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Abstract

Survival modeling with time-varying coefficients has proven useful in analyzing time-to-event 

data with one or more distinct failure types. When studying the cause-specific etiology of 

breast and prostate cancers using the large-scale data from the Surveillance, Epidemiology, and 

End Results (SEER) Program, we encountered two major challenges that existing methods for 

estimating time-varying coefficients cannot tackle. First, these methods, dependent on expanding 

the original data in a repeated measurement format, result in formidable time and memory 

consumption as the sample size escalates to over one million. In this case, even a well-configured 

workstation cannot accommodate their implementations. Second, when the large-scale data under 

analysis include binary predictors with near-zero variance (e.g., only 0.6% of patients in our 
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SEER prostate cancer data had tumors regional to the lymph nodes), existing methods suffer from 

numerical instability due to ill-conditioned second-order information. The estimation accuracy 

deteriorates further with multiple competing risks. To address these issues, we propose a proximal 

Newton algorithm with a shared-memory parallelization scheme and tests of significance and 

nonproportionality for the time-varying effects. A simulation study shows that our scalable 

approach reduces the time and memory costs by orders of magnitude and enjoys improved 

estimation accuracy compared with alternative approaches. Applications to the SEER cancer data 

demonstrate the real-world performance of the proximal Newton algorithm.

Keywords

Kronecker product; B-spline; Proximal algorithm; Parallel computing; Breast cancer; Prostate 
cancer

1 Introduction

The temporal variation in the effects of interventions or risk factors is a common 

phenomenon in time-to-event data (Wolfe et al., 1999; Thior et al., 2006; Dekker et al., 

2008). To allow the effects to vary with time when analyzing the data, an important 

extension of the Cox model is often used—the relative risk model with time-varying 

coefficients. As remarked in Kalbfleisch and Prentice (2002, §4.1), this extended model 

is not only instrumental for testing the proportional hazards relationship, but also allows 

a concise description of a useful class of covariate effects. When the event of interest 

involves several distinct types, the time-varying effects can be similarly incorporated into a 

competing risk framework.

Our endeavors here were motivated by studying the cause-specific etiology of breast and 

prostate cancers using data from the National Cancer Institute Surveillance, Epidemiology, 

and End Results (SEER) Program. Different from most analyses assuming constant effects 

of prognostic factors for survival, our purpose was to account for how the effects change 

with time. Early evidence from breast cancer patients (Bellera et al., 2010; Baulies et al., 

2015) suggested that tumor grade had a significant time-varying effect. As a more recent 

example, Brouwer et al. (2020) studied the cause-specific survival of patients diagnosed with 

squamous cell carcinomas (head and neck cancers) and found that the effects of age and sex 

were strongest at the time of diagnosis, but attenuated dramatically over the first few years. 

Ignoring the dynamic nature of a time-varying effect may weaken the internal validity of the 

study and cloud its implications for risk prediction, treatment development, and health care 

policy.

Along with the rising need for time-varying effect modeling in a cause-specific context, the 

growing volume and complexity of data pose overarching challenges to existing analytic 

frameworks. To name a few examples, Zucker and Karr (1990) established a nonparametric 

penalized partial likelihood approach, which was revisited in Hastie and Tibshirani (1993) 

with a cubic spline penalty. Gray (1992, 1994) instead used the cubic B-spline bases 

(de Boor, 2001) with a small number of knots to parameterize the penalty function. 

Alternatively, Verweij and van Houwelingen (1995) and Tutz and Binder (2004) adopted 
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as penalty the sum of squared pairwise differences of effect estimates at adjacent time 

points. In terms of implementation, these methods expand the original data in a repeated 

measurement format (Therneau et al., 2020) using existing software such as the survival 

package (Therneau, 2020), and perform well when the input data set is relatively small. As 

the data under analysis escalate in size, however, fitting a cause-specific hazard model with 

time-varying coefficients becomes formidably time-consuming and memory inefficient.

To illustrate this issue, we benchmarked the cause-specific hazard model fitting to simulated 

data sets (details in Section 5) using the function coxph of survival, called hereafter 

the Naive Newton (NaiveN) method. As shown in Figure 1, increasing the number of 

observations from 1,000 to 10,000 leads to substantial growth in the runtime and memory 

usage of NaiveN, whereas the runtime and memory consumption of our proposed algorithm 

slightly increase. If the sample size is further scaled up to over 100,000, as in Brouwer et al. 

(2020), even a well-configured workstation with 500 GB of RAM can barely accommodate 

the execution. The SEER breast cancer data we used consist of over 1 million patients, 

rendering any data-expansion-based method infeasible.

In the literature, some analyses have attempted to address this computational challenge. 

Inspired by a Kronecker product-based routine of Perperoglou et al. (2006), He et al. (2017) 

and He et al. (2021) respectively considered the Quasi-Newton (QuasiN) and minorize-

maximization-based steepest ascent (MMSA) methods. Taking advantage of the large 

number of small strata in their settings, both methods demonstrated improved computation 

compared with the NaiveN, but were unable to handle an unstratified risk set with over one 

million subjects as in our cancer applications. Since gradient-based methods such as the 

MMSA only utilize first-order information, they often lead to appreciably more iterations 

than Newton-type methods. As will be seen in Table 1, the QuasiN may also produce highly 

biased estimates due to poor Hessian matrix approximation.

In addition to the computational burden, numerical instability often arises from ill-

conditioned second-order information in large-scale cause-specific hazard modeling. 

Specifically, when the data under analysis include a number of binary covariates with 

near-zero variation (e.g., in the SEER prostate cancer data, only 0.6% of the 716,553 

patients had their tumors regional to the lymph nodes), the associated observed information 

matrix of a Newton-type method may have its minimum eigenvalue close to zero with a 

large condition number. Inverting such a nearly singular matrix is numerically unstable and 

the corresponding Newton updates are likely to be confined within a small neighborhood of 

the initial value, causing the estimates to be far from the optimal solutions. When multiple 

failure types are present, the issue of inaccurate estimation can be further exacerbated using 

existing methods (Section 5.1).

