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Voxel-based physiological (VBP) variables derived from blood oxygen level dependent (BOLD) 

fMRI time-course variations include: amplitude of low frequency fluctuations (ALFF), fractional 

amplitude of low frequency fluctuations (fALFF) and regional homogeneity (ReHo). Although 

these BOLD-derived variables can detect between-group (e.g. disease vs control) spatial pattern 

differences, physiological interpretations are not well established. The primary objective of 

this study was to quantify spatial correspondences between BOLD VBP variables and PET 

measurements of cerebral metabolic rate and hemodynamics, being well-validated physiological 

standards. To this end, quantitative, whole-brain PET images of metabolic rate of glucose 

(MRGlu; 18FDG) and oxygen (MRO2; 15OO), blood flow (BF; H2
15O) and blood volume (BV; 

C15O) were obtained in 16 healthy controls. In the same subjects, BOLD time-courses were 

obtained for computation of ALFF, fALFF and ReHo images. PET variables were compared 

pair-wise with BOLD variables. In group-averaged, across-region analyses, ALFF corresponded 

significantly only with BV (R = 0.64; p < 0.0001). fALFF corresponded most strongly with 

MRGlu (R = 0.79; p < 0.0001), but also significantly (p < 0.0001) with MRO2 (R = 0.68), 

BF (R = 0.68) and BV (R = 0.68). ReHo performed similarly to fALFF, with significant 

strong correspondence (p < 0.0001) with MRGlu (R = 0.78), MRO2 (R = 0.54), and, but less 

strongly with BF (R = 0.50) and BV (R = 0.50). Mutual information analyses further clarified 

these physiological interpretations. When conditioned by BV, ALFF retained no significant 

MRGlu, MRO2 or BF information. When conditioned by MRGlu, fALFF and ReHo retained 

no significant MRO2, BF or BV information. Of concern, however, the strength of PET-BOLD 

correspondences varied markedly by brain region, which calls for future investigation on 

physiological interpretations at a regional and per-subject basis.

Keywords

Voxel-Based Physiology; Metabolism; Brain; Hemodynamics; PET; fMRI; BOLD; ALFF; fALFF; 
ReHo; VBP

1. Introduction

Voxel-wise measurements of the blood oxygenation level dependent (BOLD) signal in the 

resting state are widely used and have demonstrated regional abnormalities in multiple 

neurologic (Han et al., 2011; Hou et al., 2014; Li et al., 2002, 2014), psychiatric (Bing et 

al., 2013; Gray et al., 2020), and developmental disorders (Cortese et al., 2021; Lau et al., 

2019). The rapid adoption of these metrics is attributable to several properties that make 

them highly amenable to clinical application, as follows. Being MRI-based, they can be 

performed without radiotracers. Measured in the resting state, they require no task-paradigm 

training and minimize in-scanner compliance, thereby facilitating application in clinical and 

developmental populations (Cole et al., 2010). With short (12–16 min) acquisitions, analysis 

pipelines can be performed reliably (Birn et al., 2013) using semi-automated toolboxes such 

as BRANT (https://sphinx-doc-brant.readthedocs.io/), CONN (https://web.conntoolbox.org/) 

and DPARSF (rfmri.org/). These voxel-based metrics and coordinate-based reporting can 

be further used for cross-study meta-analytic comparisons (Sha et al., 2018; Zang et al., 

2015), providing statistically valid generalizations of disease patterns (Fox et al., 2014). A 

notable shortcoming of these methods, however, is that their physiological interpretations 
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are problematic, with a paucity of studies testing their correspondence to traditional 

hemodynamic and metabolic physiological variables.

