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Clinical sequencing of soft tissue and bone
sarcomas delineates diverse genomic landscapes
and potential therapeutic targets
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The genetic, biologic, and clinical heterogeneity of sarcomas poses a challenge for the

identification of therapeutic targets, clinical research, and advancing patient care. Because

there are > 100 sarcoma subtypes, in-depth genetic studies have focused on one or a few

subtypes. Herein, we report a comparative genetic analysis of 2,138 sarcomas representing

45 pathological entities. This cohort is prospectively analyzed using targeted sequencing to

characterize subtype-specific somatic alterations in targetable pathways, rates of whole

genome doubling, mutational signatures, and subtype-agnostic genomic clusters. The most

common alterations are in cell cycle control and TP53, receptor tyrosine kinases/PI3K/RAS,

and epigenetic regulators. Subtype-specific associations include TERT amplification in intimal

sarcoma and SWI/SNF alterations in uterine adenosarcoma. Tumor mutational burden, while

low compared to other cancers, varies between and within subtypes. This resource will

improve sarcoma models, motivate studies of subtype-specific alterations, and inform

investigations of genetic factors and their correlations with treatment response.
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Sarcomas are mesenchymal malignancies of the bone or soft
tissue that arise in diverse anatomic locations and connective
tissue types and display a range of clinical behavior from

indolent to aggressive. Sarcomas are also rare tumors, representing
< 1% of all malignancies in adults, though more common in the
pediatric population where they represent approximately 20% of
non-hematologic malignancies1,2. Although the diagnosis and
management of sarcomas has slowly improved over the last dec-
ade, about 40% of patients with newly diagnosed sarcoma even-
tually die of disease. One barrier to improving outcomes in
sarcoma patients is the cancer’s genomic and biologic complexity,
with more than 100 different subtypes now recognized by the
World Health Organization3.

Advances in clinical tumor genomic analyses have improved
tumor classification; sarcomas are now classified into two broad
genetic groups4. Sarcomas often have either simple karyotypes,
harboring genetic translocations or activating mutations, or
highly complex karyotypes, including numerous genomic rear-
rangements and large chromosomal gains and losses, commonly
involving cell cycle genes such as TP53, MDM2, RB1, and CDK4.
Toward identifying therapeutic targets and designing precision
oncology trials based on specific sarcomas’ genetic features, a
comprehensive study of soft tissue sarcomas was performed by
The Cancer Genome Atlas network, which analyzed 206 samples
within 7 common subtypes; rarer ones were represented by as few
as 5 cases5. Analysis of a larger cohort could define the frequency
of potentially actionable alterations in rare sarcoma subtypes and
broadly compare the frequency of genetic alterations across
subtypes. These data, when integrated with other multiomic
sarcoma studies, will facilitate better diagnostic precision, identify
prognostic biomarkers, improve laboratory-based modeling of
sarcomas, and generate novel hypotheses on underlying disease
mechanisms.

Here, we leverage an institution-wide tumor genomic profiling
initiative, MSK-IMPACT6, to characterize genomic alterations in
a large cohort of 2138 sarcomas encompassing 45 subtypes. We
identify subtype-specific somatic mutations and copy number
alterations, cluster tumors by genotype, and compare tumor
mutation burden (TMB) and microsatellite instability among
subtypes.

Results
Characteristics of a large and histologically diverse sarcoma
cohort. A total of 2138 bone and soft tissue sarcoma samples were
analyzed together with paired normal DNA samples (Supplementary
Data 1). Median patient age was 54 years (range < 1– > 90 years);
1098 (51.4%) were female. Most were primary tumors; 790 samples
(36.9%) were metastases (Supplementary Table 1). The analyzed
dataset included 45 distinct pathologic entities as assessed by expert
sarcoma pathologists. Ninety-one of 2,138 cases in the final cohort
(< 5%) were assigned an updated diagnosis after dedicated review
(see Methods), often to specify the subtype within a class (e.g.
alveolar rhabdomyosarcoma to replace rhabdomyosarcoma).
Twenty-two subtypes were represented by ≥20 tumor samples and
were therefore used as our core subtype set for analyses (Fig. 1A).
Data from less represented subtypes (Fig. 1B) are included in this
cohort as a resource. The most common subtypes were gastro-
intestinal stromal tumor (GIST; n= 395, 18.5%), dedifferentiated
liposarcoma (DDLS; n= 167, 5.4%), uterine leiomyosarcoma
(ULMS; n= 165, 5.3%), and undifferentiated pleomorphic sarcoma
(UPS; n= 145, 4.6%) (Fig. 1B). Rare subtypes within the core set
include angiosarcoma (ANGS; n= 101, 3.2%), desmoplastic small
round cell tumor (DSRCT; n= 53, 1.7%), and perivascular epithe-
lioid cell neoplasms (PECOMA; n= 30, 0.96%) (Fig. 1B). As
expected, the age distribution varied among subtypes, as did tumor

location (Fig. 1A, Supplementary Table 1). Among the more com-
mon subtypes, myxofibrosarcoma (MFS) had the oldest median age
(68 years), whereas embryonal rhabdomyosarcoma (ERMS) had the
youngest (8 years). Similarly, sex distribution was not uniform
among subtypes (Fig. 1A); PECOMA was more common in females
(23/30; 76.6%) and DSRCT more common in males (48/53; 90.5%),
as was DDLS (males 115/164; 68.8%) (Fig. 1A). Among the most
common subtypes, survival rate differences were most apparent
starting at 3 years post-sequencing. Myxoid/round cell liposarcoma
(MRLS) and GIST patients had the highest 3-year survival rates
(both > 75%), whereas ANGS and alveolar rhabdomyosarcoma
(ARMS) patients had the lowest (34% and 19%, respectively)
(Fig. 1C).