To achieve computational efficiency and reduce numerical instability, we propose a spline-

based Newton-type method, which we term the proximal Newton (ProxiN) algorithm. This 

algorithm originates from the so-called proximal algorithms (Parikh and Boyd, 2014), and 

bears some resemblance to the more generic proximal Newton-type methods (Lee et al., 

2012, 2014). Compared with the data-expansion-based NaiveN, the ProxiN reduces the 

execution time and memory consumption by orders of magnitude. As shown in Figure 1, the 
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runtime and memory curves of the ProxiN stand in sharp contrast with those of the NaiveN 

and demonstrate the superiority of our proposed approach. Moreover, a shared-memory 

parallelization scheme further adds to the computational efficiency of the ProxiN with 

mild hardware requirements. As will be seen in Section 5.1, the ProxiN also leads to 

improved estimation accuracy compared to the NaiveN and QuasiN methods. The R and 

C++ code implementing the ProxiN and the parallelization scheme is available online at 

https://github.com/UM-KevinHe/surtiver.

The rest of this article proceeds as follows: Section 2 lays out a cause-specific hazard 

model with time-varying coefficients. Section 3 presents the proximal Newton algorithm, 

its convergence properties, and the parallelization scheme. Section 4 introduces testing 

procedures. Simulation results are discussed in Section 5. In Section 6, the proposed 

method is applied to two large-scale cancer databases of SEER. Section 7 concludes with a 

discussion.

2 Model

For the ith subject, i = 1, … , n, let Ti, Ci and Xi := TiΛCi denote the failure, censoring 

and observed time, respectively, where n denotes the total number of subjects and a Λ b := 

min{a, b}. Let Zi := (Zi1, … , Zip)Τ denote a vector of p covariates for risk adjustment. Let 

Ji be a random variable such that Ji = j if subject i has a failure of type j, j = 1, … , m, 

and Ji = 0 if subject i has a censoring event. Let Δij := I(Ti ≤ Ci, Ji = j) be an indicator of 

type j failure, where I(·) is an indicator function. We assume that conditional on Zi, Ti is 

independently censored by Ci.

To model competing risks, we consider a Cox relative risk model

λj(t ∣ Zi) ≔ λ0j(t) exp[Zi
Tβj(t)], j = 1, …, m, (1)

where for failure type j, λj(t ∣ Zi) denotes the cause-specific hazard function, λ0j(t) denotes 

the baseline hazard, and βj(t) := [βj1(t), … , βjp(t)]Τ is a p-dimensional vector of potentially 

time-varying coefficients. To estimate βj(t) at time t, we span βj(·) by a set of K B-spline 

basis functions. Specifically, for l = 1, … , p, βjl(·) is formulated as a linear combination

βjl(t) ≔ γjl
TB(t) = ∑

k = 1

K
Bk(t)γjlk, (2)

where B(t) := [B1(t), … , BK(t)]Τ forms a basis, and γjl := [γjl1, … , γjlK]Τ is a vector of 

K unknown parameters for the lth time-varying coefficient βjl(·) of failure type j. The time 

points at which pieces of B-spline polynomials meet are called knots and may be chosen 

based on the quantiles of the failure time points (Gray, 1992; He et al., 2017, 2021). For 

ease of notation, we only consider a fixed number of K basis functions across different time-

varying effects βjl(t); the general case of a varying number of basis functions is discussed 

in Section 5. Letting Γj := [γj1, … , γjp]Τ, we define γj ≔ vec(Γj
T), a vectorization of Γj

T, by 

stacking its columns on top of each other, and γ ≔ [γ1
T, …, γmT]T. Then model (1) leads to a 

log-partial likelihood given by
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ℓ(γ) = ∑
j = 1

m
ℓj(γj), (3)

in which

ℓj(γj) ≔ 1
n ∑

i = 1

n
Δij Zi

TΓjB(Xi) − log ∑
r ∈ R(Xi)

exp (Zr
TΓjB(Xi))

= 1
n ∑

i = 1

n
Δij Di

T(Xi)γj − log ∑
r ∈ R(Xi)

exp (Dr
T(Xi)γj) ,

(4)

where R(Xi) := {r ∈ {1, … , n} : Xr ≥ Xi} denotes the risk set of subject i, Dr(Xi) := Zr ⊗ 
B(Xi), and ⊗ denotes the Kronecker product.

Observe that ℓ(γ) is twice continuously differentiable and concave since a log-sum-exp 

function is convex (Boyd and Vandenberghe, 2004, §3.1.5, pp.74). In addition, ℓ(γ) can be 

optimized by maximizing each ℓj(γj) separately with respect to γj. The gradient ∇ℓj(γj) and 

Hessian matrix ∇2ℓj (γj) of ℓj(γj) are available in the Appendix.

3 Estimation

3.1 Proximal Newton algorithm

As discussed in Section 1, the classical Newton-type methods tend to provide unstable 

estimation, especially when the information matrix is nearly singular. Our proposed solution 

to this numerical instability has its roots in the proximal algorithm. For completeness, we 

start by reviewing this technique as well as its affinity to the traditional Newton approach. 

Interested readers are referred to Parikh and Boyd (2014) for a detailed account.

Let ℓ :ℝd ℝ be a closed and concave function; that is, its hypograph 

hyp(ℓ) ≔ {(γ, s) ∈ ℝd + 1 :ℓ(γ) ≥ s} is a nonempty closed convex set. For any λ > 0, a 

proximal operator of λℓ, denoted as proxλℓ, is defined as

ℝd ∋ v proxλℓ(v) ≔ argmax
γ

{ℓ(γ) − ‖γ − v‖2
2 ∕ (2λ)} ∈ ℝd, (5)

where ∥ · ∥2 denotes the Euclidean norm for vectors, or the induced L2 norm for matrices. 

The use of argmax is justified by Proposition 1 in the Supplementary Information.

To reveal the connection between the proximal operator (5) and Newton approach, note that 

if ℓ is twice continuously differentiable, its second-order Taylor approximation ℓv(γ) at v 

is ℓv(γ) ≔ ℓ(v) + ∇ℓT(v)(γ − v) + (γ − v)T∇2ℓ(v)(γ − v) ∕ 2. To derive the proximal operator of 

λℓv(γ), observe that the corresponding maximand is

ℓ(v) + ∇ℓT(v)(γ − v) + (γ − v)T ∇2ℓ(v) − I ∕ λ (γ − v) ∕ 2,
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where ∇2ℓ(v) − I/λ is a negative definite matrix with I being a d × d identity matrix. 