The low-frequency band of the BOLD signals is considered reflective of neuronal activity 

(Biswal et al., 1995), which exhibits periodicity at rest (Golanov et al., 1994). Physiological 

models demonstrate that the BOLD signal responses are convolved functions of blood 

volume, blood flow, and utilization rates of oxygen and glucose (Buxton et al., 1998; Heeger 

and Ress, 2002; Raichle, 1998). Neuronal-modulated hemodynamic fluctuation in BOLD 

signals can be mostly separated from non-neuronal systemic fluctuations due to cardiac and 

respiratory cycles by applying low-frequency-band-pass filters (0.01–0.1 Hz, or 0.01 – 0.08 

Hz) (Birn et al., 2006; Bumstead et al., 2017; Cordes et al., 2000; Frederick et al., 2012; 

Magri et al., 2012), although not entirely (Birn et al., 2006; Shmueli et al., 2007; Xifra-

Porxas et al., 2021). To quantify dynamics of neuronally modulated BOLD fluctuations, 

several voxel-based metrics were developed, including fluctuation amplitude (Zang et al., 

2007; Zou et al., 2008), fluctuation coherence among neighboring voxels (Zang et al., 

2004), and others (Garrett et al., 2013a; Salvador et al., 2007; Tomasi and Volkow, 2010a; 

Wink et al., 2006). Amplitude of low frequency fluctuations (ALFF) models the amplitude 

of a specific frequency band (usually 0.01–0.1 Hz) of BOLD oscillations. Fractional 

ALFF (fALFF) normalizes ALFF with the amplitude of the entire frequency spectrum to 

reflect the relative contribution of low-frequency fluctuations to the entire pattern (Zou et 

al., 2008). Regional homogeneity (ReHo) estimates local synchronization of band-filtered 

BOLD signal among neighboring voxels and, thereby, indicates a co-varying cluster of 

voxels (Zang et al., 2004). As voxel-based metrics of the BOLD signal, ALFF, fALFF and 

ReHo are considered to be reflective of local brain properties - independent of long-range 

connectivity- in spatially discrete regions (Li et al., 2012a,b; Lv et al., 2018). However, the 

pattern of associations and causal links between these voxel-based BOLD metrics and more 

traditional voxel-based physiological variables are not well characterized. This shortcoming 

impedes the physiological interpretation of voxel-wise rsfMRI findings, particularly in the 

context of neurological and psychiatric disorders and aging-related processes (Gauthier et 

al., 2013; Girouard and Iadecola, 2006).

Physiological inferences of voxel-based BOLD metrics can be augmented by using a multi-

modality, quantitative imaging approach, an endeavor which has been applied in several 

reports. Arterial Spin labeling MRI and 18F fluorodeoxyglucose (18FDG) positron emission 

tomography (PET), in conjunction with rsfMRI, have shown that hemodynamics and 

metabolism are closely associated with BOLD-based metrics (Aiello et al., 2015; Bernier 

et al., 2017; Fan et al., 2019; Li et al., 2012a,b; Zhang et al., 2018a). Notably, the relative 

metabolic correspondences of ALFF, fALFF and ReHo are not well established. We would 

argue that because of the intrinsic complexity of hemodynamic and metabolic influences 

on the BOLD signal, a comprehensive physiological battery is needed to disentangle the 

respective contributions of these physiological variables to voxel-based BOLD metrics. 

Further, the functional architecture of the brain also influences hemodynamic-metabolic 

coupling, necessitating that optimal interpretation of the BOLD-PET interplay must take 

these network-based regional variations into account (Di et al., 2019; Di and Biswal, 2012, 

2017; Mueller et al., 2013; Taylor et al., 2012; Wehrl et al., 2013; Xu et al., 2019).
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As hemodynamics and metabolism exhibit strong coupling in the resting state (Hillman, 

2014), constancy of local blood supply is most likely regulated to meet the demand of 

oxidative phosphorylation of glucose (Fox and Raichle, 1986; Lenz et al., 1998, 1999; 

Roy and Sherrington, 1890), which entails delivery of oxygen and glucose, and removal 

of metabolic byproducts. ALFF, fALFF and ReHo – although they are hemodynamically 

derived measures – likely will be mostly driven by, or covary with, baseline metabolic 

demand, as quantified by metabolic rate of glucose (MRGlu) and metabolic rate of oxygen 

(MRO2). Recent reports, using information theory metrics to quantify causality and non-

linear relationships in functional neuroimaging, show that blood volume (BV) and MRO2 

have predominant driving influences on blood flow (BF) in neonatal brain (Nourhashemi, 

2020; Nourhashemi et al., 2017). This inferential strategy has also been used to quantify 

causal relationships of voxel-based BOLD metrics and traditional voxel-based physiology, 

by implementing conditional and interaction analyses with information theory metrics 

(Rosas et al., 2019), an approach emulated here.

