46) (P = 3.15 × 10−4, U = 155, one sided) and NASH (n = 163) 
(P = 4.68 × 10−6, U = 427, one sided); NASH versus NAFLD (P = 0.464, 
U = 3483, two sided). Color reflects sample collection center. d, Neuronal 
and glial signature scores in AD (n = 40) and NCI (n = 18) cohorts. 
Excitatory neuron (P = 4.94 × 10−3, U = 206, one sided), oligodendrocyte 
(P = 2.28 × 10−3, U = 178, two sided), oligodendrocyte progenitor (P = 2.27 
× 10−2, U = 224, two sided) and astrocyte (P = 6.11 × 10−5, U = 121, two 
sided). Ast, astrocyte; Ex, excitatory neuron; In, inhibitory neuron; Oli, 
oligodendrocyte; Opc, oligodendrocyte precursor cell.
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tissues1,2 as primary contributors to the cell-free transcriptome cell 
type landscape. Our approach is complementary to previous work 
using cell-free nucleosomes14, which depends on a more limited 
set of reference chromatin immunoprecipitation sequencing data, 
which are largely at the tissue level43. Readily measurable cell types 
include those specific to the brain, lung, intestine, liver, and kid-
ney, whose pathophysiology affords broad prognostic and clinical 
importance. Consistent detection of cell types responsible for drug 
metabolism (for example, liver and renal cell types) as well as cell 
types that are drug targets, such as neurons or oligodendrocytes 
for Alzheimer’s-protective drugs, could provide strong clinical trial 
endpoint data when evaluating drug toxicity and efficacy. We antici-
pate that the ability to non-invasively resolve cell type signatures in 
plasma cfRNA will both enhance existing clinical knowledge and 
enable increased resolution in monitoring disease progression and 
drug response.
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Methods
Data processing. Data acquisition. cfRNA: For samples from Ibarra et al. 
(PRJNA517339), Toden et al. (PRJNA574438) and Chalasani et al. (PRJNA701722), 
raw sequencing data were obtained from the Sequence Read Archive with the 
respective accession numbers. For samples from Munchel et al., processed counts 
tables were directly downloaded.

For all individual tissue single-cell atlases, Seurat objects or AnnData objects 
were downloaded or directly received from the authors. Data from Mathys et al. 
were downloaded with permission from Synapse. The liver Seurat object was 
requested from Aizarani et al. For the placenta cell atlases, a Seurat object was 
requested from Suryawanshi et al., and AnnData was requested from Vento-Tormo 
et al. Kidney AnnData were downloaded (https://www.kidneycellatlas.org, Mature 
Full dataset).

HPA version 19 transcriptomic data, Genotype-Tissue Expression (GTEx) 
version 8 raw counts and Tabula Sapiens version 1.0 were downloaded directly.

Bioinformatic processing. All analyses were performed using Python  
(version 3.6.0) and R (version 3.6.1) For each sample for which raw  
sequencing data were downloaded, we trimmed reads using trimmomatic  
(version 0.36) and then mapped them to the human reference genome  
(hg38) with STAR (version 2.7.3a). Duplicate reads were then marked and  
removed by the MarkDuplicates tool in GATK (version 4.1.1). Finally, mapped 
reads were quantified using htseq-count (version 0.11.1), and read statistics  
were estimated using FastQC (version 0.11.8).

The bioinformatic pipeline was managed using snakemake (version 5.8.1). 
Read and tool performance statistics were aggregated using MultiQC (version 1.7).

Sample quality filtering. For every sample for which raw sequencing data were 
available, we estimated three quality parameters as previously described44,45: RNA 
degradation, ribosomal read fraction and DNA contamination.

RNA degradation was estimated by calculating a 3′ bias ratio. Specifically, 
we first counted the number of reads per exon and then annotated each exon 
with its corresponding gene ID and exon number using htseq-count. Using these 
annotations, we measured the frequency of genes for which all reads mapped 
exclusively to the 3′-most exon as compared to the total number of genes detected. 
We approximated RNA degradation for a given sample as the fraction of genes 
where all reads mapped to the 3′-most exon.

To estimate ribosomal read fraction, we compared the number of reads that 
mapped to the ribosome (region GL00220.1:105,424–118,780, hg38) relative to the 
total number of reads (SAMtools view).

To estimate DNA contamination, we used an intron-to-exon ratio and 
quantified the number of reads that mapped to intronic as compared to exonic 
regions of the genome.

We applied the following thresholds as previously reported44:
•	 Ribosomal: >0.2
•	 3′ Bias Fraction: >0.4
•	 DNA Contamination: >3

We considered any given sample as low quality if its value for any metric  
was greater than any of these thresholds, and we excluded the sample from 
subsequent analysis.

Data normalization. All gene counts were adjusted to counts per million (CPM) 
reads and per milliliter of plasma used. For a given sample, i denotes gene index, 
and j denotes sample index:

ηij =
Geneij

(Library sizej) × (mL plasmaj)
where Library sizej =

∑

i
Gij (1)

For individuals who had samples with multiple technical replicates, these 
plasma volume CPM counts were averaged before nu support vector regression 
(nu-SVR) deconvolution.

For all analyses except nu-SVR (all work except Fig. 1d,e), we next applied 
trimmed mean of M values (TMM) normalization as previously described46 using 
edgeR (version 3.28.1):

ηij

TMMj
(2)

CPM-TMM normalized gene counts across technical replicates for a given 
biological replicate were averaged for the count tables used in all analyses 
performed.