Maximizing the above quadratic maximand yields

proxλℓv(v) = v + I ∕ λ − ∇2ℓ(v) −1∇ℓ(v), (6)

which is a Levenberg–Marquardt step (Levenberg, 1944; Marquardt, 1963), or a Newton 

step with a modified Hessian matrix (Nocedal and Wright, 2006).

As noted in Section 2, the log-partial likelihood ℓ(γ) in (3) is twice continuously 

differentiable and concave. Since a function is upper semi-continuous if and only if its 

hypograph is closed (Rockafellar, 1970, Theorem 7.1), (3) is also a closed function. 

Applying (6) to the second-order Taylor approximation of (3), we have the proximal Newton 

algorithm sketched as Algorithm 1, where Xj1 < ⋯ < Xjnj denote the nj distinct times of type 

j failures, j = 1, … , m, and Zjq denotes the vector Zi such that Δij = 1 and Xi = Xjq, q = 1, 

… , nj.

3.2 Convergence of the proximal Newton algorithm

The proposed proximal Newton algorithm, as a likelihood maximization approach, includes 

particular features to ensure convergence in most practical settings. First, the Newton step 

Δγj
(s) on Line 16 of Algorithm 1 is an ascent direction of ℓj(γj

(s)) at γj
(s), which is defined as 

follows:

Definition 1 A direction μ ∈ ℝd is an ascent direction of a function ℓ :ℝd ℝ at a point 

γ ∈ ℝd if ∃ ν̄ > 0 such that ∀ ν ∈ (0, ν̄], ℓ(γ + νμ) > ℓ(γ).
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Using the concept of directional derivative, Definition 1 implies that μ ∈ ℝd is an ascent 

direction of a differentiable function ℓ at γ if

lim
ν 0

ℓ(γ + νμ) − ℓ(γ)
ν = ∇ℓT(γ)μ > 0 .

An equivalent condition is provided in the following Lemma 1, which shows that Δγj
(s) on 

Line 16 is an ascent direction of ℓj(γj
(s)) at γj

(s) (I ∕ λs − ∇2ℓj(γj
(s)) is positive definite for any 

λs > 0). The proof of Lemma 1 is available in the Supplementary Information.

Lemma 1 Let ℓ :ℝd ℝ be a differentiable function. Then a direction μ ∈ ℝd satisfies 

∇ℓΤ(γ)μ > 0 at γ if and only if there exists a symmetric and positive definite matrix M such 
that μ = M−1∇ℓ(γ).

Second, the backtracking line search on Line 19 of Algorithm 1 constitutes a practical 

implementation of the Armijo–Goldstein conditions

ℓj(γj
(s) + νΔγj

(s)) ≥ ℓj(γj
(s)) + ϕν∇ℓj

T(γj
(s))Δγj

(s), (7)

ℓj(γj
(s) + νΔγj

(s)) ≤ ℓj(γj
(s)) + ψν∇ℓj

T(γj
(s))Δγj

(s), (8)

ϕ ∈ (0, 0.5), ψ ∈ (0.5, 1), based on which the step length ν is determined. Condition (7), 

known as the Armijo condition (Armijo, 1966), explicitly requires a sufficient increase in ℓj 
proportional to step length ν and directional derivative ∇ℓT(γj

(s))Δγj
(s) before the line search 

is terminated. However, (7) alone does not guarantee convergence since ϕ can be arbitrarily 

small. Condition (8), known as the Goldstein condition (Goldstein, 1967), imposes a lower 

bound on ν so that γj
(s) cannot be very close to γj

(s) + νΔγj
(s).

We present below three assumptions through which the convergence properties of the 

proximal Newton algorithm are achieved.

Assumption 1 The log-partial likelihood component ℓj (γj) of (4) is coercive, i.e., 
lim∥γj∥2→∞ ℓj(γj) = −∞, j = 1, … , m.

As discussed in Lange (2013, §12.3, pp.298), this assumption along with the continuity and 

concavity of ℓj guarantees that the superlevel set {γj ∈ ℝpK :ℓj(γj) ≥ ℓj(γj
(0))} is convex and 

compact.

Assumption 2 The matrix I ∕ λs − ∇2ℓj(γj
(s)) on Line 16 of Algorithm 1 has a bounded 

condition number, i.e., ∃κ > 0, such that

I ∕ λs − ∇2ℓj(γj
(s)) ≤ κ, j = 1, …, m, (9)
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where for any invertible matrix M, κ2(M) := ∥M∥2∥M−1∥2.

Assumption 3 The sequence {λs}s = 0
∞  of positive tuning parameters monotonically 

approaches infinity as s → ∞ i.e., lims→∞ λs = ∞.

The following theorem provides a set of convergence characterizations of Algorithm 1. The 

proof is included in the Supplementary Information.

Theorem 1 Let ℓj assume (4) with an initial iterate γj
(0), and let {γj

(s)}s = 1
∞  be a sequence of 

iterates defined by Line 20 of Algorithm 1, where Δγj
(s) is given by Line 16, and ν > 0 is 

determined by (7) and (8) with ϕ ∈ (0, 0.5) and ψ ∈ (0.5, 1). If Assumptions 1 and 2 hold, 

then {ℓj(γj
(s))}s = 0

∞  converges and lims ∞‖∇ℓj(γj
(s))‖2 = 0.

Note that Theorem 1 does not conclude with the convergence of {γj
(s)}s = 0

∞ . However, given 

the fact that γj∗ is a global maximizer of the concave and differentiable function ℓj if and only 

if ∇ℓj(γj∗) = 0, the ultimate iterate from Algorithm 1 should be close enough to the optimal 

solution with a sufficiently small tolerance ϵ in most practical situations.

With a priori assumptions on the optimal solution γj∗, requiring ϕ ∈ (0, 0.5) and ψ ∈ (0.5, 1) 

allows a step length ν equal to 1 to ultimately satisfy (7) and (8), and enables Algorithm 1 to 

achieve superlinear convergence as defined below. A formal statement is given in Theorem 

2, with the proof available in the Supplementary Information.

