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Genetic subtypes of smoldering multiple myeloma
are associated with distinct pathogenic phenotypes
and clinical outcomes
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Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM)

with significant heterogeneity in disease progression. Existing clinical models of progression

risk do not fully capture this heterogeneity. Here we integrate 42 genetic alterations from 214

SMM patients using unsupervised binary matrix factorization (BMF) clustering and identify

six distinct genetic subtypes. These subtypes are differentially associated with established

MM-related RNA signatures, oncogenic and immune transcriptional profiles, and evolving

clinical biomarkers. Three genetic subtypes are associated with increased risk of progression

to active MM in both the primary and validation cohorts, indicating they can be used to better

predict high and low-risk patients within the currently used clinical risk stratification models.

https://doi.org/10.1038/s41467-022-30694-w OPEN

1Medical Oncology, Dana-Farber Cancer Center, Boston, MA, USA. 2Division of Hematology & Medical Oncology, Meyer Cancer Center, Weill Cornell
Medicine, New York, NY, USA. 3 Broad Institute of MIT & Harvard, Cambridge, MA, USA. 4 Boston University School of Medicine, Boston, MA, USA.
5 Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA. 6 Perlmutter Cancer Center, NYU Langone Health, New York, NY,
USA. 7Division of Hematology, University College London, London, UK. 8University of Münster Medical School, Münster, Germany. 9 Janssen Research and
Development, Beerse, Belgium. 10 Janssen Research and Development, Spring House, PA, USA. 11Department of Clinical Therapeutics, National and Kapodistrian
University of Athens, Athens, Greece. 12Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, USA. 13Division of
Hematology, Mayo Clinic, Scottsdale, AZ, USA. 14Department of Pathology, Massachusetts General Hospital Cancer Center, Boston, MA, USA. 15These authors
contributed equally: Mark Bustoros, Shankara Anand, Gad Getz, Irene M. Ghobrial. ✉email: gadgetz@broadinstitute.org; Irene_Ghobrial@dfci.harvard.edu

NATURE COMMUNICATIONS |         (2022) 13:3449 | https://doi.org/10.1038/s41467-022-30694-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30694-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30694-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30694-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30694-w&domain=pdf
http://orcid.org/0000-0002-4652-5449
http://orcid.org/0000-0002-4652-5449
http://orcid.org/0000-0002-4652-5449
http://orcid.org/0000-0002-4652-5449
http://orcid.org/0000-0002-4652-5449
http://orcid.org/0000-0002-1329-5288
http://orcid.org/0000-0002-1329-5288
http://orcid.org/0000-0002-1329-5288
http://orcid.org/0000-0002-1329-5288
http://orcid.org/0000-0002-1329-5288
http://orcid.org/0000-0001-8791-1744
http://orcid.org/0000-0001-8791-1744
http://orcid.org/0000-0001-8791-1744
http://orcid.org/0000-0001-8791-1744
http://orcid.org/0000-0001-8791-1744
http://orcid.org/0000-0001-6199-3569
http://orcid.org/0000-0001-6199-3569
http://orcid.org/0000-0001-6199-3569
http://orcid.org/0000-0001-6199-3569
http://orcid.org/0000-0001-6199-3569
http://orcid.org/0000-0001-7100-463X
http://orcid.org/0000-0001-7100-463X
http://orcid.org/0000-0001-7100-463X
http://orcid.org/0000-0001-7100-463X
http://orcid.org/0000-0001-7100-463X
http://orcid.org/0000-0003-2535-3729
http://orcid.org/0000-0003-2535-3729
http://orcid.org/0000-0003-2535-3729
http://orcid.org/0000-0003-2535-3729
http://orcid.org/0000-0003-2535-3729
http://orcid.org/0000-0002-8615-6254
http://orcid.org/0000-0002-8615-6254
http://orcid.org/0000-0002-8615-6254
http://orcid.org/0000-0002-8615-6254
http://orcid.org/0000-0002-8615-6254
http://orcid.org/0000-0001-8990-3254
http://orcid.org/0000-0001-8990-3254
http://orcid.org/0000-0001-8990-3254
http://orcid.org/0000-0001-8990-3254
http://orcid.org/0000-0001-8990-3254
http://orcid.org/0000-0003-1523-7388
http://orcid.org/0000-0003-1523-7388
http://orcid.org/0000-0003-1523-7388
http://orcid.org/0000-0003-1523-7388
http://orcid.org/0000-0003-1523-7388
http://orcid.org/0000-0002-6487-276X
http://orcid.org/0000-0002-6487-276X
http://orcid.org/0000-0002-6487-276X
http://orcid.org/0000-0002-6487-276X
http://orcid.org/0000-0002-6487-276X
http://orcid.org/0000-0002-4271-6360
http://orcid.org/0000-0002-4271-6360
http://orcid.org/0000-0002-4271-6360
http://orcid.org/0000-0002-4271-6360
http://orcid.org/0000-0002-4271-6360
http://orcid.org/0000-0001-9414-300X
http://orcid.org/0000-0001-9414-300X
http://orcid.org/0000-0001-9414-300X
http://orcid.org/0000-0001-9414-300X
http://orcid.org/0000-0001-9414-300X
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0002-0936-0753
http://orcid.org/0000-0001-7361-3092
http://orcid.org/0000-0001-7361-3092
http://orcid.org/0000-0001-7361-3092
http://orcid.org/0000-0001-7361-3092
http://orcid.org/0000-0001-7361-3092
mailto:gadgetz@broadinstitute.org
mailto:Irene_Ghobrial@dfci.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Multiple Myeloma (MM) is an incurable plasma cell
malignancy with significant inter- and intra-patient
heterogeneity. It is almost always preceded by the

asymptomatic precursor stages monoclonal gammopathy of
undetermined significance (MGUS) and smoldering multiple
myeloma (SMM). Approximately 1.5% of MGUS patients will
progress to MM per year, while SMM patients have a higher
overall progression risk of 10% per year1,2. Like MM, SMM is a
heterogeneous condition—some patients have over a 50% risk of
progression within two years, while others have more MGUS-like
disease that grows slowly3.