Sequencing batches and plasma volumes were obtained from the authors in 
Toden et al. and Chalasani et al. for per-sample normalization. For samples from 
Ibarra et al., plasma volume was assumed to be constant at 1 ml, as we were unable 
to obtain this information from the authors; sequencing batches were confirmed 
with the authors (personal communication). All samples from Munchel et al. were 
used to compute TMM scaling factors, and 4.5 ml of plasma5 was used to normalize 
all samples within a given dataset (both PEARL-PEC and iPEC).

Cell type marker identification using PanglaoDB. The PanglaoDB cell type 
marker database was downloaded on 27 March 2020. Markers were filtered for 
human (‘Hs’) only and for PanglaoDB’s defined specificity (how often marker 
was not expressed in a given cell type) and sensitivity (how frequently marker is 
expressed in cells of this type). Gene synonyms from Panglao were determined 
using MyGene version 3.1.0 to ensure full gene space.

We then intersected this gene space with a cohort of healthy cfRNA samples (n 
= 75, NCI individuals from Toden et al.). A given cell type marker was counted in 
a given healthy cfRNA sample if its gene expression was greater than zero in log +1 
transformed CPM-TMM gene count space.

Cell types with markers filtered by sensitivity = 0.9 and specificity = 0.2 and 
samples with >5 cell type markers on average are shown in Fig. 1b.

Basis matrix formation. Scanpy47 (version 1.6.0) was used. Only cells from  
droplet sequencing (‘10x’) were used in analysis given that a more comprehensive 
set of unique cell types across the tissues in Tabula Sapiens was available12. 
Disassociation genes as reported12 were eliminated from the gene space before 
subsequent analysis.

Given the non-specificity of the following annotations (for example, other cell 
type annotations at finer resolution existed), cells with these annotations were 
excluded from subsequent analysis:
•	 ‘epithelial cell’
•	 ‘ocular surface cell’
•	 ‘radial glial cell’
•	 ‘lacrimal gland functional unit cell’
•	 ‘connective tissue cell’
•	 ‘corneal keratocyte’
•	 ‘ciliary body’
•	 ‘bronchial smooth muscle cell’
•	 ‘fast muscle cell’
•	 ‘muscle cell’
•	 ‘myometrial cell’
•	 ‘skeletal muscle satellite stem cell’
•	 ‘slow muscle cell’
•	 ‘tongue muscle cell’
•	 ‘vascular associated smooth muscle cell’
•	 ‘alveolar fibroblast’
•	 ‘fibroblast of breast’
•	 ‘fibroblast of cardiac tissue’
•	 ‘myofibroblast cell’

All additional cells belonging to the ‘Eye’ tissue were excluded from subsequent 
analysis given discrepancies in compartment and cell type annotations and the 
unlikelihood of detecting eye-specific cell types. The resulting cell type space still 
possessed several transcriptionally similar cell types (for example, various intestinal 
enterocytes, T cells or dendritic cells), which, left unaddressed, would reduce the 
linear independence of the basis matrix column space and, hence, would affect 
nu-SVR deconvolution.

Cells were, therefore, assigned broader annotations on a per-compartment 
basis as follows:

Epithelial, Stromal, Endothelial: Using counts from the ‘decontXcounts’ layer of 
the adata object, cells were CPM normalized (sc.pp.normalize_total(target_sum = 
1 × 106)) and log-transformed (sc.pp.log1p). Hierarchical clustering with complete 
linkage (sc.tl.dendrogram) was performed per compartment on the feature space 
comprising the first 50 principal components (sc.pp.pca). Epithelial and stromal 
compartment dendrograms were then cut (scipy.cluster.hierarchy.cut_tree) at 20% 
and 10% of the height of the highest node, respectively, such that cell types with 
high transcriptional similarity were grouped together, but overall granularity of the 
cell type labels was preserved. This work is available in the script ‘treecutter.ipynb’ 
on GitHub; the scipy version used is 1.5.1.

The endothelial compartment dendrogram revealed high transcriptional 
similarity across all cell types (maximum node height = 0.851) compared to 
epithelial (maximum node height = 3.78) and stromal (maximum node height = 
2.34) compartments (Extended Data Fig. 2). To this end, only the ‘endothelial cell’ 
annotation was used for the ‘endothelial’ compartment.

Immune: Given the high transcriptional similarity and the varying degree of 
annotation granularity across tissues and cell types, cell types were grouped on the 
basis of annotation. The following immune annotations were kept:
•	 ‘b cell’
•	 ‘basophil’
•	 ‘erythrocyte’
•	 ‘erythroid progenitor’
•	 ‘hematopoietic stem cell’
•	 ‘innate lymphoid cell’
•	 ‘macrophage’
•	 ‘mast cell’
•	 ‘mature conventional dendritic cell’
•	 ‘microglial cell’
•	 ‘monocyte’
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•	 ‘myeloid progenitor’
•	 ‘neutrophil’
•	 ‘nk cell’
•	 ‘plasma cell’
•	 ‘plasmablast’
•	 ‘platelet’
•	 ‘t cell’
•	 ‘thymocyte’

All other immune compartment cell type annotations were excluded for being 
too broad when more detailed annotations existed (that is, ‘granulocyte’, ‘leucocyte’ 
and ‘immune cell’) or present in only one tissue (that is, ‘erythroid lineage cell’; eye, 
‘myeloid cell’; and pancreas/prostate). The ‘erythrocyte’ and ‘erythroid progenitor’ 
annotations were further grouped to minimize multicollinearity.

Using the entire cell type space spanning all four organ compartments, either 
30 observations (for example, measured cells) were randomly sampled or the 
maximum number of available observations (if less than 30) was subsampled, 
whichever was greater.