Definition 2 A sequence {γ(s)}s = 1
∞ ⊂ ℝd converges superlinearly to γ∗ ∈ ℝd if there exists a 

sequence {ξs}s = 1
∞  of positive real numbers with lims→∞ ξs = 0 such that ∀ s ∈ ℕ, ∥γ(s+1) − 

γ*∥2 ≤ ξs ∥γ(s) − γ*∥2.

Theorem 2 Let ℓj assume (4) with an initial iterate γj
(0), and let {γj

(s)}s = 1
∞  be a sequence 

of iterates defined by Line 20 of Algorithm 1, where Δγj
(s) is given by Line 16, and ν > 0 

is determined by (7) and (8) with ϕ ∈ (0, 0.5) and ψ ∈ (0.5, 1). In addition, assume that 

{γj
(s)}s = 1

∞  converges to γj∗ with a negative definite ∇2ℓj(γj∗). If Assumptions 1 and 3 hold, 

then (1) ∃ s0 ∈ ℕ such that ∀s > s0, ν = 1 satisfies (7) and (8); (2) ∇ℓj(γj∗) = 0; and (3) 

{γj
(s)}s = 0

∞  converges superlinearly to γj∗ provided that ∀ s ≥ s0, ν = 1 for some s0 ∈ ℕ.

3.3 Shared-memory parallelization

In the literature, various parallel computing schemes have been proposed to boost 

computational efficiency in generalized linear models (GLMs) (Peng et al., 2013; Do 

and Poulet, 2015; Jyothi and Babu, 2020), Bayesian inference (Goudie et al., 2020), and 

random forests (Wright and Ziegler, 2017), among other instances. Despite the widespread 

recognition from the statistics community (Eddelbuettel, 2021), there is a paucity of research 

on the application of parallel computing to large-scale time-to-event data, especially in 

a shared-memory context. The utmost reason is that modeling survival outcomes often 
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involves risk-set-specific calculation tasks at all failure times. These tasks, unlike the 

observation-specific calculations in GLMs, are not equally costly in terms of computational 

complexity, since the size of the risk set R(Xi) (defined in Section 2) varies with the 

observed time Xi. The unequal-sized risk sets resulting from an increasing sequence of 

failure times pose a challenge to load balancing, i.e., the distribution of tasks over a set of 

computing units (threads).

Following a distributed-memory framework, Lu et al. (2015) bypassed this issue by sample 

stratification so that risk sets can only be formed within a certain stratum. However, their 

approach becomes infeasible if stratification is not possible. Moreover, as the sample size 

escalates (as in our cancer applications), the distributed-memory approach becomes less 

appealing since having multiple copies of a large data set concurrently is not memory-

efficient.

In addition to load balancing arising from unequal-sized risk sets, the presence of time-

varying coefficients poses a second challenge to parallel computing. When βj(t) is time-

invariant, i.e., βj(t) = βj, one may approach the problem by first calculating {exp(Zi
Tβj)}i = 1

n

and then obtaining the cumulative sums of {exp(Zi
Tβj)}i = 1

n  in parallel by means of the prefix 

sum algorithm (Casanova et al., 2008). When βj(t) varies with time t, however, exp[Zi
Tβj(t)]

has to be re-evaluated for different risk sets, making the aforementioned approach infeasible.

To tackle the issue of load balancing in the presence of massive data and time-varying 

coefficients, we propose a shared-memory paradigm that optimizes workload allocation 

among a given number c of available threads where c ≥ 2. For time Xjq of failure type j, 
let nXjq := ∣R(Xjq)∣, i.e., the number of elements of the risk set R(Xjq). For failure type j, 

Algorithm 1 culminates in the calculations of ℓj(γj
(s)), ∇ℓj(γj

(s)) and ∇2ℓj(γj
(s)) at iteration 

s, which in turn depend upon Sjq
(u)(γj

(s), Xjq). An analysis of time complexity reveals that 

computing Sjq
(u)(γj

(s), Xjq) costs O(pKnXjq
), O(p(K + 1)nXjq) and O(p(4K + 3p + 3)nXjq), 

respectively, for u = 0, 1, 2. The linearity with respect to nXjq suggests using as cutoffs the 

c-quantiles {n̄a}a = 1
c − 1  of the cumulative sums of {nXjq}q = 0

nj  (with nXj0 = 0) to partition the 

collection of nj risk sets into c subcollections of nearly equal computational costs.

Let n̄c denote the sum of {nXjq}q = 0
nj  and let n̄0 = 0. Algorithm 2 presents the parallelization 

of computing ∇ℓj(γj
(s)) at iteration s (Lines 5–14 of Algorithm 1), in which Line 8 is a race 

condition requiring execution on one thread at a time (nonparallel). The other two quantities 

can be obtained similarly. Evidence in the Supplementary Information using the SEER 

breast and prostate cancer data demonstrates the speedup and efficiency of the proposed 

parallelization scheme.
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4 Hypothesis testing

Inferential attempts regarding the significance of the time-varying effects βj(t) for type j 
failure can be formulated as the linear hypothesis H01 : Cβj(t) = 0, where C is a contrast 

matrix with full row rank r. Our penalty-free spline-based modeling and estimation lay the 

groundwork for a straightforward Wald-type significance test. By (2), the null H01 can be 

rewritten as H01 : [C⊗BΤ(t)]γj = 0, and a Wald test statistic is given by

γj
T[CT ⊗ B(t)]n{[C ⊗ BT(t)][I ∕ λ − ∇2ℓj(γj)]−1[CT ⊗ B(t)]}−1[C ⊗ BT(t)]γj,

where γj is the estimate of γj. Under the null H01, the test statistic approximately follows a 

chi-square distribution with r degrees of freedom. Pointwise confidence intervals across time 

are readily obtainable via test inversion. For instance, if one wants to test whether βjl(t) = 0, 

where βjl(t) is the lth component of βj(t), l = 1, … , p, then C = [0, … , 1, … , 0], where only 

the lth element equals 1.