Identification of subtype-specific mutations. Given the hetero-
geneity in sarcoma subtypes, their biologic behavior, and clinical
presentation, we sought to define the genetics of individual sub-
types at both the gene (mutation, gene fusion, and copy number
alteration) and functional pathway levels. MSK-IMPACT iden-
tified at least one driver mutation in the majority of subtypes
(Fig. 2A, Supplementary Data 1, 2, Supplementary Table 2).
Overall, TMB among sarcomas was low, whereas the fraction
of genome altered (FGA) in most cases was relatively high
compared with other cancers, consistent with prior reports
(Fig. 2A)5. Both varied greatly among sarcoma subtypes, espe-
cially FGA. We performed MutSig and MuSiC analyses to identify
significantly recurrently mutated genes in each subtype (Fig. 2B).
As expected, TP53 and RB1 were significantly altered across
multiple subtypes, but at markedly different frequencies. Within
GIST, we identified several frequently mutated genes in addition
to previously known drivers such as KIT, SDHA, and PDGFRA7.
These included SETD2, which encodes a histone methyl-
transferase (4%), MAX, which encodes a MYC binding partner
and transcription factor (4%), and MGA (3%), whose product
binds the MAX-MYC complex8.

Additional subtypes with recurrently mutated genes of
potential biologic or clinical relevance included ANGS
(n= 101), in which we identified recurrent mutations in receptor
tyrosine kinases involved in angiogenesis including KDR
(VEGFR2; 19%) and FLT4 (VEGFR3; 9%) as well as another
receptor tyrosine kinase, EPHA5 (9% of cases). The mutations in
EPHA5 and FLT4 were all variants of unknown significance
(VUS). The VUS in FLT4 all affect the kinase domain or the C-
terminus, implying a possible functional consequence (Fig. 2C).
In Ewing sarcoma (ES; n= 99), 10% of samples carried mutations
in STAG2, which encodes a cohesion complex component,
confirming prior reports9. In ULMS, MED12, which encodes a
member of the transcription elongation complex, was altered in
16% of cases, most frequently missense mutations at glycine 44, as
reported previously (Fig. 2B)10.

In PECOMA, SFT, LMS, ULMS, and ES, driver mutations were
represented in a cancer cell fraction (CCF) of close to 1.0,
suggesting that these represent a large clonal population (Fig. 2D).
The CCF for VUS was overall similar to that of drivers within
most subtypes, with the exception of MFS, OS, and UPS, which
suggests that in some cases these VUS could have an
unrecognized function, calling for further studies to determine
their roles in oncogenesis and progression.

Chromosomal gains or losses are shared across multiple sub-
types and whole-genome doubling is associated with outcomes.
As many sarcomas are driven by copy number alterations, we
analyzed these changes across the whole cohort, including in
subtypes not classically thought to be driven by them (Fig. 3). For
instance, in GIST patients (evaluable n= 371), there were
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frequent copy number loss events involving chromosomes 1, 14,
15, and 22 (Fig. 3A). Translocation-driven sarcomas, e.g. ES,
DSRCT, and SYNS, exhibited highly recurrent copy number
changes, indicating that there may be additional relevant genetic
events beyond the driver translocations (Fig. 3B). We identified a
diversity of chromosome arms (e.g. 5p, 8q, and 10p) that were
recurrently affected by copy number variation across multiple
common subtypes (Fig. 3B). Of note, 12q amplifications in DDLS
and WDLS patients were not wide enough to be called in arm-
level analysis (Fig. 3B, left), though they were clearly observed as a
strong focal event in copy number profiles (Fig. 3A, B, right). In
most cases, these arm-level copy number events were not linked
to a specific gene. However, there were some exceptions including
significant gains of MYC on chromosome 8q24 in OS, EPIS,

ERMS, and ANGS, as well as significant gain of a gene encoding a
negative regulator of NF-kB signaling, TNFAIP3, in DDLS
(Fig. 3B). As expected, we observed more widespread copy
number changes in classically copy number-driven subtypes such
as LMS, ULMS, MFS, and OS compared with the rest of the
cohort.

Despite sharing CDK4 and MDM2 amplification events, DDLS
is more aggressive than WDLS and has increased risk for distant
spread11. Therefore, we compared rates of amplifications between
WDLS and DDLS, and found greater rates of amplification of the
oncogenes GLI1 (8.5% vs. 25.3%), TERT (6.3% vs. 14.4%), and
JUN (0% vs. 13.8%) in DDLS. The Jun transcription factor
positively regulates the expression of cyclin D1, a CDK4/6 cyclin
partner, and amplification of JUN in DDLS is associated with a
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more aggressive phenotype5, calling for investigation of whether
CDK4 and JUN co-amplification drives progression to DDLS or
modulates response to CDK4 inhibition. Amplification of the
GLI1 transcription factor, downstream of Sonic Hedgehog (Shh)
signaling, has previously been reported12; this confirmation
provides further rationale for studying Shh pathway inhibition
in DDLS. GLI1 amplification and JUN amplification were
mutually exclusive.

We also analyzed whole genome doubling (WGD) events
across subtypes and compared them to data from a pan-cancer
analysis where WGD was associated with decreased overall
survival13. In that study, WGD was further associated with
defects in cell cycle regulation and increased proliferative rates,
which could explain differences in patient outcomes. Therefore,
WGD warrants further study as a potential prognostic biomarker