Cell type annotations were then reassigned based on the ‘broader’ categories 
from hierarchical clustering (‘coarsegrain.py’). Raw count values from the DecontX 
adjusted layer were used to minimize signal spread contamination that could affect 
DEG analysis12.

This subsampled counts matrix was then passed to the ‘Create Signature 
Matrix’ analysis module at https://cibersortx.stanford.edu/, with the following 
parameters:
•	 Disable quantile normalization = True
•	 Minimum expression = 0.25
•	 Replicates = 5
•	 Sampling = 0.5
•	 Kappa = 999
•	 q value = 0.01
•	 No. of barcode genes = 3,000–5,000
•	 Filter non-hematopoietic genes = False

The resulting basis matrix was used in our nu-SVR deconvolution code, 
available on GitHub, under the name ‘tsp_v1_basisMatrix.txt’.

Abbreviations (left) of grouped cell types (right) in Fig. 1d and the Extended 
Data are as follows:
•	 gland cell: ‘acinar cell of salivary gland/myoepithelial cell’
•	 respiratory ciliated cell: ‘ciliated cell/lung ciliated cell’
•	 prostate epithelia: ‘club cell of prostate epithelium/hillock cell of prostate 

epithelium/hillock-club cell of prostate epithelium’
•	 salivary/bronchial secretory cell: ‘duct epithelial cell/serous cell of epithelium 

of bronchus’
•	 intestinal enterocyte: ‘enterocyte of epithelium of large intestine/enterocyte 

of epithelium of small intestine/intestinal crypt stem cell of large intestine/
large intestine goblet cell/mature enterocyte/paneth cell of epithelium of large 
intestine/small intestine goblet cell’

•	 intestinal crypt stem cell: ‘immature enterocyte/intestinal crypt stem cell/
intestinal crypt stem cell of small intestine/transit amplifying cell of large 
intestine’

•	 erythrocyte/erythroid progenitor: ‘erythrocyte/erythroid progenitor’
•	 fibroblast/mesenchymal stem cell: ‘fibroblast/mesenchymal stem cell’
•	 intestinal secretory cell: ‘intestinal enteroendocrine cell/paneth cell of epithe-

lium of small intestine/transit amplifying cell of small intestine’
•	 ionocyte/luminal epithelial cell of mammary gland: ‘ionocyte/luminal epithe-

lial cell of mammary gland’
•	 secretory cell: ‘mucus secreting cell/secretory cell/tracheal goblet cell’
•	 pancreatic alpha/beta cell: ‘pancreatic alpha cell/pancreatic beta cell’
•	 respiratory secretory cell: ‘respiratory goblet cell/respiratory mucous cell/

serous cell of epithelium of trachea’
•	 basal prostate cell: ‘basal cell of prostate epithelia’

Nu-SVR deconvolution. We formulated the cell-free transcriptome as a linear 
summation of the cell types from which it originates1,48. With this formulation, 
we adapted existing deconvolution methods developed with the objective of 
decomposing a bulk tissue sample into its single-cell constituents10,11, where the 
deconvolution problem is formulated as:

Aθ = b (3)

Here, A is the representative basis matrix (g × c) of g genes for c cell types, which 
represent the gene expression profiles of the c cell types. θ is a vector (c × 1) of 
the contributions of each of the cell types, and b is the measured expression of 
the genes observed in blood plasma (g × 1). The goal here is to learn θ such that 
the matrix product Aθ predicts the measured signal b. The derivation of the basis 
matrix A is described in the section ‘Basis matrix formation’.

We performed nu-SVR using a linear kernel to learn θ from a subset of 
genes from the basis matrix to best recapitulate the observed signal b, where 
nu corresponds to a lower bound on the fraction of support vectors and an 

upper bound on the fraction of margin errors49. Here, the support vectors are 
the genes from the basis matrix used to learn θ; θ reflects the learned weights 
of the cell types in the basis matrix column space. For each sample, a set of θ 
was learned by performing a grid search on the two SVR hyperparameters: 
ν ∈ {0.05, 0.1, 0.15, 0.25, 0.5, 0.75} and C ∈ {0.1, 0.5, 0.75, 1, 10}.

For each sample, we next enforce two constraints: θ can contain only 
non-negative weights, and the weights in θ must sum to 1. Each θ corresponding 
to a hyperparameter combination was normalized as previously described in two 
steps10,11. First, only non-negative weights were kept:

∀θj < 0 ∈ {θ1, …, θc} → 0 (4)

Second, the remaining non-zero weights were then normalized by their sum to 
yield the relative proportions of cell-type-specific RNA.

We then determined the basis matrix dot product with the set of normalized 
weights for each sample. This dot product yields the predicted expression value 
for each gene in a given cfRNA mixture with imposed non-negativity on the 
normalized coefficient vector. The root mean square error (RMSE) was then 
computed using the predicted expression values and the measured values of these 
genes for each hyperparameter combination in a given cfRNA mixture. The model 
yielding the smallest RMSE in predicting expression for a given cfRNA sample was 
then chosen and assigned as the final deconvolution result for a given sample.

Only CPM counts ≥1 were considered in the mixture, b. The values in the 
basis matrix were also CPM normalized. Before deconvolution, the mixture and 
basis matrix were centered and scaled to zero mean and unit variance for improved 
runtime performance. We emphasize that we did not log-transform counts in 
b or in A, as this would destroy the requisite linearity assumption in equation 
(3). Specifically, the concavity of the log function would result in the consistent 
underestimation of θ during deconvolution50.

