Table 3.
Sizes of outputs and convolutional kernels for ResNet versions.
| Layer name | Output size | 34 layers | 50 layers | 101 layers |
|---|---|---|---|---|
| conv 1 | 112 × 112 | 7 × 7, 64, stride 2 | ||
| conv 2.x | 56 × 56 | 3 × 3 max pool, stride 2 | ||
| conv 3.x | 28 × 28 | |||
| conv 4.x | 14 × 14 | |||
| conv 4.x | 7 × 7 | |||
| 1 × 1 | Average pool, 1000-d fc, softmax | |||
| FLOPs | 3.6 × 109 | 3.8 × 109 | 7.6 × 109 | |