The current study sought: (1) to inform physiological interpretations of widely-used BOLD-

based rsfMRI metrics (ALFF, fALFF and ReHo); and, (2) to test the coupling hypothesis 

of ALFF/fALFF/ReHo with MRGlu and MRO2. To this end, resting-state measures with 

two functional imaging modalities were employed: PET and fMRI. PET was used to 

measure glucose consumption (metabolic rate of glucose, MRGlu), oxygen consumption 

(metabolic rate of oxygen, MRO2) and hemodynamics (cerebral blood volume, BV; cerebral 

blood flow, BF). T2* BOLD was used for a variety of VBP fMRI measurements. 

Linear associations between voxel-based BOLD metrics, metabolic and hemodynamic 

physiological variables were identified in across-region and across-subject comparisons. 

Further, physiological information underlying the voxel-based BOLD metrics was quantified 

via mutual information and conditional mutual information analyses.

2. Methods

The study protocol was approved by the Institutional Review Board of The University of 

Texas Health Science Center at San Antonio (HSC20170187H). The radioactive contrast 

agents used were approved by the institutional Radioactive Drug Research Committee, and 

an Investigational New Drug Application (IND number: 039789).

2.1. Participants

Study participation was limited to young, healthy controls. Exclusion criteria determined 

by medical history were: systemic disorders (e.g., diabetes, hypertension), neurological or 

psychiatric disorders, metal implants, claustrophobia, and pregnancy. Non-pregnancy was 

confirmed by pregnancy test prior to study enrollment. Sixteen participants (8 males, M, and 

8 females, F, 27.5±5.0 years old) were recruited.

2.2. Study procedures

Each subject received MR and PET acquisition on the same day. The MR and PET 

scanners are physically adjacent (< 1 min walk). For each subject, the MR session 

included: structural MRI and resting-state fMRI. The PET scan session included: arterial 

Deng et al. Page 4

Neuroimage. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and venous catheterization, transmission scan, two three-tracer 15O tracer sessions and one 
18FDG session. All 16 subjects completed the first 15O PET session. Ten subjects (5M/5F, 

26.1±4.3 years old) completed both first and second 15O PET sessions. (From this cohort, 

demographics and test-retest reliability have been previously reported (Jiang, 2020)). Eleven 

11 subjects (4M/7F, 26.5 ±4.7 years old) completed the 18FDG session. Fifteen subjects 

(7M/8F, 26.2 ± 4.4 years old) completed the rsfMRI session.

Plasma glucose, hematocrit were measured from venous blood samples obtained before 

the PET session. Urinary human chorionic go nadotropin was obtained from women 

participants. Arterial oxygenation saturation (Ya) was measured using a pulse oximeter 

during the MR session. All data were de-identified.

2.3. MRI Acquisitions

All MRI experiments were performed on a Siemens 3T system (Trio, Siemens Healthcare, 

Erlangen, Germany), with a transmitting body coil and a 12-channel receiving head coil. 

Foam padding was placed to minimize intra-scanning head motion.

Each subject first underwent an anatomical scan using a T1-weighted Magnetization-

Prepared-RApid-Gradient-Echo (MPRAGE) sequence, with the following parameters: 

sagittal slice, voxel size = 1.0 mm isotropic; TR/TE/TI = 2100/4.2/1100 ms; Matrix = 256 

(readout direction) × 224 (phase-encoding direction) × 176 (slices); echospacing = 9.4 ms; 

scan duration = 4.3 min.

Resting-state fMRI was performed using a multiband T2*-weighted gradient echo EPI 

sequences (Xu et al., 2013), with the following parameters: multi band factor =3; voxel size 

= 2.4 mm isotropic; TR/TE = 1400/30 ms; Matrix = 88 × 88 × 60 (slices); flip angle = 52°; 

700 volumes; scan duration = 16 min. Before the scan began, subjects were instructed to 

stay still and awake with eyes closed, similar to the resting condition in the PET session. 

Before the rsfMRI acquisition, subjects were again reminded not to move any part of their 

body and to keep their eyes closed.