We used the function nu-SVR from scikitlearn51 version 0.23.2.
The samples used for nu-SVR deconvolution were 75 NCI patients from 

Toden et al. spanning four sample collection centers. Given center-specific batch 
effects reported by Toden et al., we report our results on a per-center basis (Fig. 
1d and Extended Data Figs. 4 and 5). There was good pairwise similarity of 
the learned coefficients among biological replicates within and across sample 
centers (Extended Data Fig. 5a,b). Deconvolution performance yielded RMSE 
and Pearson r consistent with deconvolved GTEx tissues (Extended Data Fig. 
3) whose distinct cell types were in the basis matrix column space (Extended 
Data Fig. 5c,d). In interpreting the resulting cell type fractions, a limitation 
of nu-SVR is that it uses highly expressed genes as support vectors and, 
consequently, assigns a reduced fractional contribution to cell types expressing 
genes at lower levels or that are smaller in cell volume. Comparison of nu-SVR to 
quadratic programming1 and non-negative linear least squares52 yielded similar 
deconvolution RMSE and Pearson correlation. In contrast to the other methods, 
nu-SVR cell type contributions were the most consistent with the cell type 
markers detected using PanglaoDB and was, hence, chosen as the deconvolution 
model for this work.

Evaluating basis matrix on GTEx samples. Bulk RNA sequencing samples 
from GTEx version 8 were deconvolved with the derived basis matrix from 
tissues that were present (that is, kidney cortex, whole blood, lung and spleen) 
or absent (for example, kidney medulla and brain) from the basis matrix derived 
using Tabula Sapiens version 1.0. For each tissue type, the maximum number of 
available samples or 30 samples, whichever was smaller, was deconvolved. See 
Supplementary Note 1 for additional discussion.

Identifying tissue-specific genes in cfRNA absent from basis matrix. To identify 
cell-type-specific genes in cfRNA that were distinct to a given tissue, we considered 
the set difference of the non-zero genes measured in a given cfRNA sample with the 
row space of the basis matrix and intersected this with HPA tissue-specific genes:

(Gj − R) ∩ HPA (5)

where Gj is the gene set in the jth deconvolved sample, where a given gene in the set’s 
expression was ≥1 CPM. R is the set of genes in the row space of the basis matrix 
used for nu-SVR deconvolution. HPA denotes the total set of tissue-specific genes 
from HPA.

The HPA tissue-specific gene set (HPA) comprised genes across all tissues 
with Tissue Specificity assignments ‘Group Enriched’, ‘Tissue Enhanced’, ‘Tissue 
Enriched’ and NX expression ≥10. This approach yielded tissues with several 
distinct genes present in cfRNA, which could then be subsequently interrogated 
using single-cell data.

Derivation of cell-type-specific gene profiles in context of the whole body using 
single-cell data. For this analysis, only cell types unique to a given tissue (that is, 
hepatocytes unique to the liver or excitatory neurons unique to the brain) were 
considered so that bulk transcriptomic data could be used to ensure specificity in 
context of the whole body. A gene was asserted to be cell type specific if it was (1) 
differentially expressed within a given single-cell tissue atlas, (2) possessed a Gini 
coefficient ≥0.6 and was listed as specific to the native tissue for the cell type of 
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interest, indicating comprehensive tissue specificity in context of the whole body 
(Extended Data Figs. 6 and 8).

	(1)	 Single-cell differential expression 
For data received as a Seurat object, conversion to AnnData (version 0.7.4) 
was performed by saving as an intermediate loom object (Seurat version 
3.1.5) and converting to AnnData (loompy version 3.0.6). Scanpy (version 
1.6.0) was used for all other single-cell analysis. Reads per cell were normal-
ized for library size (scanpy normalize_total, target_sum = 1 × 104) and 
then logged (scanpy log1p). Differential expression was performed using 
the Wilcoxon rank-sum test in Scanpy’s filter_rank_genes_groups with the 
following arguments: min_fold_change = 1.5, min_in_group_fraction = 0.2, 
max_out_group_fraction = 0.5, corr_method = ‘benjamini-hochberg’. The 
set of resulting DEGs with Benjamini–Hochberg-adjusted P values <0.01 
whose ratio of the highest out-group percent expressed to in-group percent 
expressed <0.5 was selected to ensure high specific expression in the cell type 
of interest within a given cell type atlas.

	(2)	 Quantifying comprehensive whole-body tissue specificity using the Gini 
coefficient 
The distribution of all the Gini coefficiets and Tau values across all genes 
belonging to cell type gene profiles for cell types native to a given tissue 
were compared using the HPA gene expression Tissue Specificity and Tissue 
Distribution assignments15 (Extended Data Fig. 7). The Gini coefficient better 
reflected the underlying distribution of gene expression tissue specificity than 
Tau (Extended Data Fig. 7) and, hence, were used for subsequent analysis. As 
the Gini coefficient approaches unity, this indicates extreme gene expression 
inequality or equivalently high specificity. A single threshold (Gini coefficient 
≥ 0.6) was applied across all atlases to facilitate a generalizable framework 
from which to define tissue-specific cell type gene profiles in context of the 
whole body in a principled fashion for signature scoring in cfRNA. 
For the following definitions, n denotes the total number of tissues, and xj is 
the expression of a given gene in the ith tissue. 
The Gini coefficient was computed as defined53:

Gini = n + 1
n

−

2
∑n

i=1 (n + 1 − i) xi
n
∑n

i=1xi
; xi is ordered from least to greatest. (6)

 
Tau, as defined in ref. 53:

τ =

∑n
i=1 1 − x̄
n − 1 where x̄ =

xi
max (xi) ∀i ∈ {1…n}

(7)

 
HPA NX Counts from the HPA object titled ‘rna_tissue_consensus.tsv’ accessed on 
1 July 2019 were used for computing Gini coefficients and Tau. 
Note for brain cell type gene profiles: Given that there are multiple sub brain 
regions in the HPA data, the determined Gini coefficients are lower (for example, 
not as close to unity compared to other cell type gene profiles) because there are 
multiple regions of the brain with high expression, which would result in reduced 
count inequality.