A second test of particular interest is to examine whether a certain effect βjl(t) is constant 

over time. In the literature, various procedures have been proposed to address this inference 

issue. As the default check for nonproportionality in the R package survival (Therneau, 

2020), Grambsch and Therneau (1994) suggested a generalized least squares test on the 

scaled Schoenfeld residuals. Assuming βjl(t) = βjl + θjlgjl(t) with unknown constants βjl 

and θjl, and a possibly unknown function gjl(·), the residuals are based on a one-step 

Newton-Raphson estimator θ jl of θjl and an estimator β jl of βjl from the Cox proportional 

hazards model. This approach provides a fast and easy check for nonproportionality without 

the need to fit a model of time-varying effects. Relying on a one-term Taylor approximation, 

however, using the scaled Schoenfeld residuals may lead to inflated type-I error when ∣βjl(t) 
− βjl∣ is large. In addition, the residual calculation may be unstable, particularly near the end 

of follow-up (Therneau and Grambsch, 2000, pp.133).

To test whether the effect βjl(t) is time-invariant, our approach amounts to a Wald test on the 

control points. Similar to He et al. (2017), we observe that if γjl1 = ⋯ = γjlK = γ̄, then

βjl(t) = γ̄ ∑
k = 1

K
Bk(t) = γ̄,
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in which we utilize the property of the B-spline basis that ∑k = 1
K Bk(t) = 1 for any t. This 

leads to the null hypothesis H02l : L̄γjl = 0, where L̄ is a (K − 1) × K matrix given by

L̄ =

1 −1 0 ⋯ 0
0 1 −1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 1 −1

.

A Wald test statistic can thus be constructed as

γjl
TL̄T (L̄MjlL̄

T)−1L̄γjl,

where Mjl denotes the lth diagonal K × K block of [I ∕ λ − ∇2ℓj(γj)]−1 ∕ n for l = 1, … , p. 

Under the null H02l, this test statistic approximately follows a chi-square distribution with K 
− 1 degrees of freedom.

Once the time-varying effects are distinguished from the time-independent ones through 

tests of nonproportionality, a cause-specific hazard model with time-variant and -invariant 

coefficients can be fit via an equality constrained maximization problem. Suppose 

βjl1(t), …, βjlp̄(t) are flagged as time-variant effects. Let L be a p(K − 1) × pK matrix whose 

lth (K − 1) × K submatrix on the diagonal equals L̄ if βjl(t) is time-variant or 0 otherwise, 

and all off-diagonal blocks equal 0. Solving the following problem

maximize
Δγj ∈ ℝpK

∇ℓjT(γj)Δγj + ΔγjT[∇2ℓj(γj) − I ∕ λ]Δγj ∕ 2

subject to LΔγj = 0,

in which γj is a feasible point satisfying Lγj = 0 (e.g., γj = 0), we can obtain the Newton 

step

Δγj∗ = U UT{I ∕ λ − ∇2ℓj(γj)}U −1UT∇ℓj(γj)

at each iteration (to replace Line 16 of Algorithm 1), where U is a pK × p̄ matrix, whose 

range (column space) is the null space of L.

5 Simulation Study

To compare the proximal Newton algorithm with the NaiveN and QuasiN methods, we 

conducted a series of simulation experiments. The NaiveN was implemented via the function 

coxph in the R package survival, and the QuasiN was implemented using the base R 

function optim (the BFGS algorithm, Nocedal and Wright, 2006, §6.1). Since the estimation 

and inference with respect to different failure types can be handled separately within a 

cause-specific hazard framework, we focused primarily on a single failure type and dropped 

the index j to simplify notation.
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In each simulation scenario, a number of independent data replicates were generated 

with the sample size n ranging from 1,000 to 10,000. We considered p = 5 covariates 

Zi drawn from a multivariate normal distribution with zero mean, unit variance and an 

AR(1) correlation structure with parameter ρ = 0.6. To introduce numerical singularity, the 

continuous covariates were then dichotomized into binary variables, with the probability 

of being one uniformly varying from 0.8 to 0.9. This treatment intended to mimic our 

application setting where the Hessian matrix had a large condition number even when the 

number of observations was large. A constant baseline hazard λ0(t) = 0.5 was used with 

covariate parameters calibrated as β(t) = [1, sin(3πt/4), −1, −1, 1]Τ. Failure times were 

generated from the survivor function of (1), and censoring times were drawn from a uniform 

distribution between 0 and 3. Observed times were determined as the minimum of the failure 

and censoring time pairs.

5.1 Estimation accuracy

To assess the estimation accuracy of the proposed ProxiN, Table 1 presents the integrated 

mean squared error (IMSE), average bias, and average variance associated with the three 

algorithms. Model fitting was performed by treating all coefficients as time-dependent. 

Using a uniform distribution, we sampled 1,000 distinct time points from the interval 

between 0 and 3. At each time t, the mean estimates of β1(t) and β2(t) across 100 data 

replicates were used to calculate the mean squared error and variance, the difference of 

which is the squared bias. Taking the average across the 1,000 time points, we obtained the 

IMSE, average squared bias, and average variance. The average bias is simply the squared 

root of the average squared bias.

Panel A of Table 1 displays the three measures of estimation accuracy for β1(t). Since the 

nearly singular Hessian matrix was inaccurately approximated by a matrix in the BFGS 

algorithm, the QuasiN had consistently much higher IMSE than the other two methods. Of 

these two, the ProxiN had lower IMSE, bias and variance, especially when the sample size 

equaled 1,000 or 5,000. As a side observation, the IMSE was largely due to the variance 

component for all three methods. When it comes to the estimation accuracy of β2(t), the 

ProxiN overall outperformed the alternatives and the performance of QuasiN was even 

worse than that for β1(t). The difference in the accuracy measures among the first two 

approaches shrunk as the sample size increased. To explore the impact of different censoring 

schemes, we varied the uniform distribution with different ranges of support (from [0, 3] to 

[1.5, 3]), and used the exponential distribution with different rates (from 0.2 to 1.0) as an 

alternative scheme. In addition, we also considered the performance of the ProxiN in settings 

where the sample size was of a similar order as in our cancer applications. Results are also 

available in the Supplementary Information.

As noted in Section 2, it is conceptually desirable that the number of B-spline basis 

functions is allowed to vary across different time-varying coefficients. Although a systematic 

investigation into such a general case is absent in the literature and beyond the scope of 

this article, we conducted simulation experiments (results available in the Supplementary 

Information) to shed the first light on knot selection based on the variation of a covariate. 