Several risk stratification models exist to help clinicians dif-
ferentiate patients with high risk of progression to active mye-
loma from those for whom a “watchful waiting” approach is
appropriate. The existing models rely solely on clinical mea-
surements, many of which are indicators of tumor burden and
universal biomarkers of MM for risk stratification. These models,
however, do not fully partition progressors from non-progressors,
and patients classified as low- or intermediate-risk still progress
to active MM and have a 2-year progression risk of 6% and 18%,
respectively (compared to 44% for high-risk patients)3, which
warrants more accurate models that also represent the molecular
heterogeneity in MM. We recently showed that genomic altera-
tions in mitogen-activated protein kinase (MAPK) and DNA
repair pathways or MYC are independently predictive of pro-
gression risk4. While these genomic biomarkers improved upon
the clinical models, they represent only a few alterations that do
not capture the full extent of genetic heterogeneity in SMM.

Multiple myeloma is characterized by multiple chromosomal
gains or losses, structural variations, driver single nucleotide
variations (SNVs)5–7, and other structural alterations involving
known oncogenes8. The IgH translocations and copy number
alterations (CNAs) are considered early events in the pathogen-
esis of MM, while other CNAs and SNVs usually occur later
during clonal evolution, providing more proliferative capacity to
the tumor cells4. Multiple SMM studies have shown that CNAs,
including whole chromosome duplications and arm-level losses
or gains, are the most common events, followed by SNVs, and
then translocations4,7,9,10. These alterations have all been detected
at the SMM stage, and we previously showed that the genomic
makeup of the MM tumor clone is fully acquired by the time of
SMM diagnosis in most cases4,10–12. Furthermore, certain genetic
alterations were found to occur more frequently together4,7,
therefore, studying these genetic alterations as groups or networks
rather than individual risk factors may improve our under-
standing of disease molecular groups and the overall risk strati-
fication in SMM.

In this study, we apply an unsupervised binary matrix factor-
ization (BMF) clustering method to identify groups of genomic
alterations that tend to occur together, and show that the
resulting clusters represent distinct biological and clinical sub-
types in SMM.

Results
Identification of six clusters with distinct genetic features. We
leveraged DNA sequencing data from a cohort of 214 patients at
the time of SMM diagnosis, with matched RNA sequencing data
of 89 patients from the same cohort, and baseline clinical infor-
mation for the whole cohort (Fig. 1A and Supplementary
Table 1A, B). The patients in this cohort harbored a median of
seven driver events, several of which tended to co-occur4,6,7,
suggesting that additional analyses may reveal distinct patterns
(i.e., clusters) of genetic alterations. To identify these patterns,
binarized DNA features (42 driver SNVs, CNVs, and transloca-
tions) were curated for each sample representing the presence or

absence of each genomic alteration. Previous work successfully
subtyped diffuse large B-cell lymphoma patients with consensus
non-negative matrix (NMF) factorization of numeric DNA
genetic features13. We instead apply consensus BMF to accom-
modate these binarized DNA features (Supplementary Fig. 1 A),
appropriately model summative features that span multiple sub-
types (i.e., hyperdiploidy), and handle sparse matrices14. We
identified six SMM patient subtypes with distinct patterns of
drivers. Tumor samples in four of these clusters were hyperdi-
ploid (more than 48 chromosomes), while those in the other two
were enriched for known MM IgH translocations (Fig. 1B, Sup-
plementary Fig. 1B, C).

Cluster 1: the tumors of this cluster exhibited a hyperdiploid
genotype as the primary event and were significantly enriched in
NRAS, TRAF3, and MAX mutations. We named this cluster
Hyperdiploid-like 1 (HL1). Cluster 2: the tumors of this cluster
harbored frequent arm-level deletions, including 16q, 6q, 1p, 17p,
4q, 18q, and 20q, and the IgH translocation t(14;20), which
upregulates the transcription factor MAFB. Moreover, mutations
in NRAS, BRAF, TP53, ATM, MAFB, and CDKN2C genes were
enriched in this subgroup. Hyperdiploidy was detected in 69% of
the tumors in this cluster. We named this cluster Hyperdiploid-
like 2 (HL2). The tumors of this cluster were significantly
enriched in deletion(16q), which involves CYLD tumor suppres-
sor and other genes. The presence of both hyperdiploidy and
t(14;20) in the same cluster could be explained by the co-
occurrence of those events as described in prior studies7,10.
Indeed, half of patients with t(14;20) also had hyperdiploidy in
their tumor samples. Cluster 3: Tumors of this cluster exhibited
primary events such as t(4;14), which upregulates FGFR3 and
MMSET genes; t(14;16), which upregulates the transcription
factorMAF; and copy number losses of 14q, 1p, 8p, 10p, 11q, 12p,
and 17p. We named this cluster Translocation-like 1 (TL1). This
cluster was also enriched for hypodiploid tumors, defined as
having fewer than 45 chromosomes (adjusted P= 0.04). Tumors
in this cluster also harbored mutations in DIS3, MAF, FGFR3,
PRKD2, PRDM1, and HIST1H1E. Many of these proteins and
mutations in their encoding genes are essential to tumor cell
survival and play roles in protein translation, secretion, and
plasma cell differentiation7,9,15. Differential gene expression
analysis revealed that TL1 tumors have downregulation of
ribosomal proteins and the negative regulator of the MAPK
pathway TRAF2. The upregulated genes included
WHSC1(MMSET), FGFR3, KLHL4, CCND3, and genes involved
in the endoplasmic reticulum (ER) stress response (Fig. 2A).
Cluster 4: this cluster comprises tumors with a hyperdiploid
genotype that harbored mutations in KRAS and NFKBlA genes,
and MYC translocations as the only significant features. We
named this cluster Hyperdiploid-like 3 (HL3). Cluster 5: the
tumors in this cluster mainly exhibited t(11;14), CCND1
mutations, and gain of chromosome 11 or its long arm. We
named this cluster Translocation-like 2 (TL2). Interestingly, this
cluster had significantly lower M-protein levels and was enriched
in light-chain disease compared to the other clusters (P < 0.001
for both). Tumors of TL2 had 243 differentially expressed genes
(q < 0.1, log2FC|> 1.5; 180 upregulated, 63 downregulated),
including overexpression of CCND1, ERBB4, E2F7, E2F1, TRAK2,
RBL1, and downregulation of DUSP4, TRAF6, PRKD3, CCDC6,
and ZNF844. Furthermore, this cluster had the highest expression
of CCND1 compared to the other clusters (Fig. 2B). Cluster 6: this
is a hyperdiploid cluster similar to HL1; however, its tumors are
also enriched in NFKB2 and KLHL6 mutations and exhibit copy
gains in 2p. Interestingly, copy gains of 1q were more frequent in
this cluster than HL1 and the other hyperdiploid clusters
(P < 0.001 for both comparisons). We named this cluster
Hyperdiploid-like 4 (HL4). Additionally, key individual genes in
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myeloma pathogenesis were overexpressed in tumors of specific
genetic subtypes. MCL1 was upregulated in all the genetic
subgroups with the lowest expression observed in HL1 tumors
compared to the other subtypes (P= 0.001) (Fig. 2C). MYC
oncogene was also highly expressed in the four hyperdiploid
clusters (P= 0.009, Wilcoxon Test) (Fig. 2D). Cyclin D1
(CCND1) was significantly upregulated in TL2 tumors
(P= 0.0001), while CCND2 was upregulated in TL1 and HL2
tumors compared to the rest of the genetic subtypes (P= 0.004)
(Fig. 2D, Supplementary Fig. 2A, B). Moreover, in the four
hyperdiploid clusters, we found that CCND2 expression was
higher in samples without 11q gain, while CCND1 expression was
higher in tumors with 11q gain (Supplementary Fig. 2D, G).