Gene expression in GTEx. We confirmed the specificity of a given gene profile 
to its corresponding cell type by comparing the aggregate expression of a given 
cell type signature in its native tissue compared to that of the average across 
remaining GTEx tissues (Extended Data Figs. 6d and 8f,g). We uniformly 
observed a median fold change greater than 1 in the signature score of a cell type 
gene profile in its native tissue relative to the mean expression in other tissues, 
confirming high specificity.

Raw GTEx data version 8 (accessed 26 August 2019) were converted to 
log(counts-per-ten-thousand + 1) counts. The signature score was determined 
by summing the expression of the genes in a given bulk RNA sample for a given 
cell type gene profile. Because only gene profiles were derived for cell types that 
correspond to a given tissue, the mean signature score of a cell type profile across the 
non-native tissues was then computed and used to determine the log fold change.

Cell type specificity of DEGs in AD and NAFLD cfRNA. After observing a 
significant intersection between the DEGs in AD6 or NAFLD7 in cfRNA with 
corresponding cell-type-specific genes (Extended Data Fig. 10c,e), we then assessed 
the cell type specificity of DEGs using a permutation test. To assess whether DEGs 
that intersected with a cell type gene profile were more specific to a given cell 
type than DEGs that were generally tissue specific, we performed a permutation 
test. Specifically, we compared the Gini coefficient for genes in these two groups, 
computed using the mean expression of a given gene across brain cell types from 
healthy brain28 or liver22 single-cell data. We considered the cell type gene profiles 
as defined for signature scoring in Fig. 2.

The starting set of tissue-specific genes was defined using the HPA tissue 
transcriptional data annotated as ‘Tissue enriched’, ‘Group enriched’ or ‘Tissue 
enhanced’ (brain, accessed on 13 January 2021; liver, accessed on 28 November 2020). 

These requirements ensured the specificity of a given brain/liver gene in context of 
the whole body. For a given tissue, this formed the initial set of tissue-specific genes B.

The union of all brain or liver cell-type-specific genes is the set C. All genes in C 
(‘cell type specific’) were a subset of the respective initial set of tissue-specific genes:

C − B = 0 (8)

Genes in B that did not intersect with C and intersected with DEG-up (U) or 
DEG-down (D) genes in a given disease6,7 were then defined as ‘tissue specific’.

T = (B ∩ U) ∪ (B ∩ D) − C (9)

The Gini coefficients reflecting the gene expression inequality across the cell 
types within corresponding tissue single-cell atlas were computed for the gene sets 
labeled as ‘cell type specific’ and ‘tissue specific’. Brain reference data to compute 
Gini coefficients were from the single-cell brain atlas with diagnosis as ‘Normal’28. 
Liver single cell data were used as-is22. All Gini coefficients were computed using 
the mean log-transformed CPTT (counts per ten thousand) gene expression per 
cell type.

A permutation test was then performed on the union of the Gini coefficients 
for the genes labeled as ‘cell type specific’ and ‘tissue specific’. The purpose of 
this test was to assess probability that the observed mean difference in Gini 
coefficient for these two groups yielded no difference in specificity (that is, H0: 
μcell type Gini coefficient = μtissue Gini coefficient).

Gini coefficients were permuted and reassigned to the list of ‘tissue specific’ or 
‘cell type specific’ genes, and then the difference in the means of the two groups 
was computed. This procedure was repeated 10,000 times. The P value was 
determined as follows:

p =
# trials with permuted(μcell type − μtissue) ≥ μobserved

10, 000 + 1 (10)

where μobserved := (μcell type Gini coefficient − μtissue Gini coefficient).
The additional 1 in the denominator reflects the original test between the true 

difference in means (for example, the true comparison yielding μobserved).
NAFLD: We considered the space of reported NAFLD DEGs in serum7. Here, 

C = hepatocyte gene profile, and B = the liver-specific genes.
AD: First, we intersected a given cell type gene profile in AD with the 

equivalent Normal profile for comparative analysis. Genes defined as ‘brain cell 
type specific’ for signature scoring in Fig. 2d were used in this comparison. Of 
note, no DEG-up genes intersected with any of the brain cell type signatures in Fig. 
2d. Microglia, although often implicated in AD pathogenesis, were excluded given 
their high overlapping transcriptional profile with non-central-nervous-system 
macrophages54. Inhibitory neurons were also excluded given the low number of 
cell-type-specific genes intersecting between AD and NCI phenotypes.

Estimating signature scores for each cell type. The signature score is defined as 
the sum of the log-transformed CPM-TMM normalized counts per gene asserted 
to be cell type specific, where i denotes the index of the gene in a cell type signature 
gene profile G in the jth patient sample:

Signature scorej =
∑

i
Gij (11)

Preeclampsia. For signature scoring of syncytiotrophoblast and extravillous 
trophoblast gene profiles in PEARL-PEC and iPEC5, a respective cell type gene 
profile used for signature scoring was derived as described in ‘Derivation of 
cell-type-specific gene profiles in context of the whole body using single-cell 
data’ independently using two different placental single-cell datasets19,20. Only the 
intersection of the cell-type-specific gene profiles for a given trophoblast cell type 
between the two datasets was included in the respective trophoblast gene profile 
for signature scoring.