The bottom line is that as the covariate variation shrinks toward zero, fewer knots should 
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be applied to expanding a time-varying coefficient, so that the effect can be estimated with 

sufficient accuracy.

With the sample size equal to 1,000, Figure 2 displays the true value along with the 

pointwise mean of estimates β1(t) and β2(t) across 100 data replicates, where β4(t) = t2 

exp(t/2)/9 and β5(t) = exp(−1.5t). The QuasiN was not included due to its poor performance. 

For β1(t), the estimate curve of ProxiN had much smaller deviance from the true value 

curve than the NaiveN, the deviance of which was in the opposite direction. As for the 

time-varying β2(t), the estimate curve of ProxiN varied closely along the true value curve, 

whereas the estimate curve of the NaiveN deviated from the true one when t > 2.

Given a 95% confidence level, Figure 3 compares the coverage probability (CP) of estimates 

β1(t) and β2(t) resulting from the ProxiN and NaiveN, with time t varying from 0 to 3. As 

time increases, the CP curve for β1(t) from the ProxiN algorithm fluctuates more closely 

around 0.95 than the NaiveN, though the CP curve of ProxiN drops sharply near the end of 

follow-up (t = 3) when n = 5,000 or 10,000. The QuasiN approach was not included as it 

often led to a singular Hessian matrix.

To illustrate the performance of ProxiN with more than one cause of failure, we compared 

the estimation accuracy of ProxiN, NaiveN and QuasiN with different sample sizes and two 

causes of failure (Table 2 and Supplementary Table 10). With the notation in Section 2, we 

set β11(t) = 1, β12(t) = sin(3πt/4), β13(t) = −1, β14(t) = −1, β15(t) = 1 for the first failure type, 

and set β21(t) = −1, β22(t) = cos(3πt/4), β23(t) = 1, β24(t) = 1, β25(t) = −1 for the second 

failure type. Failure times and types were determined based on Beyersmann et al. (2009, 

§3.1). Censoring times were generated from a uniform distribution between 0 and 3. As in 

the case with only one cause of failure, the ProxiN outperformed the other two methods in 

terms of the IMSE, average bias, and average variance. A larger sample generally led to 

more accurate estimation of the true effects.

5.2 Testing for time-varying effects

The assessment of the test of nonproportionality is reported in Figure 4, where the average 

type-I error rate regarding a test of the time-invariant β1(t), and the average power regarding 

a test of the time-variant β2(t) across 1,000 data replicates are plotted against different levels 

of sample size, with a 5% significance level. When β2(t) = sin(3πt/4) (top two panels), 

the ProxiN had a lower error curve for β1(t) and a higher power curve for β2(t). When the 

magnitude of β2(t) was tripled (bottom two panels), i.e., β2(t) = 3sin(3πt/4), the NaiveN 

had much inflated error and power curves, both of which approached one as the sample size 

grew. By contrast, the proposed ProxiN maintained a controlled error curve around 5% as 

well as a high-level power line at one.

6 Applications

To demonstrate the real-world performance of the proposed estimation and testing 

procedures, we applied these methods to the nationwide breast and prostate cancer survival 
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database administered by the U.S. Surveillance, Epidemiology, and End Results (SEER) 

Program (Surveillance, Epidemiology, and End Results Program, 2017, 2019).

6.1 SEER breast cancer data

For our study, 1,093,192 female patients first diagnosed with breast cancer between 1973 

and 2015 were selected and their cause-specific deaths (cancer or other, see Brouwer et al., 

2020), if not censored, were recorded. In the analysis, we considered three risk factors: age, 

race and tumor stage at the time of diagnosis. Among all the patients, 24.21% were younger 

than 50 at diagnosis, 24.02% aged 50 to 59, 23.68% aged 60 to 69, and 28.09% were at least 

70; 9.75% were black, 82.37% were white (including Hispanic), 7.42% belonged to other 

racial groups (American Indian, Alaska Native, Asian, Pacific Islander), and the remaining 

0.46% were unknown. As for tumor staging, 60.02% had localized tumors, 31.39% had 

regionalized tumors, 6.13% had distant tumors, and 2.46% had their tumors recorded as 

unstaged. Event times (time to cancer death, other deaths or censoring) ranged from 1 month 

to 515 months, with a median of 80 months since diagnosis.

Treating cancer and other deaths as two distinct types of failure, we fit two cause-specific 

hazard models to the SEER breast cancer data with time-varying coefficients via Algorithm 

1. Effect estimates as well as pointwise 95% confidence intervals are displayed in Figure 5 

with a 20-year presentation. Treating the localized stage as the reference level and the other 

three as covariates, the top two panels display the overall shrinking staging effects on the 

two causes of death. Each of the three stages had a larger effect on cancer death than that 

on other deaths. As expected, an advanced stage had a stronger effect on cancer death than 

an early stage. Relative to the white cohort, black breast cancer patients were more likely 

to die as a result of either cancer or other causes. They had an initial increase in the hazard 

of cancer death, followed by a gradual decrease to nearly zero. In contrast, the shrinkage 

of race effects on other deaths was slower. The three effects of age groups on cancer death 

immediately declined after diagnosis and then either remained stable (older than 70) or 

gradually increased (younger than 60). Age effects on other deaths remained relatively flat 

as time passed. The speedup and efficiency of the parallelized ProxiN is discussed in detail 

in the Supplementary Information.

6.2 SEER prostate cancer data

In the prostate cancer data, 716,553 patients with a first diagnosis of prostate cancer between 

2004 and 2017 were chosen and their cause-specific deaths or censorings were recorded. 

Similarly as in the analysis of breast cancer data, we examined age, race and tumor stage 

at the time of diagnosis. Among all the patients, 2.79% were younger than 50 at diagnosis, 

20.83% aged 50 to 59, 40.74% aged 60 to 69, and 35.64% were at least 70; 14.58% were 

black, 69.44% were non-Hispanic white, 8.81% were Hispanic, and the remaining 7.17% 

belonged to other racial groups. (Since this data were collected only starting in 2004, the 

registry used different ethnic groupings than the breast cancer data, which started in 1973.) 

