Skip to main content
. 2022 Jun 16;2022:9414567. doi: 10.1155/2022/9414567

Table 3.

Sizes of outputs and convolutional kernels for ResNet versions.

Layer name Output size 34 layers 50 layers 101 layers
conv 1 112 × 112 7 × 7, 64, stride 2
conv 2.x 56 × 56 3 × 3 max pool, stride 2
3x3,643x3,64x3 1x1,643x3,641x1,256x3 1x1,643x3,641x1,256x3
conv 3.x 28 × 28 3x3,1283x3,128x4 1x1,1283x3,1281x1,512x4 1x1,1283x3,1281x1,512x4
conv 4.x 14 × 14 3x3,2563x3,256x6 1x1,2563x3,2561x1,1024x6 1x1,2563x3,2561x1,1024x23
conv 4.x 7 × 7 3x3,5123x3,512x3 1x1,5123x3,5121x1,2048x3 1x1,5123x3,5121x1,2048x3
1 × 1 Average pool, 1000-d fc, softmax
FLOPs 3.6 × 109 3.8 × 109 7.6 × 109