CKD. We compared the signature score of the proximal tubule in CKD (nine 
patients; 51 samples) and healthy controls (three patients; nine samples). Given 
that all patient samples were longitudinally sampled over ~30 d (individual samples 
were taken on different days), we treated the samples as biological replicates 
and included all time points because the time scale over which renal cell type 
changes typically occur is longer than the collection period. The sequencing depth 
was similar between the CKD and healthy cohorts, although it was reduced in 
comparison to the other cfRNA datasets used in this work. To account for gene 
measurement dropout, we required that the expression of a given gene in the 
proximal tubule gene profile was non-zero in at least one sample in both cohorts. 
Given that all samples were sequenced together, no batch correction was necessary, 
facilitating a representative comparison between CKD and healthy cohorts.

AD. Microglia, although often implicated in AD pathogenesis, were excluded given 
their high overlapping transcriptional profile with non-central-nervous-system 
macrophages54. Inhibitory neurons were also excluded given the low number of 
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cell-type-specific genes intersecting between AD and NCI phenotypes. Brain gene 
profiles as defined in the AD section of ‘Cell type specificity of DEGs in AD and 
NAFLD cfRNA’ were used.

Assessing P value calibration for a given signature score. Cell type signature 
scores were tested between control and diseased samples with a Mann–Whitney 
U-test. The resulting P values were calibrated with a permutation test. Here, the 
labels compared in a given test (that is, CKD versus control, AD versus NCI, 
NAFLD versus control, etc.) were randomly shuffled 10,000 times. We observed a 
well-calibrated, uniform P-value distribution (Extended Data Fig. 10a), validating 
the experimentally observed test statistics.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article

Data availability
All datasets used for this work are publicly available, were downloaded with 
permission or were directly requested from the authors. Samples from Ibarra et al. 
(PRJNA517339), Toden et al. (PRJNA574438) and Chalasani et al. (PRJNA701722) 
were downloaded from the Sequence Read Archive with the respective accession 
numbers. Reads were mapped to the reference human genome (hg38). For data 
from Munchel et al., sample gene count tables were directly downloaded. Tissue 
gene lists and NX counts were downloaded from the Human Protein Atlas  
(www.proteinatlas.org, version 19). GTEx raw expression data were directly 
downloaded (https://www.gtexportal.org/home/datasets, GTEx analysis  
version 8). Tabula Sapiens was downloaded from the Chan Zuckerberg Biohub  
(https://tabula-sapiens-portal.ds.czbiohub.org, version 1.0). The brain single-cell 
data were downloaded with permission from Synapse (https://www.synapse.
org/#!Synapse:syn18485175), and associated ROSMAP metadata were downloaded 
with permission from Synapse (https://www.synapse.org/#!Synapse:syn3157322). 
The liver Seurat object was requested from Aizarani et al. For the placenta atlases, a 
Seurat object was requested from Suryawanshi et al., and AnnData were requested 
from Vento-Tormo et al. Kidney AnnData were downloaded (https://www.
kidneycellatlas.org, Mature Full dataset). Source data are provided with this paper.

Code availability
Code for the work in this manuscript is available on GitHub at www.github.com/
sevahn/deconvolution.
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Extended Data Fig. 1 | Cell-free RNA Sample Quality Control. Quality control metrics (3′ bias fraction, ribosomal fraction, and DNA contamination) 
were determined for each cfRNA sample downloaded from a given SRA accession number. Samples with outlier values are highlighted in red and were 
not considered in subsequent analyses (see Methods section ‘Sample quality filtering’). (a) Ibarra et al (n = 285) (b) Toden et al (n = 339) (c) Chalasani 
et al (n = 500). Box plot: horizonal line, median; lower hinge, 25th percentile; upper hinge, 75th percentile; whiskers span the 1.5 interquartile range; points 
outside the whiskers indicate outliers. Each point corresponds to a downloaded cfRNA sample from the corresponding SRA accession number.
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Extended Data Fig. 2 | Hierarchical clustering on non-immune Tabula Sapiens organ compartments. Dashed line indicates the height at which tree was 
cut. Dendrograms correspond with the cell type annotations belonging to (a) the epithelial compartment, (b) the endothelial compartment (c) the stromal 
compartment.
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Extended Data Fig. 3 | Tabula Sapiens basis matrix performance on GTEx bulk RNA samples using nu-SVR. GTEx tissue samples possessing cell types 
wholly present and absent from the basis matrix column space were selected. For box plots: horizonal line, median; lower hinge, 25th percentile; upper 
hinge, 75th percentile; whiskers, 1.5 interquartile range; points outside the whiskers indicate outliers. There are 30 bulk RNA seq samples for a given 
tissue except for the Bladder (n = 21), Kidney – Medulla (n = 4), and Whole Blood (n = 19). (a) Root mean square error between predicted expression and 
measured expression in a given GTEx tissue. Units are zero-mean unit variance scaled CPM counts. Tissues present in TSP have reduced RMSE compared 
to those that are absent (Kidney – Medulla and Brain). Tissues with high cellular heterogeneity (for example Lung, Bladder, Small Intestine, Kidney) exhibit 
reduced deconvolution performance compared to less heterogeneous tissues (for example Whole Blood, Spleen, Liver). (b) Pearson correlation between 
predicted expression and measured expression in a given GTEx tissue.
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Extended Data Fig. 4 | Deconvolution of healthy plasma samples from Toden et al using Tabula Sapiens. Pie charts denote mean fractional cell type 
specific RNA contributions for (a) University of Indiana (n = 17), (b) University of Kentucky (n = 18), (c) Washington University in St. Louis (n = 22).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | nuSVR decomposition of the plasma cell free transcriptome with Tabula Sapiens. For boxplots, horizonal line, median; lower 
hinge, 25th percentile; upper hinge, 75th percentile; whiskers span the 1.5 interquartile range; points outside the whiskers indicate outliers. Each point 
corresponds to a patient in a given cohort; University of Indiana (n = 17), University of Kentucky (n = 18), Washington University in St. Louis (n = 22), and 
BioIVT (n = 18). For heatmaps or clustermaps, the scale bar denotes the pearson correlation value. (a) Complete linkage clustermap of pairwise pearson 
correlation of deconvolved cell type fractions between patients from a given center; row color denotes a given center (n = 75 patients). (b) Heatmap of 
pairwise pearson correlation of the mean cell type coefficients per center. (c) Deconvolution RMSE between predicted vs. measured expression for all 
biological replicates across all centers. (d) Deconvolution pearson correlation between predicted vs. measured expression for all biological replicates 
across all centers.
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Extended Data Fig. 6 | Establishing gene profile cell type specificity in context of the whole body using single cell and bulk RNA-seq data. (a) Cell type 
signature scoring procedure; please see the ‘Signature Scoring’ in the Methods for the full derivation procedure of a given cell type gene profile. (b) Single 
cell heatmaps for gene cell type profiles within the corresponding tissue cell atlas, demonstrating that a cell type specific profile is unique to a given cell 
type across those within a given tissue. Columns denote marker genes for a given cell type; rows indicate individual cells. The color bar scale corresponds 
to log-transformed counts-per-ten thousand. (c) Gini coefficient density plot for genes in cell type profiles derived from brain and liver single cell atlases 
using HPA NX counts. The area under the curve for a given cell type sums to one. (d) Log fold change in bulk RNA-seq data of a given cell type profile, 
demonstrating that the predominant expression of the cell type signature in its native tissue is highest relative to other non-native tissues. Values are the 
log-fold change of the signature score of a given cell type profile in the native tissue (indicated by the y-axis) to the mean expression in the remaining 
non-native tissues. Box plot: horizontal line, median; lower hinge, 25th percentile; upper hinge, 75th percentile; whiskers span the 1.5 interquartile range; 
points outside the whiskers indicate outliers (n = 2462 GTEx brain samples for box plot on left; n = 226 GTEx liver samples, right).