In terms of summary staging, 82.41% had localized tumors, 11.32% had regionalized tumors 

by direct extension, 0.6% had regional tumors to lymph nodes, 1.12% had their tumors as 

regional both by direct extension and lymph nodes, and 4.54% had tumors of unknown 
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stage. Event times ranged from 1 month to 167 months, with a median of 6 years since 

diagnosis.

As in the application of breast cancer, we fit two cause-specific hazard models with time-

varying coefficients to the SEER prostate cancer data. Estimates and confidence intervals are 

displayed in Figure 6 with a 10-year presentation. With the localized stage as the reference 

group and the other four as covariates, the top two panels reveal different patterns of staging 

effects on the two types of death. Overall, an advanced tumor stage led to a considerably 

higher hazard ratio of cancer death than the hazard ratio of other deaths. While the effects 

of regional both and regional by direct extension on cancer death were significantly positive, 

their effects on other deaths were negative. Nonproportionality tests with 5% size of the 

staging effects on cancer death indicated that they should all be viewed as time-variant. 

Relative to the white cohort, black prostate cancer patients were more likely to die as a result 

of either cancer or other causes. As expected, older patients had a higher hazard of dying 

from any cause than younger patients.

7 Discussion

The increasing availability of large-scale and complex data has the potential to vastly 

improve our understanding of important real-world problems such as cancer survival, 

but only with methodological and computational advances. Existing data-expansion- or 

gradient-based methods impose formidable computational costs and numerical instability 

to model fitting. To facilitate efficient and accurate statistical analysis in this context, 

we propose the proximal Newton algorithm along with a shared-memory parallelization 

paradigm and testing procedures. Simulation analyses demonstrate superior scalability, 

efficiency and estimation accuracy compared to alternative approaches. Applications to the 

SEER breast and prostate cancer data confirm the excellent real-world performance of our 

proposed approach.

Although developed for analyzing cancer data, the proposed technique can be used in many 

other applications that involve time-varying effect analysis. In kidney transplantation, for 

example, the relative risk of death among recipients relative to those on dialysis is known to 

initially increase due to surgery, but the subsequent decrease eventually leads to an overall 

survival benefit (Wolfe et al., 1999). Similarly, when comparing two infant feeding strategies 

for preventing mother-to-child human immunodeficiency virus transmission, evidence from 

a randomized trial showed that, although breastfeeding with prophylaxis was associated with 

lower infant mortality at 7 months relative to formula feeding, this difference shrunk to 

insignificance through age 18 months (Thior et al., 2006). Obesity, a well-known risk factor 

of mortality in the general population, was found among dialysis patients to have a short-

term protective effect on survival and an increased risk of death after a long-term exposure 

(Kalantar-Zadeh et al., 2003; Kalantar-Zadeh, 2005; de Mutsert et al., 2007; Dekker et al., 

2008). In all these instances, our proposed methods would have undoubtedly contributed to a 

better understanding of the changes in effects over time.

Depending on specific analytic needs, the proximal Newton algorithm can also be applied to 

a more general setting with stratum-specific baseline hazards. In a head and neck cancer 
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application, for instance, there was evidence of substantial differences in the baseline 

hazards by tumor stage (Brouwer et al., 2020). A stratified analysis taking account of 

the stage-wise variation may better reflect the effect evolution of prognostic factors. As 

another example, the analysis of electronic health records often involves integrating data 

from multiple health care providers. Stratification by providers can alleviate the mediation 

between provider-specific effects and the effects of risk factors. In either case, our proposed 

method can readily handle the less demanding computational burdens with reduced risk sets.

As for the determination of the number and location of knots in the cause-specific hazard 

model, we followed the rules by Gray (1992), that is, a small number of knots (e.g., 10) 

chosen to include an equal number of events within each time interval. Although using this 

early suggestion yields stable estimation in our applications, a systematic guideline on this 

issue is beyond the current endeavors. In addition, it is worth further exploration into the 

use of the penalized B-spline to alleviate overfitting and increase smoothness in coefficient 

estimation. Moreover, when the dimension of the parameter space is very high, existing 

model selection techniques such as Yan and Huang (2012) would no longer be feasible. This 

necessitates in-depth investigation into high-dimensional variable selection methods with 

time-varying effects. Fortunately, the superb performance of the proposed algorithm paves 

the way for possible advances along these paths in a large-scale cause-specific setting.

In the top right panel of Figure 6, the effect curve of lymph on other deaths has more 

variation than the curve of ext especially for the initial 2.5 years since diagnosis, but 

the test of nonproportionality identified the effect of ext as time-dependent rather than 

the effect of lymph. This suggests that the effect of lymph on other deaths may not be 

nonzero everywhere. Although addressing this issue systematically is beyond the aims 

of the current article, more analytical effort is worthwhile on accounting for zero-effect 

regions in competing risk models with time-varying effects. Currently, there is a paucity of 

studies in the survival literature on time-varying effect modeling with zero-effect regions. 

For a relevant account on varying coefficients with zero-effect regions in the context of 

generalized linear models, we refer to a recent work by Yang (2020).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

This appendix is devoted to the derivation of the gradient ∇ℓj(γj) and Hessian matrix ∇2ℓj(γj) 

of ℓj(γj) as in (4). We define
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Sij
(u)(γj, Xi) ≔ ∑

r ∈ R(Xi)
exp{[Zr ⊗ B(Xi)]Tγj}Zr⊙ u, u = 0, 1, 2,

where for a vector v ∈ ℝp, v⊙0 := 1, v⊙1 := v, and v⊙2 := vvΤ. The gradient ∇ℓj(γj) and 

Hessian ∇2ℓj(γj) of ℓj(γj) are hence given by

∇ℓj(γj) = 1
n ∑

i = 1

n
Δij {Zi − Zij(γj, Xi)} ⊗ B(Xi), (10)

∇2ℓj(γj) = − 1
n ∑

i = 1

n
ΔijVij(γj, Xi) ⊗ {B(Xi)BT(Xi)}, (11)

in which

Zij(γj, Xi) ≔
Sij

(1)(γj, Xi)

Sij
(0)(γj, Xi)

, Vij(γj, Xi) ≔
Sij

(2)(γj, Xi)

Sij
(0)(γj, Xi)

− Zij
⊙ 2(γj, Xi) .
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Fig. 1. 
Runtime and memory usage of proximal Newton (ProxiN) and naive Newton (NaiveN) 

with sample sizes varying from 1,000 to 10,000. In each scenario, 10 data replicates were 

generated, and a fixed number of K = 10 knots were used for model fitting. Dichotomization 

was not applied to covariates. A tolerance level ϵ = 10−10 was used. The vertical axis 

displays average runtime (in seconds) across the 10 simulated data sets. Experiments were 

conducted on an Intel® Xeon® Gold 6254 quad-processor with max frequency 4 GHz and 

RAM 576 GB. ProxiN was implemented using Rcpp (Eddelbuettel and François, 2011; 

Eddelbuettel and Balamuta, 2018) and RcppArmadillo (Eddelbuettel and Sanderson, 2014). 