in sarcomas on a subtype-specific basis. OS, UPS, ERMS, and
MPNST had high frequencies of WGD, all around 50%, ranking
among the highest even among a wide variety of cancers for
which WGD was previously analyzed (Fig. 3C; Supplementary
Fig. S1A)13. In keeping with the notion that MFS is on a genetic
continuum with UPS5, UPS and MFS had similar WGD
frequencies. Despite being copy number alteration (CNA)-driven,
WDLS and DDLS had lower rates of WGD frequency, as did
many translocation-driven subtypes including SYNS, ES, DSRCT,
and MRLS. In sarcomas, WGD was associated with worse overall
survival among metastatic (p= 0.042) but not primary cases
(p= 0.391; Supplementary Fig. S1B). Among specific subtypes,
WGD was associated with worse overall survival (from time of
sequencing) in metastatic UPS (p= 0.022; Fig. 3D), but not MFS
(p= 0.78; Supplementary Fig. S1C).
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Alterations in epigenetic, cell cycle, and PI3K pathways are
common. Pathway-specific analyses within each sarcoma subtype
for which ≥20 samples were available (Fig. 4A, genes in each
pathway listed in Supplementary Data 3) revealed that a number
of pathways important in carcinomas were infrequently altered in
sarcoma, including TGFβ, WNT, Hippo, Notch, and NRF2
(Fig. 4A, right panel). By contrast, the cell cycle and TP53
pathways were altered in at least half of samples in 8 of the 22
most common subtypes. For instance, DDLS and WDLS
demonstrated cell cycle or TP53 pathway alterations in 214/215
(99%) of samples as expected, most commonly through co-
amplification of CDK4 and the gene encoding the E3 ubiquitin
ligase that targets p53 for degradation, MDM2 (Fig. 4A)5,14–17.
Many of the sarcomas with infrequent alterations (<10%) in the
cell cycle and TP53 pathways were driven by translocations (e.g.
MRLS, DSRCT, SYNS) or alteration in genes encoding compo-
nents of the SWI/SNF remodeling complex (epithelioid sarcoma
[EPIS]) (Fig. 4A), highlighting a distinct mechanism of patho-
genesis. An exception was solitary fibrous tumor (SFT), which is
driven by the NAB2-STAT6 fusion oncogene, and has oncogenic
TP53 alteration in 28% of cases (Fig. 4A)18.

The PI3K pathway was frequently altered in some of the most
prevalent subtypes in our dataset including MRLS (41%),
PECOMA (40%), ULMS (30%), pleomorphic liposarcoma (PLLS;
22%), UPS (20%), and soft tissue leiomyosarcoma (LMS; 20%)
(Fig. 4A, right panel). Among these subtypes, PTEN and PIK3CA
were the most frequently affected genes except in PECOMA
where TSC2 loss of function alterations were most common
(30%) (Fig. 4A, B). PTEN loss of function alterations predomi-
nated in LMS and ULMS (14% and 21%, respectively), whereas in
MRLS, PIK3CA mutations were most frequent, occurring in 25%
of cases, consistent with our prior findings19. In MRLS, PTEN loss
was observed in 21% of cases, some of which were concurrent
with PIK3CA mutations (4 PIK3CA mutations in 10 PTEN loss
cases). In contrast, in UPS, PTEN alterations were identified in
8% of samples and PIK3CA in 3%; only 1 of the 11 cases with a
PTEN alteration had a concurrent PIKC3A mutation. Notably,
PTEN loss of function has also been proposed as a predictor of
non-response to immune checkpoint inhibition in ULMS20. In
ANGS, in which the PI3K pathway, specifically PIK3CA, is known
to be altered21, we identified oncogenic PI3KCA alterations in 6%
of cases. This is lower than the previously reported rate of 21%,
perhaps owning to a larger sample size in our study (n= 101 vs.
47) and our exclusion of VUS.

Because a pan-cancer MSK-IMPACT analysis identified TERT
promoter mutations in a subset of sarcomas22, we investigated
TERT alteration frequency as a function of sarcoma subtype
(Fig. 4C). We identified oncogenic TERT amplifications in 44%
(8/18) of intimal sarcoma (INTS) and TERT promoter mutations
in 79% (38/48) of MRLS, 46% (24/52) of SFT, and 35% (5/14) of
dedifferentiated chondrosarcoma (DDCHS). In DDLS, oncogenic
TERT promoter alterations were present in 16% of samples (27/
167) and were almost entirely amplifications (n= 24). TERT copy
number alterations have not yet been described in INTS, perhaps
due to the low incidence of this rare subtype. The TERT locus is
distinct from that of the MDM2 and CDK4 amplifications23 that
are hallmarks of INTS, implicating TERT amplification as a
potential independent contributor to pathogenesis.

Alterations in DNA damage repair (DDR) pathway genes have
been associated with the development of sarcomas24, and are of
particular clinical interest as PARP inhibition has activity in select
carcinomas with homologous recombination deficiency and
immune checkpoint blockade has activity in certain tumors with
microsatellite instability25,26. Our analysis of DDR pathway
alterations found that 9.6% of all samples harbored an oncogenic
somatic alteration in the DDR pathway. Among subtypes with

more than 20 samples, the frequency of DDR gene alterations was
highest in ULMS (24%), MPNST (16%), PLLS (13%), PECOMA
(13%), ANGS (13%), LMS (10%), and OS (10%) (Fig. 4A, right
panel). The most frequently altered genes across subtypes were
BRCA2 (1.4% of all samples), RAD51B (1.1%), CHEK2 (1.0%)ATM
(0.9%), FANCA (0.6%), and RAD51 (0.6%). Consistent with a
previous report in uterine sarcomas27, nearly half of BRCA2 (41%)
and RAD51B (47%) alterations occurred in sarcomas of uterine
origin, with RAD51B or BRCA2 each mutated in 7% of ULMS
cases. Similarly, 35% of the 14 uterine adenosarcomas also had an
altered DDR gene, all deep deletions. Five percent of ANGS had
oncogenic mutations and another 5% had a VUS in ATM. Given
the known association of a subset of ANGS with prior ionizing
radiation, which suggests a role for DNA damage in the
pathogenesis of ANGS, mutations in ATM, which is important
for DNA damage repair, may represent a convergent or synergistic
mechanism for the accumulation of DNA damage in ANGS. Of the
15 sarcomas (0.7%) with an altered mismatch repair (MMR) gene
(MLH1, MSH2, MSH6, or PMS2), one (LMS) was microsatellite
instability (MSI)-high by MSIsensor and had a high TMB.