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Brief CommunicationNATuRE BioTECHnology

Extended Data Fig. 7 | Distribution of Gini coefficient and Tau for all genes denoted by HPA as specific to the brain, liver, placenta, and kidney.
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Extended Data Fig. 8 | Comprehensive placental and renal cell type gene profile specificity at single cell and whole body resolution. For box plots in 
f, g: horizontal line, median; lower hinge, 25th percentile; upper hinge, 75th percentile; whiskers span the 1.5 interquartile range; points outside whiskers 
indicate outliers. (a) Violin plot of derived syncytiotrophoblast and extravillous trophoblast gene profiles from Vento-Tormo et al. (b) Violin plot of 
derived syncytiotrophoblast and extravillous trophoblast gene profiles from Suryawanshi et al. (c) Violin plot of derived proximal tubule gene profile (d) 
Gini coefficient distribution for placental trophoblast cell types in (a) and (b) (e) Gini coefficient distribution for renal cell type in (c) (f) Distribution of 
placental trophoblast signature scores across all GTEx tissues. Note: given that the placenta is not in GTEx, the box plots correspond to the distribution 
of signature scores across non-placental tissues (sum of log-transformed counts-per-ten thousand) (n = 17382 non-placenta GTEx samples) (g) Log-fold 
change of renal cell type signature score in GTEx Kidney Cortex/Medulla samples relative to the mean non-kidney signature score, demonstrating that the 
predominant expression of the cell type signature in its native tissue is highest relative to other non-native tissues. Values are the log ratio of the signature 
score in the kidney to the mean signature score in the remaining non-kidney GTEx tissue samples (n = 89 GTEx renal cortex or medulla samples).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Expression distribution of Tsang et al trophoblast gene profiles in placenta scRNA atlases and in preeclampsia cfRNA. Derived 
trophoblast signature scores in the (a) iPEC dataset (mothers with no complications, n = 73 patients; mothers with preeclampsia, n = 40 patients) and 
(b) PEARL-PEC (n = 12 patients for each early/late-onset PE cohorts and gestationally- age matched healthy controls) datasets from Munchel et al. 
Box plot: horizontal line, median; lower hinge, 25th percentile; upper hinge, 75th percentile; whiskers span the 1.5 interquartile range; points outside the 
whiskers indicate outliers. Stacked violin plot of the genes comprising the extravillous trophoblast and syncytiotrophoblast gene profiles from Tsang et 
al. intersecting with the measured genes in (c) Suryawanshi et al and (d) Vento-Tormo et al, reflecting the expression distribution across all observed 
placental cell types.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Assessment of cell type gene profile discriminatory power during signature scoring. (a) Density of p-values over 10,000 trial 
permutation test to assess p-value calibration for a given signature score. In all cases, the distribution is uniform, as expected under the null. (b) Density 
of U values over 10,000 trial permutation test; red line indicates the U value corresponding to the experimental comparison reported in Fig. 2. (c) Donut 
plot reflecting the number of genes in the hepatocyte cell type gene profile that intersect with the reported NAFLD DEG in Chalasani et al. (d) Density plot 
reflecting the Gini coefficient distribution corresponding to DEG in NAFLD that are liver or hepatocyte specific. The Gini coefficient is computed using the 
mean expression per liver cell type in Aizarani et al (Methods). Area under each curve sums to one. (e) Donut plots reflecting the number of genes in brain 
cell type gene profiles that intersect with the reported AD DEG in Toden et al. (f) Density plot reflecting the Gini coefficient distribution corresponding to 
DEG in AD that are brain or brain cell type specific. The Gini coefficient is computed using the mean expression per brain cell type in the ‘Normal’ samples 
of Mathys et al (Methods). Area under each curve sums to one.
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Data collection No data were collected in this study; all data used were from other studies.