2.4. PET acquisitions

The PET data were acquired on a CTI ECAT HR+ scanner (Siemens, Knoxville, TN). A 

thermoplastic facial mask was used to minimize head motion during scans. The 15O-labeled 

tracers were produced by an onsite cyclotron (MC-17, Scanditronix Magnet AB, Sweden).

Before the PET scans, an catheter was placed in a radial artery; an antecubital venous 

catheter was placed in the contralateral forearm. A transmission scan was performed for 

attenuation correction.

Subsequently, two sessions of 15O PET scans were performed to sequentially quantify PET-

based BV, BF and MRO2, with different radiotracers (C15O, H2
15O, and 15O2). Acquisition 

parameters details for 15O PET have been described in (Jiang et al., 2021).

For the 18FDG scans, after bolus intravenous administration of 5mCi±10% FDG, 70 frames 

of 3D dynamic emission scans were acquired over 70 min (70 frames x 1 min). Sixteen 

Deng et al. Page 5

Neuroimage. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arterial blood samples (about 1.5 mL each) were collected to calculate the arterial input 

function (6 × 30s, 10 × 10min). After centrifuge, blood serum was extracted to determine the 

arterial input function.

During scans and arterial blood sample acquisition, subjects laid quietly in a dark room 

with their eyes closed. PET reconstruction was by filtered back-projection using a 3 mm 

smoothing kernel, resulting in a voxel size of 2.0 × 2.0 × 2.4 (slice) mm3.

2.5. RsfMRI data processing

Calculation of ALFF, fALFF and ReHo was performed in Matlab (Mathworks Inc.) using 

DPARSF (V5.1, http://rfmri.org/DPARSF) (Yan and Zang, 2010). The first 10 time points 

were deleted. The EPI images were slice-timing corrected and realigned. Subsequently, 

EPI images were regressed for nuisance covariates that were unrelated to neuronal activity 

(white matter, CSF, and head motion). Nuisance regression used Friston 24-parameter model 

for head motion (Friston, 1996). For white matter, and CSF, the mean timeseries across 

voxels were regressed out, using DPARSF default recommended parameters. To eliminate 

the effects of spatial smoothing on the indices, the original voxel size (2.4mm) was used in 

the spatial normalization using DARTEL (Ashburner, 2007).

ALFF/fALFF were calculated with filtered signals within the low-frequency range (0.01–

0.08 Hz) without additional filtering. Specifically, fractional ALFF was computed by the 

ratio of the filtered frequency band (0.01 – 0.08 Hz) against the whole-available frequency 

band (limited by the imaging acquisition). ReHo was computed via Kendall’s coefficient of 

concordance (KCC) as a local coherence metric of BOLD signal (Zang et al., 2007), with 27 

neighboring voxels without smoothing.

All parametric images were calculated in native space and then normalized to the 2 mm 

Montreal Neurological Institute (MNI) template (Fonov et al., 2009).

To validate the reliability of the resting state scan, the 16 min time series were split into half 

samples (350 volumes per half-sample) and the same analyses as the whole time series (700 

volumes) were performed. Inter-class correlations were computed to quantify the reliability 

of BOLD metrics between the two split datasets and between the first 350 volume versus 

the whole 700 volume dataset. Additionally, framewise displacement of the 16 min scan 

was calculated to indicate the quality of resting state acquisition, using FSL. Together, 

resting state fMRI reliability was quantified with framewise displacement during acquisition 

and voxel-wise inter-class correlation (ICC) of BOLD metrics, applying the gray matter 

mask from MNI ICBM 152 template. Generally, ICC > 0.75 was considered of excellent 

agreement.

To simplify cross-subject comparisons, various normalization methods were applied to the 

rsfMRI metrics. ALFF/fALFF/ReHo was transformed into Z-scores by subtracting mean 

values within the gray matter mask, and then dividing by the standard variation within 

the mask. Two types of reported normalized rsfMRI metrics (z-normalized, and demeaned, 

with a MNI gray matter and white matter mask) were also provided for further analyses, 

as normalized ALFF/fALFF/ReHo is commonly used in the literature. These two types of 
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normalized maps (z-normalized and demeaned) were primarily used in visualizing spatial 

similarities between rsfMRI metrics and PET hemodynamic-metabolic metrics, and inter-

subject comparisons.