Epigenetic dysregulation contributes to the pathogenesis of
several sarcoma subtypes28. In SYNS, EPIS, malignant rhabdoid
tumors, and MPNST, this occurs through alterations of
chromatin-remodeling and -modifying complexes; in chondro-
blastoma, giant cell tumors of bone, and potentially in some CHS,
UPS, and osteosarcoma through oncogenic histone mutations. In
light of emerging pharmacologic strategies to study and
therapeutically target epigenetic regulatory proteins, we identified
sarcoma subtypes harboring by epigenetic pathway alterations
(Fig. 4A; Supplementary Data 3)29. As expected, 75% of EPIS had
loss-of-function deletions, truncating mutations, or intragenic
fusions in SMARCB1. In addition, the epigenetic pathway was one
of the most altered pathways among the highly prevalent subtypes
in our dataset. Pathogenic alterations in epigenetic pathway genes
(Supplementary Data 3) were observed in 64% of MPNST, 49% of
ULMS, 45% of PLLS, 43% of CHS, 42% of UPS, 36% of MFS, and
32% of OS (Fig. 4A). By contrast, these alterations were
infrequently observed (< 10%) in WDLS, ARMS, and MRLS,
suggesting subtype specificity.

We determined the association with specific subtypes of
epigenetic pathway genes contributing to a specific biochemical
function (e.g. DNA methylation, chromatin remodeling) and
complex (e.g. PRC1, PRC2, MLL3/4) (Fig. 4D; Supplementary
Fig. 2; Supplementary Table 3). Genes involved in histone
modification were altered in 48% of MPNST, 42% of sclerosing
epithelioid fibrosarcoma (SEF), 36% of uterine adenosarcoma
(UAS), and 36% of high-grade endometrial stromal sarcoma
(HGESS). ERMS had frequent alterations in BCOR, which
encodes a transcriptional co-repressor and non-canonical PRC1
complex member (19% total, 16% oncogenic), which were
mutually exclusive with DICER1 alterations (12% oncogenic).
Both alterations were more prevalent in our population than in
prior studies30,31.

Genes involved in chromatin remodeling were altered at
similarly high frequencies: 76% of EPIS, 39% of ULMS, 26% of
UPS, 24% of MFS, and 18% of MPNST. In a significant portion of
these cases, alterations in the histone chaperone-encoding gene
ATRX drove these high rates (Supplementary Fig. 2). We also
note the unexpected finding that UAS (n= 14), a rare sarcoma
subtype, had oncogenic alterations in genes encoding subunits of
the SWI/SNF chromatin remodeling complex in 43% of patients,
with ARID1A and PBRM1 most frequently affected (Fig. 4D,
Supplementary Fig. 2). Interestingly, UAS also had alterations in
histone-modifying genes in 36% of cases.

As epigenetic alterations are more frequent in DDLS (25%)
than WDLS (8%) and we have previously found epigenetic
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dysregulation to contribute to DDLS32, we further examined
differences between DDLS and WDLS. Histone-modifying and
histone chaperone/chromatin-remodeling alterations occur in
15% and 13% of DDLS cases, respectively, compared with 4%
each of WDLS (Fig. 4D). This suggests that loss of epigenetic
regulation could be an important contributor to dedifferentiation.

We also examined epigenetic pathways without filtering for
alterations already established as oncogenic, which is a strategy we
recently employed to generate hypotheses in an analysis of genetic
alterations in OS (Supplementary Fig. 3)33. This analysis identified
the histone methyltransferase-encoding gene KMT2D/MLL4 as more
frequently altered in MFS (16%) compared with other subtypes
including the closely related UPS (6%)5. Histone-modifying enzyme
genes were altered in 20% of SYNS, among which KMT2B and
SETD2 were altered in 6% and 7% of samples, respectively. We also
found that NCOR1, the protein product of which complexes with
HDAC3 and other deacetylases to co-repress the activity of
transcription factors such as the retinoic acid receptor and thyroid
hormone receptor34, was altered in 10% of ULMS, 19% of LMS, and
21% of OS, mostly through amplification. NCOR1 has also been
shown to regulate transcription factors important in mesenchymal
lineages including the MEF2 family and PPARγ, which regulate myo-
and adipogenesis, respectively35. Several other genes within the same
cytoband as NCOR1, 17p12-p11.2, were co-amplified, including
FLCN, MAP2K4, AURKB, and ALOX12B (Supplementary Fig. 4A).
Amplifications of MYOCD, whose genomic location is within a
region previously found to be amplified in LMS36, were not detected
because this gene is not represented on the MSK-IMPACT panel.
Except for ALOX12B, the 17p copy number gains of MSK-IMPACT-
assessed genes were associated with increased gene expression in the
sarcoma TCGA analysis (Supplementary Fig. 4B). Thus, one or more
of these genes could play a pathogenic role.

Gene and pathway alterations co-occur in subtype-specific
contexts. To better understand how gene- and pathway-level
alterations interact, we analyzed their co-occurrence and mutual
exclusivity (Fig. 5A). As expected, KIT and PDGFRA alterations
were mutually exclusive in GIST and CDK4 and MDM2 co-
occurred in DDLS. In OS, KDR alterations co-occurred with KIT
and PDGFRA, as did the latter two with each other, suggesting
dysregulation of signaling through these 3 RTK genes located at
the 4q12 locus33. TP53 alterations were mutually exclusive with
CDKN2A/B in GIST and ULMS, but not in UPS. In ES and SFT,
TP53 alterations co-occurred with STAG2 and TERT alterations,
respectively, suggesting context dependence for alterations co-
occurring with TP53. In UPS, ATRX and NF1 alterations, which
are mostly loss-of-function events, were mutually exclusive,
suggesting biologically different subgroups.

At the pathway level, cell cycle and DDR pathway alterations
significantly co-occurred (false discovery rate [FDR] < 0.05) with
those in other pathways. For instance, cell cycle alterations co-
occurred with MYC pathway alterations in GIST, with PI3K
pathway alterations in GIST and ULMS, and with RTK/RAS
alterations in GIST, OS, and SYNS (Fig. 5A). DDR pathway
alterations co-occurred with MYC pathway alterations in ULMS
and MRLS, epigenetic pathway alterations in GIST and DDLS,
Hippo pathway alterations in DDLS, and cell cycle alterations in
ES. There were no examples of significant mutual exclusivity at
the pathway level.

