Skip to main content
. 2022 Jun 15;12:9962. doi: 10.1038/s41598-022-14048-6

Table 2.

The top 20 weighted genes selected from different machine-learnings.

LASSO PCA GBM RF NN SVM
Genes Weight Genes Weight Genes Weight Genes Weight Genes Weight Genes Weight
S100P 0.52 C4BPA 1.85 OLFM4 1 OLFM4 3.89 TUBB2A − 2.39 OLFM4 8.87
RARRES3 0.42 RIPK2 1.85 HLA-DMA 0.23 C4BPB 3.7 TIMP1 2.25 C4BPB 3.37
IFITM3 − 0.31 PYY 1.85 C4BPB 0.2 ISG20 1.63 CCL19 − 2.25 NMI 2.13
CD19 0.29 REG3A 1.85 NMI 0.18 DMBT1 2.43 DEFA6 − 2.01 HLA-DMA 1.96
CHAD − 0.28 DUSP10 1.85 CLDN8 0.13 CXCL1 1.08 CD55 1.87 VNN1 1.78
NMI 0.24 CNTNAP2 1.84 VNN1 0.12 CLDN8 2.46 CXCL9 1.77 DEFA5 1.78
PLA2G2A − 0.24 ATP2C2 1.84 HYOU1 0.11 LCN2 0.69 IFITM1 1.7 S100P 1.77
C4BPB 0.19 LRRN2 1.84 DEFA5 0.1 PRDX1 2.67 PCBP1 1.65 PRDX1 1.65
HYOU1 0.19 CHI3L2 1.83 PRDX1 0.1 GNA15 1.01 AQP8 1.64 CLDN8 1.55
VNN1 0.18 TRIM22 1.83 NPTX2 0.08 S100P 2.44 FTL 1.48 REG3A 1.38
NPTX2 0.18 ALOX5 1.83 S100P 0.08 IFITM1 2.03 ASS1 1.4 IRF9 1.34
DMBT1 0.17 OAZ1 1.83 RARRES3 0.08 NMI 3.47 HSPA5 1.34 HYOU1 1.32
OLFM4 0.15 ZNF189 1.82 CXCL1 0.07 RARRES3 1.96 ADM − 1.34 CXCL1 1.2
CSF2RB 0.15 STAT3 1.82 DEFA6 0.05 MAP2K1 0.93 C4BPB 1.33 NPTX2 1.14
COL6A3 − 0.12 ZNF143 1.82 REG3A 0.05 LYN 1.54 ISG20 1.31 CD55 1.1
PCK1 − 0.11 GPR161 1.82 CHAD 0.05 STAT3 1.35 SDCBP 1.25 RARRES3 0.94
SERPINA3 − 0.08 SWAP70 1.82 VOPP1 0.04 TIMP1 1.23 REG1B − 1.19 ISG20 0.86
CLDN8 − 0.05 ME1 1.82 CD19 0.04 CD55 1.45 TRIM22 − 1.17 CD19 0.86
COL4A2 0.04 BIRC3 1.82 PCK1 0.04 HLA-DMA 2.11 SERPINA3 1.09 HLA-DRA 0.85
SPINK4 − 0.04 ADRA2A 1.81 HLA-DRA 0.04 S100A8 0.64 CTSK 1.07 SELL 0.81

LASSO, Least Absolute Shrinkage and Selection Operator; PCA, principal component analysis; GBM, Gradient boosting machine; RF, Random forest; NN, Neural network, SVM, Support Vector Machine.

Different MLS process different weights, and negative weights in LASSO and NN that we sort the weighted genes with absolute value.