Runtime and memory usage were measured using bench (Hester and Schmidt, 2020).
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Fig. 2. 
Mean of estimates β1(t) and β2(t) at each time t using the proximal Newton (ProxiN) and 

naive Newton (NaiveN) methods, with a 95% percentile range (2.5th and 97.5th percentiles 

as lower and upper limits). In each scenario, 100 data replicates were generated with sample 

size equal to 1,000. A fixed number of K = 5 knots were used for model fitting. True 

values were β1(t) = 1 and β2(t) = sin(3πt/4), with β3(t) = −1, β4(t) = t2 exp(t/2)/9, β5(t) = 

exp(−1.5t).

Wu et al. Page 21

Lifetime Data Anal. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Coverage probability (CP) of estimates β1(t) and β2(t) at each time t using the proximal 

Newton (ProxiN) and naive Newton (NaiveN) methods, with a 95% confidence level. In 

each scenario, 100 data replicates were generated and a fixed number of K = 5 knots were 

used for model fitting. True values were β1(t) = 1 and β2(t) = sin(3πt/4).
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Fig. 4. 
Type-I error rate and power regarding β1(t) and β2(t) using the proximal Newton (ProxiN) 

and naive Newton (NaiveN) methods with varying sample sizes. In each scenario, 1,000 data 

replicates were generated, and a fixed number of K = 5 knots were used for model fitting. In 

the first row, true values were β1(t) = 1 and β2(t) = sin(3πt/4), while in the second row, true 

values were β1(t) = 1 and β2(t) = 3sin(3πt/4).
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Fig. 5. 
Estimates of the time-varying effects of tumor stage, race and age on death (due to cancer 

or other causes) as a function of time since diagnosis using the SEER breast cancer data. 

Quadratic B-splines were applied throughout the analysis with K = 5 knots. The ribbons 

in all panels represent 95% pointwise confidence intervals for the time-varying coefficients. 

At a 5% level, all effects on cancer death or other deaths were significantly time-dependent 

using the testing procedure in Section 4.
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Fig. 6. 
Estimates of the time-varying effects of tumor stage, race and age on death (due to cancer 

or other causes) as a function of time since diagnosis using the SEER prostate cancer data. 

Quadratic B-splines were applied throughout the analysis with K = 5 knots. The ribbons 

in all panels represent 95% pointwise confidence intervals for the time-varying coefficients. 

The four stages displayed in the legends are regional both by direct extension and lymph 

nodes (both), regional by direct extension (ext), regional by lymph nodes (lymph) and 

unknown. At a 5% level, significant time-varying effects on cancer death included age 

greater than 70, other races and the four stage effects. All effects on other deaths were 

significantly time-dependent except both and lymph.
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Table 1

Integrated mean squared error (IMSE), average bias, and average variance of estimates β1(t) and β2(t) using 

the proximal Newton (ProxiN), naive Newton (NaiveN), and quasi-Newton (QuasiN) methods with varying 

sample sizes. In each scenario, 100 data replicates were generated, and a fixed number of K = 5 knots were 

used for model fitting. True values were β1(t) = 1 and β2(t) = sin(3πt/4).

method size IMSE bias variance

Panel A: β1(t)

ProxiN

1000 3.60 0.24 3.55

5000 0.25 0.02 0.25

10000 0.15 0.04 0.15

NaiveN

1000 35.82 0.99 34.84

5000 0.26 0.03 0.26

10000 0.15 0.05 0.15

QuasiN

1000 6772.12 69.37 1960.34

5000 4870.17 40.94 3194.03

10000 3969.22 44.47 1991.35

Panel B: β2(t)

ProxiN

1000 1.82 0.28 1.74

5000 0.18 0.20 0.14

10000 0.14 0.23 0.09

NaiveN

1000 20.94 1.41 18.95

5000 0.25 0.23 0.20

10000 0.13 0.20 0.09

QuasiN

1000 72892.15 237.68 16400.41

5000 41906.34 106.80 30499.53

10000 26924.89 107.92 15279.30
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Table 2

Integrated mean squared error (IMSE), average bias, and average variance of estimates β11(t) and β12(t)
(corresponding to the first cause of failure) using the proximal Newton (ProxiN), naive Newton (NaiveN), 

and quasi-Newton (QuasiN) methods with varying sample sizes. In each scenario, 100 data replicates were 

generated and a fixed number of K = 5 knots were used for model fitting. True values were β11(t) = 1, β12(t) = 

sin(3πt/4), β13(t) = −1, β14(t) = −1, and β15(t) = 1.

method size IMSE bias variance

Panel A: β11(t)

ProxiN

1000 2.41 0.22 2.36

5000 0.61 0.08 0.60

10000 0.45 0.08 0.44

NaiveN

1000 7.72 0.68 7.26

5000 3.75 0.06 3.74

10000 2.63 0.35 2.51

QuasiN

1000 2830.04 41.82 1081.30

5000 3715.09 34.98 2491.78

10000 1700.60 28.43 892.08

Panel B: β12(t)

ProxiN

1000 2.47 0.22 2.42

5000 1.02 0.25 0.96

10000 0.71 0.17 0.68

NaiveN

1000 195.44 2.06 191.19

5000 79.27 0.90 78.47

10000 22.60 1.18 21.21

QuasiN

1000 111975.71 303.89 19627.88

5000 61091.58 143.38 40532.74

10000 17822.45 92.46 9274.30
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