2.6. PET data processing

Modeling was performed per subject using the Raichle method for BF (Raichle et al., 1983) 

and BV (Grubb et al., 1978)), the Mintun method for MRO2 (Mintun et al., 1984), and the 

Phelps method for MRGlu (Phelps et al., 1979) with blood volume correction threshold of 

8 ml/100g. The brain tissue density was assumed to be 1.05 g/ml. The small vessel to large 

vessel hematocrit ratio was assumed to be 0.85 (Grubb et al., 1973). For robust BV and 

MRO2 estimation, minimal delay and dispersion correction were performed, in accordance 

with other studies (Cho et al., 2020). Other details for 15O PET scans and processing are 

described in a previous publication (Jiang et al., 2021).

Dynamic 18FDG raw data were corrected for potential motion using rigid-body (6 DOF) 

registration between each frame and the mean images using FLIRT in FSL (Jenkinson, 

2001), with a mutual information cost function. Signals in the last 40 min were used for 

kinetic analyses using the Schimidt model (Schmidt et al., 1992). For static MRGlu, the 

lumped constant was set to 0.52. Effects of blood volume in BF and MRO2 were corrected 

in the modeling methods. The effect of blood volume in MRGlu was corrected using the 

BV map as weights. Venous vasculature in the BV map was masked using a threshold of 8 

mL/100 g and further manual inspection.

Parametric maps of BF, MRO2 and MRGlu were linearly registered to individual T1w 

brain images with FLIRT, and then non-linearly normalized to 2mm MNI ICBM space 

using FNIRT in FSL (Jenkinson et al., 2002; Jenkinson and Smith, 2001), with a mutual 

information cost function. BV maps were normalized with the deformation maps generated 

during spatial normalization of BF maps. Per findings in related reports, partial volume 

effects cause minimal overestimation of the correlations between FDG/MRGlu and ALFF/

ReHo (Jiao et al., 2019). Head motion during dynamic scans may introduce errors during 

partial volume correction, especially when signal-to-noise ratio is low (Bettinardi et al., 

2014). Partial volume effect correction in raw data was not performed, except for BF using 

the Iida method (Iida, 1988; Iida et al., 1991). To minimize partial volume effects in regional 

analysis, no additional smoothing was applied beyond registration and spatial normalization, 

as suggested in recent metabolism-flow-coupling reports (Cho et al., 2020; Fan, 2020; 

Henriksen et al., 2021; Hyder, 2016; Ishii, 2020; Narciso, 2021; Wesolowski et al., 2019). 

A threshold of BV (>10) was chosen to exclude any voxels that are likely to be in the large 

vein ventricles.

2.7. Statistical analyses

2.7.1. Spatial similarity—Spatial similarity between the z-normalized metrics was 

performed with voxel-wise paired T-test in each pair, to identify regions with significantly 

different regional contrasts between the modalities. Multiple comparison correction was 

performed with the Threshold Free Cluster Enhancement algorithm in PALM (Winkler et 

al., 2014) (family wise estimation corrected p threshold of 0.05, 5000 permutations), as null 
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models for multi-modality brain imaging are still being actively develped (Alexander-Bloch 

et al., 2018; Markello and Misic, 2021). Surface views were rendered using BrainNet Viewer 

(Xia et al., 2013), with a corrected p threshold of 0.01. Voxel-wise spatial cross-correlations 

across the gray matter and white matter were quantified using fslcc in the FSL toolbox. 

Due to differences in acquisition protocols, image contrast mechanisms, spatial and temporal 

resolution, MR measurements of BOLD signal and PET measurement of brain physiology 

were considered as independent. Per-subject static images were concatenated into a 4D 

image as input for fslcc.