ATRX is recurrently altered in multiple subtypes. ATRX stood
out across subtypes as frequently affected by loss-of-function
events (Fig. 5B); this gene was altered in ≥ 10% of cases in
7 subtypes: ULMS, PLLS, UPS, MFS, PECOMA, LMS, and ANGS.
In ULMS, which had the highest rate of ATRX alterations, the

frequency was roughly 1 in 3 cases. That ATRX loss-of-function
events occur in both copy number- and translocation-driven
subtypes, although at lower frequency in the latter, raises the
possibility that they may serve a fundamental role in the biology
of a molecular subset of these subtypes. ATRX loss-of-function
mutations were more frequent than deletion events, independent
of subtype, despite the overall low mutation rate. Our analysis
also captured intra- and intergenic ATRX fusion events.

Unsupervised clustering of subtypes reveals genomic groupings
distinct from histologic identities. To assess genetic similarities
among subtypes, we grouped samples on the basis of genetic
alterations by unsupervised clustering (Fig. 5C), which generated
17 distinct clusters subsequently named according to their pre-
vailing subtype and/or genetic feature. Some subtypes and clus-
ters were closely associated (Fig. 5D). These included EPIS and
the SMARCB1 cluster, DSRCT and WT1, WDLS, DDLS, PAOS,
and INTS with MDM2-CDK4, and MRLS and SFT with TERT.
These groupings largely reflect known or presumed drivers in
these subtypes, reinforces their central roles therein, and supports
the rationale for this clustering approach.

However, many subtypes were markedly varied in their cluster
association. To quantify this heterogeneity, for each subtype we
also assigned an entropy score with respect to the clustering
assignments (Fig. 5D). WDLS, DDLS, and DSRCT had the lowest
entropy, suggesting relatively uniform genomic profiles within
each subtype, whereas ULMS, UPS, and OS had high entropy,
suggesting that these pathologically defined entities harbor
multiple distinct genetic variants.

One cluster lacked any predominantly altered gene. This ‘other’
cluster included the majority of samples in many histotypes (e.g.
ERMS and UAS) but also included samples from multiple
subtypes that are represented more commonly in other clusters
(e.g. LMS and UPS), suggesting that there may be genetic outliers
among those subtypes. Interestingly, while roughly 75% of CHS
samples are in the ‘other’ cluster, in contrast DDCHS, which is
thought to arise from CHS and is clinically and morphologically
similar to OS, has few samples in the ‘other’ cluster and instead
falls into clusters shared with OS suggesting a possible genetic
shift underlying the dedifferentiated phenotype. In addition,
while there were some similarities in the clustering profiles of OS
and extraskeletal OS, which arises outside of bone and is treated
as a soft tissue sarcoma, extraskeletal OS has a substantially
greater fraction of samples in the TP53-ATRX-RB1 cluster than
OS and all other subtypes suggesting a distinct genetic subgroup.

Tumor mutational burden is low but heterogeneous between
and within subtypes. Two recent immune checkpoint blockade
trials in sarcoma demonstrated low overall response rates, though
rates varied among subtypes37,38. Thus, predictive biomarkers for
response to checkpoint blockade are needed to deconvolute this
heterogeneity and aid in the design of future clinical trials. As
microsatellite instability predicts response to pembrolizumab25,
and tumors with high TMB are more likely to respond to immune
checkpoint blockade39, we determined MSI status and TMB for
each subtype (Supplementary Fig. 5A, B, Supplementary Data 1).

While the median TMB for sarcomas was low compared to
many carcinomas5, there was considerable heterogeneity within
and between the more common subtypes in our cohort (inter-
subtype median range 0.9–3.0) (Supplementary Fig. 5A). The
median TMB was greatest in ANGS (3.0), UPS (2.6), and ULMS
(2.6) and lowest in WDLS (0.9), EPIS (0.9), and RCS (other) (0.9).
However, in certain subtypes, the distribution of TMB had a long
upper tail and was skewed towards higher TMB (Supplementary
Fig. 5A). TMB was ≥ 5 mut/Mb in 25% of ANGS, 15% of ULMS
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and UPS, and 13% of ERMS. Only two subtypes had ≥5% of
samples with a TMB of ≥10 mut/Mb: ANGS (7.6%) and UPS
(6.7%).

Only 5 of 1893 samples evaluable for MSI status were MSI-high
(by MSIsensor score ≥10), including one UPS, one LMS, and 3
ULMS (Supplementary Fig. 5B). Of these, 4 were confirmed to be
MSI-high by a conventional PCR-based MSI assay. MSIsensor

scores varied widely between subtypes (Supplementary Data 1).
Overall, while microsatellite instability corresponded with high
TMB, the inverse was not true.

To understand mechanisms contributing to extensive genetic
alterations, we examined mutational signatures in samples with
≥15 single nucleotide variants (SNVs) (Supplementary Fig. 5C). A
UV mutational signature was observed in a subset of ANGS and
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was most strongly observed in samples at the highest end of the
TMB spectrum within that group. Of these 16 samples, 11 had a
head and neck primary site. Interestingly, a subset of UPS also
harbored a UV signature and a higher TMB, while another subset
of highly mutated UPS was dominated by an aging signature,
suggesting alternative mechanisms for high TMB within UPS.

