Table 2.
LASSO | PCA | GBM | RF | NN | SVM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genes | Weight | Genes | Weight | Genes | Weight | Genes | Weight | Genes | Weight | Genes | Weight |
S100P | 0.52 | C4BPA | 1.85 | OLFM4 | 1 | OLFM4 | 3.89 | TUBB2A | − 2.39 | OLFM4 | 8.87 |
RARRES3 | 0.42 | RIPK2 | 1.85 | HLA-DMA | 0.23 | C4BPB | 3.7 | TIMP1 | 2.25 | C4BPB | 3.37 |
IFITM3 | − 0.31 | PYY | 1.85 | C4BPB | 0.2 | ISG20 | 1.63 | CCL19 | − 2.25 | NMI | 2.13 |
CD19 | 0.29 | REG3A | 1.85 | NMI | 0.18 | DMBT1 | 2.43 | DEFA6 | − 2.01 | HLA-DMA | 1.96 |
CHAD | − 0.28 | DUSP10 | 1.85 | CLDN8 | 0.13 | CXCL1 | 1.08 | CD55 | 1.87 | VNN1 | 1.78 |
NMI | 0.24 | CNTNAP2 | 1.84 | VNN1 | 0.12 | CLDN8 | 2.46 | CXCL9 | 1.77 | DEFA5 | 1.78 |
PLA2G2A | − 0.24 | ATP2C2 | 1.84 | HYOU1 | 0.11 | LCN2 | 0.69 | IFITM1 | 1.7 | S100P | 1.77 |
C4BPB | 0.19 | LRRN2 | 1.84 | DEFA5 | 0.1 | PRDX1 | 2.67 | PCBP1 | 1.65 | PRDX1 | 1.65 |
HYOU1 | 0.19 | CHI3L2 | 1.83 | PRDX1 | 0.1 | GNA15 | 1.01 | AQP8 | 1.64 | CLDN8 | 1.55 |
VNN1 | 0.18 | TRIM22 | 1.83 | NPTX2 | 0.08 | S100P | 2.44 | FTL | 1.48 | REG3A | 1.38 |
NPTX2 | 0.18 | ALOX5 | 1.83 | S100P | 0.08 | IFITM1 | 2.03 | ASS1 | 1.4 | IRF9 | 1.34 |
DMBT1 | 0.17 | OAZ1 | 1.83 | RARRES3 | 0.08 | NMI | 3.47 | HSPA5 | 1.34 | HYOU1 | 1.32 |
OLFM4 | 0.15 | ZNF189 | 1.82 | CXCL1 | 0.07 | RARRES3 | 1.96 | ADM | − 1.34 | CXCL1 | 1.2 |
CSF2RB | 0.15 | STAT3 | 1.82 | DEFA6 | 0.05 | MAP2K1 | 0.93 | C4BPB | 1.33 | NPTX2 | 1.14 |
COL6A3 | − 0.12 | ZNF143 | 1.82 | REG3A | 0.05 | LYN | 1.54 | ISG20 | 1.31 | CD55 | 1.1 |
PCK1 | − 0.11 | GPR161 | 1.82 | CHAD | 0.05 | STAT3 | 1.35 | SDCBP | 1.25 | RARRES3 | 0.94 |
SERPINA3 | − 0.08 | SWAP70 | 1.82 | VOPP1 | 0.04 | TIMP1 | 1.23 | REG1B | − 1.19 | ISG20 | 0.86 |
CLDN8 | − 0.05 | ME1 | 1.82 | CD19 | 0.04 | CD55 | 1.45 | TRIM22 | − 1.17 | CD19 | 0.86 |
COL4A2 | 0.04 | BIRC3 | 1.82 | PCK1 | 0.04 | HLA-DMA | 2.11 | SERPINA3 | 1.09 | HLA-DRA | 0.85 |
SPINK4 | − 0.04 | ADRA2A | 1.81 | HLA-DRA | 0.04 | S100A8 | 0.64 | CTSK | 1.07 | SELL | 0.81 |
LASSO, Least Absolute Shrinkage and Selection Operator; PCA, principal component analysis; GBM, Gradient boosting machine; RF, Random forest; NN, Neural network, SVM, Support Vector Machine.
Different MLS process different weights, and negative weights in LASSO and NN that we sort the weighted genes with absolute value.