The genetic subgroups are enriched with specific MM expres-
sion signatures. To date, ten distinct RNA expression signatures
have been defined and validated as prognostic in newly diagnosed
and relapsed MM patients16,17. Each expression signature was
then associated with specific primary genetic lesions identified by
fluorescent in situ hybridization (FISH), including hyperdiploidy
and IgH translocations that activate c-MAF and MAFB, CCND1,
CCND3, or MMSET16,17. We asked whether these expression
signatures were present in our SMM cohort and correlated with
the six genetic subgroups. To address this, we performed a gene-

set enrichment analysis of these expression signatures among the
genetic subtypes (lower panel of Fig. 2G). We observed that the
hyperdiploid expression signature16,17, which is seen in hyper-
diploid MM patients, is upregulated in the tumors of our
hyperdiploid clusters (HL1–4). The Cyclin D (CD) expression
signatures, including CD-1 that highly expresses CCND1 and CD-
2, which expresses the B cell markers CD20, CD79A, and CCND1
were significantly upregulated in the TL2 genetic subgroup.
Moreover, the high-risk MMSET (MS) molecular signature,
which is enriched in patients with t(4;14) and upregulates
MMSET and FGFR3 genes, was upregulated in the TL1 cluster.
The MAF (MF) signature, which has been reported in patients
with t(14;16) and t(14;20) that upregulate MAF and MAFB genes,
respectively, was enriched in both the TL1 and HL2 subgroups,
consistent with the presence of these genetic alterations in their
tumors. The low bone disease signature, which has not been
previously mapped to a specific MM genetic alteration, was
upregulated in the HL4, TL1, and HL2 subgroups, suggesting it
could be linked to 1q gain, which occurs frequently in these three
subgroups. Interestingly, the PR signature, which is found in
proliferative tumor cells, was enriched in the HL3 and TL2 sub-
groups. Furthermore, the NFkB signature was upregulated only in
HL2, which could be explained by the high frequency of 16q
deletions and CYLD mutations in this subgroup. Finally, the

Fig. 1 Outline of the study and the six molecular subtypes identified based on DNA alterations in tumor samples from smoldering myeloma patients.
A Flowchart of analyses was performed in this study. Clusters were generated based on the tumor genetic alterations from DNA sequencing data, then
they were analyzed for correlations with transcriptomic and clinical data. This flowchart was created with BioRender.com. B Identification of groups of
tumors with corresponding genetic events. Binary matrix factorization consensus clustering was performed using somatic mutations, somatic copy number
alterations, and translocations from 214 SMM tumor samples (columns). Clusters HL1–4, TL1, and TL2 with their associated landmark genetic alterations
are visualized (boxed for each cluster). Genetic alterations that were positively associated with each cluster were identified by a one-sided Fisher test and
ranked by significance (Benjamini–Hochberg adjusted p value < 0.1, red line, bar graph to the right). C Summary table of the six subtypes identified
with selected enriched genetic features.
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PRL3 signature, which overexpresses the protein tyrosine phos-
phatase PTP4A3 and 27 additional genes, was upregulated only in
HL4 and indicates that it could also be linked to the presence of
1q gain, which is found in all the tumors of the HL4 subgroup.

We further examined whether our genetic subtypes were
enriched in specific mutational signatures for 72 samples with
matched normal whole-exome sequencing. We found that the
APOBEC mutational signature activity (SBS 2,13 COSMIC v3.0)
differed between the genetic subtypes (P= 0.027, Kruskal-Wallis)
while AID mutational signatures did not (P= 0.17) (Supplemen-
tary Fig. 2E–G). Specifically, we found APOBEC activity enriched
in the HL2 & TL1 clusters vs. the rest of tumors (P= 0.006,
adjusted p= 0.045) (Supplementary Fig. 2H).