Data analysis All analyses were performed using Python (version 3.6) and R (version 3.6.1) 
Deconvolution was coded using scikitlearn (version 0.23.2) 
Bioinformatic processing: STAR (version 2.7.3a), GATK (version 4.1.1), htseq-count (version 0.11.1), FastQC (v ersion0.11.8), snakemake 
(version 5.8.1), MultiQC (version 1.7).  
Data structures: AnnData (version 0.7.4). Single cell objects received from authors as Seurat objects were converted to an intermediate loom 
file, loom files were read into python using loompy (version 3.0.6). 
Statistics: scipy (version 1.5.1) 
Single cell analysis: scanpy (version 1.6.0), Seurat (version 3.1.5) 
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Normalization: in addition to built-in functions in scanpy, edgeR (version 3.28.1) for TMM normalization
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All datasets used for this work were publicly available, downloaded with permission, or directly requested from authors.  
Cell free RNA: For samples from Ibarra et al (PRJNA517339), Toden et al (PRJNA574438), and Chalasani et al (PRJNA701722), raw sequencing data was obtained 
from the SRA with the respective accession number. Reads were mapped to the reference human genome (hg38). For samples from Munchel et al, processed 
counts tables were directly downloaded.  
 
Tissue gene lists and NX counts were downloaded from HPA (www.proteinatlas.org, v19). GTEx raw expression was downloaded from the GTEx portal (https://
www.gtexportal.org/home/datasets, GTEx analysis V8). Tabula Sapiens single cell data were received from the CZ-Biohub (https://tabula-sapiens-
portal.ds.czbiohub.org, version 1.0). The brain single cell data were downloaded with permission from Synapse (https://www.synapse.org/#!Synapse:syn18485175) 
and associated ROSMAP metadata were downloaded with permission from Synapse (https://www.synapse.org/#!Synapse:syn3157322). The liver Seurat object was 
requested from Aizarani et al. For the placenta atlases, a Seurat object was requested from Suryawanshi et al and AnnData requested from Vento-Tormo et al. 
Kidney AnnData was downloaded (https://www.kidneycellatlas.org, Mature Full dataset). 
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Sample size Cell free RNA samples: the datasets involved in this study were selected on the basis of availability, size, and high data quality. All datasets that 
we had access to meeting these three criteria were used in this work. No sample size calculation was performed; all samples used in this work 
were from published peer-reviewed studies. The entirety of the published samples passing QC were used in this work.

Data exclusions Cell free RNA samples: we estimated the 3' bias ratio, ribosomal fraction, and the ratio of the number of reads that mapped to intronic as 
compared to exonic regions of the genome. A sample with a value greater than previously published thresholds for any of these three metrics 
was excluded from subsequent analysis. 
 
Single cell: a list of disassociation genes were eliminated prior to downstream analysis (e.g. differential expression) while working with the 
Tabula Sapiens data given that observed disassociation artifact in single cell data.

Replication The cell free transcriptome in human health: 
We used several independent methods to assess the presence of cell-type specific signal, using cell type markers from PanglaoDB, systems-
level deconvolution using Tabula Sapiens, and then individual cell type signatures scores derived from independent scRNA-seq tissue cell 
atlases. For systems level deconvolution on 75 healthy plasma samples, concordance was observed between the coefficients of cell type 
specific RNA between independent biological replicates between four different sample centers. For signature scoring and the cell type 
markers analyses, findings were again upheld over independent biological replicates. 
 
The cell free transcriptome in pathology: 
For the preeclampsia cell type signature scoring, we performed signature scoring using two independent datasets (PEARL-PEC and iPEC, from 
Munchel et al.). We validated our placental cell type signatures using two independent placental cell atlases (Munchel et al + Suryawanshi et 
al).  
 
All cell type signature scores were tested between control and sick samples with a Mann-Whitney U test. We ensured that the resulting p-
values were calibrated with a permutation test. Here, the labels compared in a given test (i.e. CKD vs. CTRL, AD vs. NCI, NAFLD vs. CTRL, etc.) 
were randomly shuffled 10,000 times. We observed a well-calibrated, uniform p-value distribution, validating the experimentally observed 
test statistics. 
 
Of the differentially expressed genes that we observed to be cell type specific in AD/NAFLD, we performed a 10,000 trial permutation test on 
the Gini coefficients that are tissue-specific (e.g. brain/liver) vs. cell type specific. We found that the DEG that were identified as cell type 
specific  possessed higher Gini than just tissue-specific. Together, this underscored that a subset of the DEG in cfRNA liquid biopsy for AD/
NAFLD are associated with pathologically implicated cell types and are resolvable at cell type resolution. 
 
All attempts at replication were successful.

Randomization Randomization was not relevant for this study. For the determination of the healthy cf-transcriptome landscape, we looked at the signal 
observed within a given sample independently, then compared the observed results between different patients. In disease, comparisons were 
made solely on the basis of patient disease status, no treatments were applied.
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Blinding All data used in this work were publicly available; no data collection was performed, hence no blinding was necessary. QC filtering of samples 
was performed blinded before revealing disease status of the samples. During data analysis, as purpose of this study was to determine the 
comprehensive landscape of cell type specific signal in cfRNA as a baseline from which to measure aberrations in Chronic Kidney Disease/
Preeclampsia/Alzheimer's Disease/NAFLD and NASH, blinding was not performed.
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