Targeted sequencing reveals actionable alterations. Toward
improved detection of targetable alterations for each subtype and
patient, we analyzed genetic alterations by actionability according
to OncoKB (Fig. 6A–D)40. As expected, Level 1 alterations,
defined as FDA-recognized biomarkers for response to an FDA-
approved drug, were most frequent in GIST due to KIT and
PDGFRA mutations (Fig. 6A). Similarly, Level 1 SMARCB1
deletion was noted in 66% of EPIS. Level 2 alterations, defined as
guideline-supported standard-of-care biomarkers for an FDA-
approved drug, were seen in > 90% of WDLS and DDLS related
to CDK4 amplification. In the same subtypes, MDM2 amplifica-
tions in >90% of cases were deemed Level 3A, for which com-
pelling evidence supports use as a predictive biomarker for an
existing drug. Many other observed alterations were classified as
Level 3B, defined as standard-of-care or investigational bio-
markers that predict response to an FDA-approved or investi-
gational drug in another cancer. Notable examples included a
combined 37% prevalence of actionable TSC1/2 deletions in
PECOMA, IDH1/2 alterations in 27% of CHS, and targetable
PI3K pathway (PIK3CA, ATK1, MTOR, or TSC1) alterations in a
collective 31% of MRLS (Fig. 6B). Notably, 21% of MRLS cases
had Level 4 PTEN deletions, for which compelling biological
evidence supports their use as a predictive biomarker. Other
intriguing Level 4 alterations included somatic NF1 deletions in
MPNST (32%), UPS (14%), ERMS (14%), and PLLS (14%), and
CDKN2A deletions in many subtypes at a rate of up to 48% as
seen in MPNST.

Discussion
To better understand genetic heterogeneity in sarcomas, we
analyzed prospectively generated tumor next generation sequen-
cing data from a cohort of 2138 sarcoma samples representing 45
histological subtypes. Across all subtypes, the most common
alterations we identified were in cell cycle control and TP53,
receptor tyrosine kinases/PI3K/RAS, and epigenetic regulators.
Subtype-specific associations included TERT amplification in
intimal sarcoma and SWI/SNF complex alterations in uterine
adenosarcoma. Tumor mutation burden varied widely between
and within subtypes.

Epigenetic pathway mutations frequently occurred in many
subtypes in our cohort, in keeping with an emerging recognition
of epigenetic dysregulation as an important factor in the patho-
genesis of sarcomas28. A common epigenetic pathway alteration
was amplification of NCOR1, particularly in ULMS, LMS, and OS.
NCOR1 encodes a transcriptional corepressor that regulates
transcription factors specific to mesenchymal lineages and can
suppress differentiation when overexpressed35,41. If amplification
of NCOR1 correlates with increased protein levels in these sar-
comas, which RNA sequencing data suggests it may, this could
lead to altered differentiation and transcriptional programs.
Moreover, since the activity of NCOR1 is modulated by PI3K/
Akt-mediated control of nuclear localization, both inhibition of
that pathway and of HDAC3 warrant further exploration as
potential therapeutic strategies in NCOR1-amplified ULMS, LMS,
or OS42.

In uterine adenosarcoma, we identified genetic alterations in the
SWI/SNF chromatin remodeling complex in 43% of cases, mostly
loss-of-function alterations in ARID1A or PBRM1. Uterine

adenosarcoma is a rare subtype composed of both sarcomatous
stroma and benign epithelium, which can behave aggressively,
especially in the setting of sarcomatous overgrowth43. Given the
role of epigenetic regulation in determining differentiation,
impaired SWI/SNF function could contribute to this phenotype.
Histone mutations have been observed in ovarian carcinosarcoma,
suggesting that epigenetic dysregulation may be a common
mechanism for impaired lineage commitment in Müllerian
tumors44. Given synthetic lethality between the loss of the SWI/
SNF component-encoding gene SMARCB1 in epithelioid sarcoma
and EZH2 inhibition with the now FDA-approved drug tazeme-
tostat, EZH2 inhibition may represent a future therapeutic strategy
in uterine adenosarcoma45.

We also analyzed genes involved in maintenance of telomeres,
whose tumor-suppressive function is dependent on the silencing
of TERT, which encodes a reverse transcriptase and core com-
ponent of telomerase. Mutations in the TERT promoter, first
identified in melanoma, lead to increased transcription of the
TERT gene46,47. Within our cohort, TERT amplification occurs in
44% of intimal sarcomas. Whether this amplification leads to
increased expression of the TERT gene product should be
investigated, as TERT overexpression is known to be oncogenic in
certain contexts48. In addition, our data validate prior findings of
TERT mutations in MLPS and SFT. However, the rate in SFT was
greater than observed in prior studies49, which may be explained
by differences in disease aggressiveness, as TERT mutations
associate with worse prognosis50.

While we included ATRX in the epigenetic pathway gene list
owing to its product’s fundamental role, along with DAXX, as a
histone variant H3.3 chaperone, ATRX also participates in other
pathways including telomerase-independent alternative length-
ening of telomeres (ALT), which has been observed in a number
of soft tissue sarcomas including UPS and liposarcoma51. Because
UPS and liposarcoma also harbor TERT alterations in a largely
non-overlapping pattern, these sarcomas may acquire the ability
to aberrantly maintain telomeres through multiple independent
mechanisms. In addition to epigenetic and ALT functions, ATRX
helps maintain genomic integrity52. Because of the diversity of the
physiologic functions of ATRX, the role(s) of ATRX alterations in
sarcomagenesis are difficult to predict a priori. Thus, developing
tools such as patient-derived cell lines and xenografts to study the
impact of these alterations on ATRX-dependent functions will be
informative. Given the relative frequency of ATRX alterations and
the inclusion of ATRX on MSK-IMPACT and other targeted
sequencing platforms, such investigations are eminently feasible.