Genetic subgroups have distinct transcriptional profiles. We
performed GSEA on the available transcriptomic resulting data to
explore which genes and biological pathways were differentially
expressed among the genetic subgroups we identified. Pathways
that were significantly enriched within the six genetic subtypes

are described and illustrated (Fig. 2G). We found that protein
secretion, unfolded protein response (UPR), glycolysis, hypoxia,
and mTOR signatures were specifically enriched in the TL1
subgroup, while E2F target genes, cell cycle, heme metabolism,
complement, and proliferation signatures were enriched in TL2
tumors. Genes induced by MYC were highly expressed in HL3
and HL4, consistent with MYC upregulation in these two clusters.
The NFkB, cytosolic DNA sensing, and JAK-STAT signatures
were enriched in the tumors of HL2. The interferon-alpha and
gamma response signatures were high in HL2 but low in TL1.
Interestingly, oxidative phosphorylation, WNT-beta-catenin, and
TGF-beta signaling were enriched only in tumors of HL4, and the
TNFa and inflammatory signatures were uniquely enriched in
HL3. The ribosome biosynthesis signature was low in TL1, TL2,
and HL3 but high in HL1, HL2, and HL4 subgroups.

We also looked at signatures related to the tumor immune
microenvironment. Signatures of regulatory T cells and NK cells
were high in HL2 and HL3, while the M2 macrophage signature
was high in TL2 and HL4 tumors. The HL3 and TL2 tumors were
enriched for the monocyte signature. In contrast, the signature of

  

 −
 

  

 −
 

Fig. 2 Differential gene expression and gene set enrichment analysis for tumors from the six genetic subtypes (n= 89). A–D Comparison of gene
expression levels ofMCL1, MYC, CCND1, and CCND2 among the six genetic subtypes. Two-sided p value derived from Kruskal–Wallis test. E Comparison of
expression levels ofMYC oncogene expression between the two non hyperdiploid ones (-HL) and the four hyperdiploid (+HL) subtypes. Two-sided p-value
was calculated using the Wilcoxon rank-sum test. Expression is measured by the log2 value of transcript per million of each gene (log2 TPM+ 1). Boxplots
representing median, and interquartile range, whiskers representing first, and fourth quartile. F Volcano plot showing fold changes for genes differentially
expressed between tumors of TL1 subtype and the other subtypes. G Volcano plot showing fold changes for genes differentially expressed between tumors
of TL2 subtype and the other subtypes. X axis= Log2 fold change, Y axis=−log10 adjusted p value. H Gene set enrichment analysis of different molecular
and oncogenic pathways (top), immune cell signatures (middle), and MM-specific signatures (bottom) among the six genetic subtypes.
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plasmacytoid dendritic cells, known for their immunosuppressive
effect18, was only enriched in the TL1 tumors.

Genetic subtypes are differentially associated with risk of
progression and evolving clinical biomarkers. To investigate the
relationship between these genetic subtypes and clinical outcome,
we analyzed a subset of patients (n= 87) who were followed for
the natural course of their disease and did not receive any
treatment in a clinical trial setting before progression to MM.
Their baseline characteristics are reported in Supplementary
Table 2. The median follow-up time for these patients was 7.1
years and the median time to progression (TTP) was 4 years (95%
CI, 3–6). In this cohort, 57 patients (66%) have progressed, while
30 (34%) remained asymptomatic as of the last follow-up (put
date of last follow-up in the methods section). The genetic sub-
groups had different outcomes, measured by TTP to active MM
(log-rank P= 0.007) (Supplementary Fig. 3A). Median TTP for
patients in HL2, TL1, and HL3 was 3.7, 2.6, and 2.2 years,
respectively, while it was 4.3, 11, and 5.2 years for HL1, TL2, and
HL4, respectively. The HL2, TL1, and HL3 genetic subgroups had
increased hazards of progression (HR > 4.5) to active myeloma
(Supplementary Fig. 3B).

We then divided the genetic subtypes based on their TTP and
hazards of progression into high- (HL2, TL1, HL3), intermediate-
(HL1, HL4), and low-risk (TL2) subtypes. The high- and
intermediate-risk subtypes had significantly shorter TTP and
increased risk of progression compared to the low-risk subtype
(2.6 and 5.2 vs. 11 years, respectively, P < 0.0001) (Fig. 3A). We
also stratified the patients according to the 20-2-20 model, which
uses three cutoffs of M-protein >2 g/dL, FLC ratio >20, and bone
marrow plasmacytosis >20% to define low, intermediate, and
high-risk groups based on the presence of none, one, and two or
all these variables, respectively3. The intermediate- and high-risk
genetic subtypes and the clinically high-risk SMM group
(according to the 20-2-20 model) were the only significant
predictors of progression to active MM in our multivariate
analysis (Fig. 3B). Moreover, the prediction performance of the
combined clinical and genetic models was higher than the clinical
model alone (C-index: 0.76 vs 0.71, respectively). Interestingly,
within the high-risk clinical group, patients in the high-risk
genetic subgroups had increased progression risk (HR 3.7, 95%
CI:1.1–12.8, P= 0.04). We observed a similar finding in the
intermediate-risk clinical group, where patients from the high-
risk genetic groups had shorter TTP compared to intermediate
and low-risk ones (3.4 vs. 6.5, and 10.9 years, respectively,
P= 0.003, with a two-year progression risk of 33% vs. 0%,
respectively). (Supplementary Fig. 3C). We observed that high-
risk genetic subtypes were significantly enriched with specific
genetic alterations, such as KRAS, TP53, t(4;14), t(14;16), 1q gain,
16q, and 1p deletions among others (Supplementary Table 3).

We also identified patients with evolving M protein (eMP),
which is defined as a ≥ 25% increase in M-protein within
12 months of diagnosis with a minimum absolute increase of
0.5 g/dL, and evolving hemoglobin (eHb), which is defined as
a ≥ 0.5 g/dl decrease within 12 months of diagnosis19. These
changing patterns were reported to confer a higher risk of
progression to active MM in different SMM cohorts. We found
that the odds of eMP and eHb were 9.4 and 5.3 times higher
(P= 0.006 and 0.007, respectively) in patients with the high-
risk genetic subtypes. These results indicate that high-risk
genetic subgroups have distinct genetic and transcriptomic
features as well as different clinical outcomes in terms of
progression to active MM and evolution of its biomarkers
over time.

