Skip to main content
. 2022 Jun 2;16:876065. doi: 10.3389/fnins.2022.876065

Table 3.

Classification accuracy of different methods on the ISIC2017 dataset.

Average Nevus classification
Method AC AC F1-score Pre SP
Swin Transformer Liu et al. (2021) 80.22 89.50 81.18 62.16 91.76
AION Gehlot and Gupta (2021) 81.55 85.33 76.01 50.74 86.86
TransMed Dai et al. (2021) 84.11 89.19 80.10 61.90 92.16
MobileNetV3 Howard et al. (2019) 84.89 89.33 81.53 60.83 90.78
EfficientNet-B3 Tan and Le (2019) 85.22 90.67 82.64 66.67 93.33
Inception v4 Szegedy et al. (2016) 85.33 89.16 81.45 60.16 90.39
ResNet50 He et al. (2016) 85.44 91.00 82.97 68.37 93.92
DenseNet201 Huang et al. (2017) 86.56 92.00 85.36 69.81 93.73
O-Net 87.22 91.67 83.51 72.73 95.29
Average Melanoma classification Keratosis classification
Method AC AC F1-score Pre SP AC F1-score Pre SP
Swin Transformer Liu et al. (2021) 80.22 73.00 71.63 84.07 73.91 78.17 68.45 45.33 83.02
AION Gehlot and Gupta (2021) 81.55 77.33 75.69 85.40 74.40 82.00 69.73 54.46 90.48
TransMed Dai et al. (2021) 84.11 79.17 77.13 84.72 71.50 84.00 79.83 59.63 55.56
MobileNetV3 Howard et al. (2019) 84.89 80.50 78.78 86.51 75.36 84.83 74.59 62.75 92.13
EfficientNet-B3 Tan and Le (2019) 85.22 80.50 78.82 86.70 75.85 84.50 75.71 59.84 89.86
Inception v4 Szegedy et al. (2016) 85.33 80.83 79.05 86.39 74.88 86.00 75.94 67.37 93.58
ResNet50 He et al. (2016) 85.44 81.50 79.99 87.90 78.26 83.83 75.28 57.69 88.61
DenseNet201 Huang et al. (2017) 86.56 83.50 81.55 86.57 73.91 84.17 72.48 61.96 92.75
O-Net 87.22 84.17 81.58 84.49 67.63 85.83 74.19 70.00 95.03

Bold font to highlight the optimal values.