Toward identifying predictive biomarkers for response to
immune checkpoint blockade in sarcoma, we analyzed the dis-
tribution of MSI-H and high TMB, which are associated with
response to these agents in other solid tumors. Almost none of
the samples had microsatellite instability and there were relatively
few samples with high TMB. However, the upper tail of TMB was
relatively long in certain subtypes such as UPS, ANGS, and
ULMS. Moreover, we do not yet know whether the TMB cutoff of
10 mutations per megabase, which defines high TMB for carci-
nomas and predicts response to immune checkpoint blockade, is
the appropriate threshold for TMB as a predictive biomarker in
mesenchymal neoplasms, let alone specific sarcoma subtypes.
Indeed, recent work suggests that the highest quintile of TMB
within a specific cancer type is associated with improved out-
comes following checkpoint inhibitor therapy and, following
from that observation, that the TMB threshold for benefit is not
absolute53. Because both MSI status (via MSIsensor) and TMB
can be readily determined from targeted sequencing, correlative
analysis of both MSI status and TMB in sarcoma immunotherapy
trials on a subtype-specific basis is needed to inform our
understanding.
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There are several important caveats and limitations inherent to
the approaches we have taken in this study. The use of targeted
sequencing facilitated this single-institution comparative analysis
of 2138 samples and allowed for deep sequencing of genes known

to be important in cancer. However, targeted sequencing is
generally not well suited to identifying events such as novel
genomic rearrangements, unknown drivers, or focal CNA, or
specific mutational signatures such as those of impaired
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homologous recombination. These features could be elucidated
more effectively by whole genome sequencing (WGS), though at
the cost of lower coverage. Thus, WGS will be essential to fully
characterize the genetic events in this study population. In
addition, while WGD estimates from MSK-IMPACT are gen-
erally concordant with those derived from whole exome
sequencing13, the WGD frequencies reported herein may be
discordant from those derived by alternative analytical methods
and sequencing platforms. For most of our analyses, we combined
primary and metastatic samples. This choice is supported by a
detailed comparison of primary vs. metastatic samples for the
more common histotypes, which did not reveal any major sig-
nificant differences at the genomic level, with the exception of
increased TMB and FGA in metastatic vs. primary GIST samples
and fewer JUN amplifications in metastatic vs. primary UPS
samples54. Beyond genomic studies, there is also significant value
to broader multiomic studies that combine genomic, epigenomic,
and transcriptomic analysis and would extend our observations
when applied to one or more specific subtypes. Other limitations
stem from characteristics intrinsic to the samples, including
tumor purity, which was lower in ANGS (majority of samples
<50%) than other subtypes in the study, as well as limited racial
diversity in the population studied.

Determining the clinical relevance of the landscape of genetic
alterations in sarcomas described herein requires a further phase
of investigation. Toward improved designs of clinical trials in
sarcoma, which have often grouped multiple subtypes together
despite significant inter- and intra-subtype genetic variability,
future studies should investigate which genetic alterations result
in functional effects. Indeed, the unsupervised clustering analysis
we present herein (Fig. 5C, D) demonstrates that in some cases
dominant genetic events (e.g. TERT alterations) unite distinct
histologic entities. In addition, common subtypes such as UPS,
LMS, ULMS, and OS can each be subclassified into multiple
distinct genetic subtypes as indicated by their high entropy scores.
These findings provide the rationale to incorporate tumor
genomic sequencing and subsequent assignment of genotype-
based groups to potentially enhance our understanding of clinical
trial outcomes beyond traditional subtype-based groupings. In
addition, certain cluster-defining genetic events are associated
with specific vulnerabilities, which provides the rationale for
considering basket trials. For instance, ATRX loss of function
events are associated with specific clusters and may confer sen-
sitivity to ATR inhibition55, which is under clinical investigation
as a therapeutic strategy in sarcomas (NCT03718091,
NCT05071209, NCT04807816). The data we present herein and
via an accompanying interactive database (https://www.
cbioportal.org/study/summary?id=sarcoma_mskcc_2022) will
serve as a resource for the field to explore and compare subtype-
specific alterations to facilitate this transition in approach.

Methods
Patient cohort. The prospective observational cohort study of tumor evaluation by
MSK-IMPACT (NCT01775072) was approved by the Institutional Review Board at
Memorial Sloan Kettering Cancer Center (MSK). Patients provided written
informed consent to the use of their genomic data for research and were not
compensated for participation. The primary outcome of this study was to deter-
mine the frequency of actionable oncogenic mutations; secondary outcomes
included determining the impact of molecular profiling results on patient treat-
ment. We identified patients with a diagnosis of soft tissue or bone sarcoma who
had tumor and matched normal (usually white blood cell) tissue sequenced using
the MSK-IMPACT assay through December 19, 20196,22. Tumors were sequenced
using one of 3 versions of MSK-IMPACT, including 341 (n= 209, 9.8% of sam-
ples), 410 (n= 573, 26.8% of samples), or 468 genes (n= 1356, 63.4% of samples),
with results reported in the medical record. In patients with multiple samples, only
one sample was included in the cohort; those collected earliest, of highest purity,
and highest average coverage were selected in that order of priority. Samples
sequenced earlier in the course of a patient’s management were prioritized to
reduce the potential influence of treatment-induced genetic changes, as these are

more likely to be collected from patients who have received fewer lines of therapy.
Clinical characteristics such as patient age, sex, self-reported race, and metastatic
versus primary site, were annotated per the standard MSK-IMPACT workflow22.

Histologic analysis. Histologic diagnosis was annotated according to the standard
MSK-IMPACT workflow. In the case of sarcomas characterized by canonical
fusion events, the medical record was queried to ensure that the appropriate fusion
event was detected and if not, the sample was reviewed with the assistance of an
expert sarcoma pathologist considering available data from the medical record
including clinical features, morphologic, and molecular analysis. Similarly, samples
harboring a canonical fusion but with a discordant pathologic diagnosis were
further reviewed to assign the most appropriate diagnosis. Fusions that were part of
the medical record but detected by methods other than MSK-IMPACT (e.g. FISH
or RT-PCR) (Supplementary Data 4) were annotated at the patient (not sample)
level. In addition, samples with an ambiguous originally annotated diagnosis,
including sarcoma or round cell sarcoma not otherwise specified, rhabdomyo-
sarcoma (without further classification), spindle cell rhabdomyosarcoma, and
fibrosarcoma, underwent additional medical record review and, in some cases,
pathology review to render the most accurate diagnosis possible. In some addi-
tional cases with ambiguity in subtype assignment, the diagnosis was updated upon
further review by an expert pathologist. We further standardized diagnoses by
mapping each tumor to a unique code from the OncoTree ontology56 except for
round cell sarcoma other (RCS (other)) and extraskeletal osteosarcoma, which were
categories created for this study. Samples that could not be assigned to one of the
Oncotree codes (n= 243) were excluded from our analysis cohort. There were no
samples with an assigned diagnosis of sarcoma not otherwise specified, round cell
sarcoma not otherwise specified, rhabdomyosarcoma (without further classifica-
tion), or fibrosarcoma included in the final cohort.