Validation of the molecular subtypes in external cohorts. To
validate our findings on the clinical significance of the genetic
subtypes, we developed a classifier based on the features of the
clusters we identified in our primary cohort (Supplementary
Fig. 4). We used an external cohort of 75 SMM patients to vali-
date the classifier and investigate whether the genetic subtypes are
predictive for progression11. The patients in this cohort were
enriched in the low-risk clinical stage and had a median TTP of 5
years. Similar to the primary cohort, patients in the intermediate
and high-risk genetic subtypes had increased risk of progression
to active MM in multivariate analysis accounting for the clinical
risk stage (HR: 4.5 and 9, P= 0.039 and 0.002, respectively)
(Fig. 3C). We found that adding the genetic risk groups improved
the prediction of progression compared to the clinical model only
(C-index: 0.76 vs 0.65, respectively) (Supplementary Table 4). We
also obtained another smaller cohort of 67 patients with targeted
capture data, including common MM translocations, CNAs and
SNVs, and added it to the previous cohort12. In those 142
patients, HL2, TL1, HL3, and HL4 subtypes were independent
predictors of progression to active myeloma (Fig. 3D) and the
high-risk genetic subtypes were associated with increased risk of
progression in multivariate analysis (HR: 3.4, 95% CI: 1.68–6.7).
We then asked, given the small number of patients in the dif-
ferent cohorts, whether combining the three cohorts would pro-
vide more power and increase the significance of our genetic
classification. The combined cohort contained 229 SMM patients
with median follow-up and TTP of 6.9 and 5.2 years, respectively.
Indeed, the genetic subtypes had a different TTP (Fig. 3F), and
the high-risk genetic subtypes had significantly shorter TTP
compared to the low or the intermediate-risk groups (Fig. 3F).
We also found that both the individual genetic subtypes and the
genetic risk groups were independent predictors of progression in
the combined cohort multivariate analysis, validating our initial
findings (Fig. 3G). Interestingly, within the high-risk clinical
stage, patients in the low-risk genetic subgroups had significantly
lower progression risk (HR 0.26, 95% CI: 0.1–0.6, P= 0.001) and
median TTP of 8.7 years (log-rank P= 0.002) (Supplementary
Fig. 5A). In the intermediate-risk clinical group, patients from the
high-risk genetic groups had increased risk of progression to
symptomatic MM (HR 4.4, 95% CI: 1.7–11.6, P= 0.002) and
shorter TTP (3 vs 6.9 and 9.4 years, respectively, log-rank
P= 0.001) (Supplementary Fig. 5B).

Discussion
This study modeled the genetic heterogeneity seen in SMM by
identifying genetic subtypes that correspond to phenotypic
attributes and clinical outcomes, providing a deeper under-
standing of SMM pathogenesis. We and others have previously
cataloged individual driver genetic aberrations in SMM and MM
cohorts4,11,12. However, the present study expands on this work
and identifies SMM genetic subtypes defined by multiple recur-
rent DNA genetic aberrations, unlike previous classification
efforts that were mainly based on gene expression data. Our
findings suggest that these genetic subtypes could have distinct
evolutionary histories depending on the initiating genetic events
(translocations or CNAs), which may influence the subsequent
acquisition of cooperating genetic aberrations.

The defined genetic subtypes had distinct clinical outcomes of
disease progression into symptomatic MM, which could provide
us with comprehensive molecular models for predicting pro-
gression and dynamic changes in clinical biomarkers over time.
They also have specific dysregulated molecular and oncogenic
pathways, which could facilitate the identification of specific
targets and selection of therapies for each genetic subtype to
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empower precision medicine efforts, much like the specific effi-
cacy of venetoclax in patients with t(11;14)20,21.

We identified six clusters based on the detected genetic
alterations. We divided them into three high-risk (HL2, TL1,
HL3), two intermediate-risk (HL1, HL4), and one low-risk (TL2)
genetic group based on progression risk to active MM. We found
that DNA repair aberrations were exclusive to HL2 and TL1
subgroups, which were enriched in TP53mutations and deletions.

Also, MYC expression was higher in the hyperdiploid subgroups
than the non-hyperdiploid ones, consistent with previous reports
of a higher frequency of MYC alterations in hyperdiploid MM
patients22. The key Cyclin D genes, CCND1 and CCND2, were
highly expressed in TL2 and TL1, respectively. CCND1 and
CCND2 expression patterns were previously reported to distin-
guish between MM patients hyperdiploid tumor samples23;
indeed, in the four hyperdiploid clusters, we found the former to
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be enriched in tumors with 11q gain, while the latter is highly
expressed in tumors without 11q gain. However, we could not
assess their prognostic impact due to the small number of sam-
ples with gene expression data in patients who were followed for
their disease course.

The gene expression signatures of specific molecular and
oncogenic processes also varied significantly between the genetic
subgroups. For example, TL1 tumors showed specific enrichment
for protein secretion, ER stress, UPR, glycolysis, and mTOR
signaling. This molecular phenotype manifested clinically where
patients with this genetic subtype had the highest increase in
M-protein levels at six and twelve months from diagnosis. Such
patients may benefit from drugs inducing cellular stress, such as
proteasome inhibitors or novel molecules targeting the ER stress
and UPR pathways24. Alternatively, TL2 tumors were uniquely
enriched with genes related to B-lymphocytes, cell cycle, heme
metabolism, and complement activation signaling. Clinically,
these patients had the longest TTP, lowest baseline M-protein
level, and the least increase over time. We also found that the HL2
tumors were enriched for interferon-alpha response, cytosolic
DNA sensing, and JAK-STAT signatures. These results under-
score the phenotypic difference among the genetic subtypes and
provide a conceptual framework for future functional studies that
aim to validate or therapeutically target the dysregulated path-
ways and tumor dependencies in different genetic subtypes.