Targeted DNA sequencing using MSK-IMPACT. Sequencing was performed
using MSK-IMPACT, a hybridization capture-based next-generation sequencing
assay6, in a Clinical Laboratory Improvement Amendments (CLIA)-certified
molecular laboratory. Genomic DNA from formalin-fixed paraffin-embedded
(FFPE) primary or metastatic sarcomas and patient-matched normal samples was
extracted and sheared, and custom probes were synthesized for targeted sequencing
of all exons and selected introns of 341, 410 or 468 genes6,22. Pooled libraries
containing captured DNA fragments were sequenced using the Illumina HiSeq
2500 to high, uniform coverage (×>500 median coverage). All classes of genomic
alterations including substitutions, indels, copy number alterations, and rearran-
gements were determined and called against the patient’s matched normal sample.
The computational pipelines used for variant calling are based on standard best
practices using a combination of open-source and custom-written scripts and
programs6,22.

Computational genomic analysis. Genomic alterations were annotated using the
OncoKB precision oncology knowledge base, which identifies functionally relevant
cancer variants and their potential clinical actionability40. Except where otherwise
specified in the text, variants of unknown significance (VUS), defined as alterations
not classified as oncogenic, likely oncogenic, or predicted oncogenic by OncoKB,
were excluded from the analysis. All reported alteration frequencies were adjusted
to account for the specific set of genes included in each version of the MSK-
IMPACT panel by dividing the number of gene-specific alterations by the number
of samples for which a given gene was sequenced. Therapeutically targetable
somatic alterations were labeled using levels of clinical actionability defined in
OncoKB, which range from Level 1, FDA-recognized biomarkers of response to
FDA-approved drugs, to Level 4, biomarkers of hypothetical relevance based on
compelling preclinical biological evidence. Analyses of alterations in oncogenic
signaling pathways were performed using the set of pathway definitions previously
curated by our group, which we expanded to include the DDR and epigenetic
modifier pathways using additional templates curated from the literature28,57–59.

Tumor mutation burden (TMB) was computed as the total number of
nonsynonymous mutations divided by the total number of base pairs sequenced
per sample. The fraction of genome altered (FGA) was defined as the fraction of
genome with log2 copy number gain >0.2 or loss <−0.2 relative to the size of the
genome for which copy number was profiled. We computed MSIsensor scores for
all samples in the cohort and used a threshold of MSIsensor score ≥10 to identify
tumors with microsatellite instability (MSI-high)60. MSI-high was confirmed by a
PCR-based assay (Idylla). MSIsensor ≥3 and <10 were labeled indeterminate and
samples that did not meet quality control for assigning MSI status were labeled do
not report (DNR).

Allele-specific copy number estimates at both the gene and chromosome arm
levels were computed using the FACETS (Fraction and Allele-Specific Copy
Number Estimates from Tumor Sequencing) algorithm, which also provided
purity-corrected segmentation files and allowed identification of whole-genome
duplication events61. FACETS output was also used to infer the cancer cell fraction
associated with individual mutations for clonality analyses. Significantly recurrently
mutated genes were identified using the MuSic and MutSigCV 1.4 algorithms, with
a threshold q-value of 0.162,63.
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Clustering analysis was performed as follows. All mutations, fusions, and copy
number alterations were filtered for functional relevance using OncoKB. These
oncogenic alterations were then aggregated into binary matrix format per gene for
each patient and filtered using the 341-gene list on the IMPACT panel to generate
the clustering input. Input matrix dimensionality was reduced using Uniform
Manifold Approximation and Projection (UMAP) (http://arxiv.org/abs/1802.
03426) via the R package umap. Clustering was performed using the Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
method64 via the R package dbscan65. All samples labelled NA (cluster 0) were
unassignable to a cluster. Shannon entropy was calculated from observed cluster
assignment by subtype and reported in natural units.

Mutational signatures for samples with ≥15 synonymous and nonsynonymous
single nucleotide variants (SNVs) were extracted using the COSMIC v3 catalog of
exome reference signatures and default parameters66 (https://github.com/mskcc/
tempoSig). This threshold was selected based on the previously reported formula22.
For mutational signatures to be considered detectable, we required a p-value < 0.05
and a minimum of 1 observed mutation attributed to the signature, where the
number of observed mutations was defined as the observed mutational signature
fraction multiplied by the number of SNVs per sample.

All statistical analyses were performed using R v3.5.2 (www.R-project.org) and
Bioconductor v3.467.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All clinical and genomic sequencing data described in this manuscript have been
deposited in the cBioPortal for Cancer Genomics (PMIDs: 23550210 and 22588877) and
are publicly available for online browsing and bulk download through the following link:
https://www.cbioportal.org/study/summary?id=sarcoma_mskcc_2022. The raw
sequencing data are protected; de-identified data are available under restricted access to
protect patient privacy in accordance with federal and state law. These data can be
requested for research use from the corresponding author. Data will be shared for a span
of 2 years within 2 weeks of execution of a data transfer agreement with MSK, which will
retain all title and rights to the data and results from their use. Data on individual
patients and gene fusions are also provided in Supplementary Data and Supplementary
Tables. TCGA data used for comparison is available via the Genomic Data Commons
Portal: https://portal.gdc.cancer.gov/.

Code availability
Custom code used for analyses is publicly accessible (https://github.com/mskcc).
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