In our multicenter cohort, we found that the three high-risk
subgroups (HL2, TL1, and HL3) had an increased risk of pro-
gression and were associated with evolving hemoglobin and
M-protein levels, showing that these subgroups are also predictive
of the dynamic changes in MM clinical biomarkers over time. The
high-risk genetic subtypes were independent risk factors of pro-
gression to overt MM after accounting for the clinical risk stage
by the 20-2-20 model. Moreover, among those patients con-
sidered high- and intermediate-risk by this model, those with the
high-risk genetic subtypes progressed faster to active myeloma
than the rest in the same clinical risk group. Finally, to validate
and test the significance and application of the genetic subtypes in
unseen tumor samples, we trained a classifier and tested it on two
external SMM cohorts and found the genetic subtypes and risk
groups to be predictive for progression in those external cohorts
similar to the primary cohort. Furthermore, to increase the power
of our analysis, we combined the three cohorts together and
found the same effect with more significance levels compared to
our initial findings. Of note, the genetic features enriched in the
high-risk genetic group were also found to confer a higher-risk of
progression as individual features, with exception of t(14;16) and
t(14;20) (Supplementary Tables 5 and 6). In fact, we and others
haven’t found them to confer a high risk of progression on their
own4,10,11. However, multiple studies have shown that t(14;16) is
frequently associated with APOBEC signature and genomic
instability4–10. In our study, it was found in 5% of patients and

with similar rates in the validation cohorts, so larger studies with
patients enriched for t(14;16) may be needed to confidently
determine its prognostic significance in SMM. One of the lim-
itations of our study is that we could not assess the prognostic
impact of the MM signatures in comparison to our DNA sub-
groups because of the small number of cases with this data.
Another limitation is that we depended on FISH studies in
assessing MYC translocations in the primary cohort. FISH studies
are less sensitive in detecting MYC translocations compared to
novel targeted sequencing panels. Indeed, the validation cohorts,
which used a targeted NGS panel in detecting MYC alterations,
had more events compared to ours, suggesting that further studies
that detect MYC with next-generation sequencing panels in SMM
are needed to delineate the characteristics of tumors harboring
this important feature. However, MYC alterations was a prog-
nostic factor for progression in the primary and second validation
cohorts, as well as the three combined cohorts together. Finally,
we propose this genetic classification to be applied only in the
SMM stage as we haven’t tested its prognostic significance in
active or relapsed MM settings.

In conclusion, these findings move us closer to identifying the
SMM patients who are truly at a high risk of disease progression
through better predictive models that integrate the molecular
makeup of the tumor cells and may also guide precision medicine
efforts to match targeted therapies with the optimal patient
groups in multiple myeloma and its asymptomatic stages.

Methods
Patient samples. We used next-generation sequencing technologies to study 214
patients with SMM at the time of diagnosis. We performed whole exome
sequencing (WES) of 72 matched tumor-normal samples (mean target coverage
109×), WES on 94 tumor-only samples (with mean coverage 174×), and targeted
deep sequencing on 48 samples (mean target coverage 774×). FISH data were used
to determine the presence of IgH translocations. Samples were collected at Dana-
Farber Cancer Institute, University College London, and the University of Athens
in Greece, in addition to diagnostic samples from patients participating in phase II
clinical trial for treating patients with SMM (NCT02316106). Patients who pre-
sented with MM symptoms at diagnosis, including hypercalcemia, renal impair-
ment, anemia, or bone lytic lesions (CRAB), or had any myeloma-defining event
were excluded from the analysis25. All samples were obtained after approval of the
study protocols by the institutional review boards and ethics committees of the
participating institutions including Dana-Farber Cancer Institute, University Col-
lege London, and the University of Athens in Greece, and participating institutions
of the above-mentioned clinical trial, and written informed consent from patients.
All relevant ethical regulations were followed, and all the research was conducted in
accordance with the Declaration of Helsinki.

Whole exome sequencing. Tumor DNA was extracted from CD138+ cells from
patients’ bone marrow samples. For germline control (normal), DNA was obtained
from buccal mucosa (saliva), or peripheral blood mononuclear cells. Genomic
DNA was extracted using QIAamp DNA mini kit (QIAGEN) according to the
manufacturer’s protocols, and double-stranded DNA concentration was quantified
using PicoGreen dsDNA Assay kit (Life Technologies). Libraries were prepared by
Agilent SureSelect XT2 Target Enrichment kit. To capture the coding regions, we
used the SureSelect XT2 V5+UTR capture probes (Agilent). All sequencing was
performed on the Illumina HiSeq 4000 platform at the Broad Institute. For tumor

Fig. 3 Clinical outcomes of the six molecular and the risk groups in the primary and validation cohorts. A Kaplan-Meier curves for analysis of TTP in
patients (n= 87) belonging to the three genetic risk groups (Low: TL2, Intermediate: HL1, HL4, High: HL2, TL1, HL3); log-rank p value = 0.0005.
B Multivariate cox regression analysis of the low, intermediate, and high-risk genetic subtypes and clinical risk stages according to the IMWG 20/2/20
model in the primary cohort (n= 87). CMultivariate cox regression analysis of the low, intermediate, and high-risk genetic subtypes and clinical risk stages
according to the IMWG 20/2/20 model in the first validation cohort (n= 74). D Multivariate cox regression analysis of the genetic subtypes and clinical
risk stages according to the IMWG 20/2/20 model in the two validation cohorts (n= 142). E Kaplan-Meier curves for analysis of TTP in patients from the
six genetic subtypes in the combined cohort (n= 229); log-rank p value= 0.002. F Kaplan-Meier curves for analysis of TTP in patients belonging to the
three genetic risk groups of the combined cohort (n= 229); log-rank p value = 0.0002. GMultivariate cox regression analysis of the low, intermediate, and
high-risk genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the combined cohorts (n= 229). Forest plots are used to
visualize the multivariate analysis. IMWG International Myeloma Working Group, N number of patients with event and percentages from the total number
of patients evaluable, HR hazards ratio, error bars indicate 95% CI. All p values are two-sided. Differences in survival curves and subsequent two-sided
p values were calculated using the log-rank test.
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only samples (n= 94), libraries were prepared and hybridized using Agilent Sur-
eSelect XT2 V5 capture probes (Agilent) and sequenced on Illumina HiSeq 2500
platform.

Targeted deep sequencing. Genomic DNA was extracted using QIAamp DNA
micro kit (QIAGEN) according to the manufacturer’s protocols. The libraries for
targeted sequencing were prepared using SureSelect XT Reagent Kits (Agilent), and
an in-house bait set targeting 117 genes, including pan-cancer driver genes and
frequently mutated genes in MM. The libraries were quantified using Agilent
Tapestation, then pooled and loaded onto the Illumina HiSeq 4000 sequencer.

Computational analysis. The output from Illumina software was processed by the
Picard data processing pipeline to yield BAM files containing well-calibrated,
aligned reads. We have utilized the Broad Institute and the Getz Lab CGA WES
Characterization pipeline (https://getzlab.slack.com/archives/DHC9613KQ/
p1647451761073289) to call, filter, and annotate somatic mutations and copy
number variation. The pipeline employs the following tools: MuTect26, ContEst27,
Strelka28, Orientation Bias Filter29, DeTiN30, AllelicCapSeg31, MAFPoNFilter32,
ABSOLUTE33, GATK34, PicardTools35, Variant Effect Predictor36, Oncotator37.
Recurrent sCNAs were identified using the GISTIC2.038. We applied ABSOLUTE
to estimate sample purity, ploidy, and absolute somatic copy numbers. These were
used to infer the cancer cell fraction (CCF) of point mutations from the WES data,
following the framework previously described33. Mutations were thereafter classi-
fied as clonal based on the posterior probability that the CCF exceeded 0.90 and
subclonal if otherwise.

Germline filtering of tumor-only cohort. For each SNP or indel that passed all
standard filters, its CCF, purity, ploidy, and local copy number were used to
determine the log ratio of the probability that its allele fraction is consistent with
the allele fraction modeled for a hypothetical germline event and the probability it
is consistent with a modeled somatic event, as previously described13. After
applying the Germline Somatic Log odds filter, we used the ExAC database to
further exclude potential germline events that have occurred in five or more par-
ticipants of any ethnic background.

Artifact filtering. Both cohorts were subjected to standard artifact filtering
through the Broad Institute’s CGA pipeline, including a TCGA panel of normal
samples (PoN) filter for common germline mutations and artifacts and filters for
OxoG and FFPE damage29.

Paired tumor-normal cohort. We applied ABSOLUTE to estimate sample purity,
ploidy, and absolute somatic copy numbers. These were used to infer the CCFs of
point mutations from the WES data. We excluded 13 samples from this group due
to low tumor fraction (>20%) and inconclusive FISH results. Bleed-through error
associated with sequencing was observed and cleaned using a custom PoN run
through the same sequencing pipeline, as described previously32. Two more arti-
facts were identified in this cohort, primarily characterized by C>A and C>T
substitutions, respectively, henceforth referred to as A1 and A2. Artifact A1 was
shown to represent reference bias, with a preponderance of C>A over G>T sub-
stitutions, related to oxidative damage occurring during DNA library preparation,
as previously described [4]. To address this, we developed a tool that removes C>A
SNPs with a low number of reads supporting the alternate allele from a sample,
until the p-value of a binomial test assuming a probability of 0.5 exceeds 0.1. Of
unidentified origin, artifact A2 was characterized by a preponderance of C>T SNPs
in the GCC trinucleotide context over COSMIC signature 5 and was addressed by
removing C>T SNPs in the GCC context with low alternate allele counts until they
matched the number of C>T SNPs in the CCG context, assuming reference
COSMIC signature 5 as a null. Of note, these artifacts did not affect any of the
SNPs reported in genes that are frequently mutated in MM.

Tumor-only cohort. In this cohort, we observed an artifact of unidentified origin
that was primarily characterized by T > G substitutions (Supplementary figure,
panel C) and hotspot mutations in genes not reported before in multiple myeloma,
henceforth referred to as A3. We addressed it by removing all hotspot mutations
with less than 2 occurrences in COSMIC and do not affect genes reported to be
recurrently mutated in multiple myeloma. Of note, this artifact did not affect any of
the SNPs reported infrequently mutated genes in MM.

Bulk RNA-sequencing. Out of the 214 unique patient tumor DNA samples, there
were 89 matching tumor samples material for RNA sequencing. These samples
were isolated using Qiagen RNA kit. Libraries were prepared using Illumina Total
mRNA kit and submitted for sequencing on Hiseq 2500 machines. We compu-
tationally processed these RNA samples using the GTEx V8 pipeline and aligned
them to Hg19 Gencode v1939. Data quality control metrics are provided in Sup-
plementary Fig. 6.

Clustering approach. A vast number of approaches have been applied to clus-
tering multi-omic sequencing data. Late integration algorithms that cluster data
types separately and then integrate them to a final result, such as COCA and PINS
were previously described40–42. Dimensionality reduction algorithms such as
jointNMF and multiNMF similarly factorize each data type separately before final
integration43,44. iCluster is a probabilistic approach that computes a low dimen-
sionality composition of each data modality designed to fit Gaussian distributed
data45. However, our translocation measurement includes six sparse events, ren-
dering any approaches requiring clustering of this data type separately or with
Gaussian data assumptions difficult to apply. Furthermore, our choice of using
binarized features (SNVs, CNVs, and translocations) allows us to use a simpler,
“early integration” approach, where the feature space is combined before the
algorithm is applied. Future work using patient similarity-based approaches, such
as similarity network fusion or Cancer Integration via Multi Kernel Learning are
promising future directions46,47. Formulating these to account for Bernoulli dis-
tributed translocation data would be ideal for including these important drivers of
MM pathogenesis. As more SMM patient cohorts are gathered and sequenced with
transcriptomic, proteomic, and chromatin accessibility data, applying patient
similarity approaches and algorithms with more appropriate distributional
assumptions is key. However, our BMF approach is appropriate for sparse, non-
negative, binarized data curated in this initial cohort.

BMF clustering workflow. To identify patients with shared, co-occurring DNA
features, we applied a variant of non-negative matrix consensus clustering algo-
rithm adapted for binarized input and output features, Binary Matrix Factorization
(BMF). Our input matrix for subtyping consisted of a combined binarized input
matrix of 42 driver genes, CNVs, and 5 translocations. To select the number of
clusters (K) for the consensus clustering, we randomly down-sampled our input
matrix and computed silhouette scores using Dice dissimilarity, residuals of fac-
torization fit, variance explained, and K-L divergence on binary matrix factoriza-
tions over a range of K. We found a decrease in K-L divergence with our full
dataset from K= 5 to K= 6, which suggested that 6 clusters were best suited to
ensure a converged factorization for N= 214 (Supplementary Fig. 7A–E). Addi-
tionally, we found that variance stabilized when we performed down sampling
analyses at N= 75–100, suggesting we were powered to perform binary matrix
factorization for a cohort at this minimum size. We concluded that a minimum of
100 samples and 6 clusters were suited for this approach. We take the following
steps for subtyping:

1. Run BMF for our primary cohort (n= 214) from K= 2 to K= 10
2. Run hierarchical clustering of the consensus matrix with Euclidean distance

and Ward linkage
3. Select K= 6 clusters from downsampling results.

We assessed binary feature importance by performing a Fisher’s exact test to
count feature representation within each cluster and outside of this cluster, testing
for an equal proportion. Genetic alterations that were positively associated with
each cluster were identified by a one-sided Fisher test and ranked by significance of
Benjamini-Hochberg adjusted p value. The false discovery rate (FDR) was
calculated using the Benjamini–Hochberg procedure48.

RNA differential expression and pathway enrichment analysis. We performed
one vs. rest gene differential expression for each identified DNA-based subtype.
The limma-voom pipeline was used49; FDR was performed using the Benjamini-
Hochberg procedure. Using genes at an FDR < 0.1, we performed ranked gene-set
enrichment analysis (GSEA) using the fGSEA R package, using a rank of
−log10(FDR) *signed-log Fold-Change50. We computed pathway enrichments for
the HALLMARK and KEGG gene sets from MsigDB51,52. We also computed
pathway enrichments for previously curated gene sets related to lymphoma and
multiple myeloma16,17,53.

Mutational signatures. We used the default settings of the SignatureAnalyzer tool
(https://getzlab.slack.com/archives/DHC9613KQ/p1647454800384449) to extract
de novo mutational signatures from a 96 base-pair context for 72 tumor-normal
samples with WES54. Extracted signatures were mapped to Cosmic 3.0 using cosine
similarity54–56.

Subtype Classifier. We trained a random forest classifier on 36 overlapping
translocations, SNVs, and CNVs between both our primary cohort and validation
cohort found in at least 3 or more patients to predict molecular subtypes for each
patient. We used scikit-learn Random Forest Classifier class57. The classifier
reported a mean fivefold cross-validation accuracy on our primary cohort of 86.7%
(SD ± 5%) after performing a randomized grid search to hypertune parameters
(Supplementary Fig. 4A–C). The classifier was then used on unseen data of 142
SMM samples from two validation cohorts.

Validation cohorts. We obtained genomic data from two previously published
studies in SMM and filtered the patients according to the updated IMWG criteria
for diagnosis of patients with MM as what was done in the primary cohorts11,12,25.
First cohort contained 75 SMM patients11. The second cohort contained 67 SMM
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patients12. We applied the classifier to these cohorts to identify the genetic subtypes
that each patient sample belongs to and perform subsequent analysis.

Statistical analysis. Binary outcomes were reported as proportions with 95% exact
binomial confidence intervals. Continuous measures were summarized as median
and range. Binary outcomes and other categorical variables were tested for asso-
ciation with continuous and other categorical variables using Wilcoxon rank-sum
(or Kruskal-Wallis for three or more groups) or Fisher’s exact tests, respectively.
Time-to-event endpoints are estimated using the method of Kaplan and Meier,
with 95% confidence intervals calculated using Greenwood’s method of variance
estimation. Differences in survival curves were assessed using log-rank tests.
Median follow-up was calculated using the reverse Kaplan-Meier method. Unad-
justed and adjusted Cox modeling was performed to assess the impact of the
presence of a MM driver on clinical outcome measures, alone and in the presence
of clinical features known to impact outcome. Time to progression (TTP) was
measured from date of diagnosis to date of documented progression to MM.
Clinical and laboratory parameters and genetic features were reported with hazard
ratios and 95% confidence intervals with Wald p values, while genetic features were
assessed for importance of association with TTP. For comparison of clinical model
only vs the clinical and genetic models, we used analysis of variance test on the Cox
model with the selected variables. A global assessment of each model was also
assessed using a C-statistic for censored survival data58. The statistic for each time-
to-event model is reported with a 95% confidence interval. Values range between
0.5 to 1 indicating a poor to perfect model; nested models may be compared via
overlap in the point estimates and confidence intervals. Genetic alterations that
were positively associated with each cluster were identified by a one-sided Fisher
test and ranked by significance of Benjamini–Hochberg adjusted p value. All other
P values in the study were two-sided, and adjustment for multiple hypothesis
testing was performed using the method of Benjamini and Hochberg; P and q value
thresholds for significance were set at 0.05 and 0.1, respectively. Statistical analyses
were performed using R version 3.6.0 (2019-04-26).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Genomic and transcriptomic data of the primary cohort generated in this study
including the whole exome, targeted capture, and RNA sequencing data) have been
deposited in the dbGAP database under accession number phs001323.v3.p1. Access to
the raw data can be obtained upon request. The other published data used as validations
cohorts in this study are already deposited in public databases. For the first validation
cohort11, the targeted panel data are deposited in the European Genome-phenome
Archive (EGA) database under accession code EGAD00001005056. The whole-exome
sequencing is deposited in the EGA database under accession code EGAD00001005285.
These data are available under restricted access; access can be obtained upon request. The
raw data of the published second validation cohort is deposited in the NCBI Sequence
Read Archive (SRA) BioProject under accession number PRJNA54130712. The
remaining data are available within the Article or Supplementary Information file.

Code availability
The code for the BMF consensus clustering and the subsequent analysis in the primary
and validation cohorts is available through GitHub at https://github.com/getzlab/SMM_
clustering_202059.
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