2.7.2. Across-region correlation—The across-region correlation analysis was 

performed for each pair of metrics in group averaged images by Pearson’s linear correlation, 

both in a weighted and unweighted manner. Tests of normality were performed before 

running the linear correlations. Mean values of each metric in standardized space were 

extracted using AAL-specified regions (116 ROIs for each metric). To avoid potential 

signals from non-gray-matter tissues, no dilation of ROIs was implemented. Additionally, 

to inform the effect of gray matter/white matter contribution to the correlation of values, 

partial correlations regressing out gray matter and white matter probability were performed 

in a voxel wise manner (details in Supplementary Result 1.2 Table D). As all images 

were normalized to the MNI 2 mm template, gray matter (GM) and white matter (WM) 

probability were estimated with the gray matter and white matter partial volume maps of 

the MNI template, using FSL FAST. This partial correlation approach was performed on a 

voxel-wise basis rather than on a ROI basis. The reason for this is that the value distribution 

of GM/WM probability within AAL ROIs were heavily tailed and had many extreme values 

(0 and 1), with the ROI-mean value of GM/WM probability not truly representing the 

probability of GM/WM. Consequentially, the resulting mean values of ROIs in the GM/WM 

probability map did not truly represent overall GM/WM partial volume effect within a 

ROI. To further clean potential signals from white matter and CSF, a group-averaged 

gray matter probability mask, generated by DARTEL segmentation, was applied prior to 

choosing the respective ROIs. Before the calculation of correlation, ROI values outside of 

25%–75% quantiles were considered as outliers and removed in the subsequent analyses. 

A one-sample t-test was performed on correlation coefficients using Matlab, to test against 

the null hypothesis that the mean correlation coefficient was zero. For multiple comparison 

correction, a threshold of P < 0.0001 was utilized, (Bonferroni correction p = 0.05/116 = 

0.00043).

2.7.3. Mutual information—Mutual information (MI) and other information theoretic 

quantities were calculated with the GCMI toolbox in (https://github.com/robince/gcmi). 

Conceptually, the entropy of each metric in group-averaged maps was quantified in bits 

with bias correction (Ince et al., 2017a). Conventional MI and Gaussian-Copula Mutual 

Information (MI normalized with Gaussian-Copula) were computed for each pair of metrics. 

To investigate interaction and synergy properties, conditional GCMI was calculated for each 

rsfMRI metric with various pairs of BF, BV, MRO2 and MRGlu. The term “condition” 

indicated how much MI is shared within two primary variables given the MI of the 

conditional variable is removed. Interaction Information (II) was calculated by subtracting 

MI with conditional MI to compare coupling or synergistic characters in different rsfMRI-
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PET combinations, with the high II indicating synergistic and low II indicating coupling 

tendency. Theoretically, conditional MI is non-negative, while II can be positive, zero, or 

negative.

3. Results

Fig. 1 illustrates the acquisition and processing pipeline of the dataset. Mean values in 

gray matter, white matter and gray matter + white matter are reported (Supplementary 

Results 1.1 Table A). As this paper focuses on group-level physiological interpretation of 

BOLD metrics, PET-data reliability was quantified with inter-subject coefficient of variation 

(Supplementary Results 1.1 Table A).

For head-motion during rsfMRI acquisition, mean framewise displacement of the whole 

imaging series across subjects was 0.22 ± 0.06 mm. This was consistent with the framewise 

displacement in first half of time-series (0.21 ± 0.05 mm) and in the second half (0.23 ± 0.06 

mm).

As for reproducibility of BOLD metrics, inter-class correlation of BOLD metrics computed 

from the split dataset were all larger than 0.75 (ALFF: 0.86 ± 0.16, fALFF: 0.88 ± 0.16, 

ReHo: 0.84 ± 0.15). Inter-class correlation between the first dataset (340 volumes) and the 

whole-time-series dataset (700 volumes) were larger than 0.75 as well (ALFF: 0.88 ± 0.16, 

fALFF: 0.88 ± 0.16, ReHo: 0.91 ± 0.16. Additionally, for BOLD-PET associations, the 

two subsets of data were similar to the whole dataset in across region correlation analyses 

(Supplementary Results 1.1 Table B).

Fig. 2 illustrates spatial similarities between voxel-based BOLD matrices and the PET 

hemodynamic-metabolic battery in z-normalized values, (original values are compared in 

Supplementary Fig. 1). To quantify the spatial similarity, spatial cross-correlations between 

BOLD and PET metrics were reported on group-averaged level (Table 1, A). Paired T-test 

(Fig. 3) identified regions of different values between the z-normalized maps. The pattern 

identified by voxel-wise T-test agreed with the voxel-wise cross correlation results (Table 

1, upper), as follows. Spatial contrast (i.e. z-normalized value) of ALFF was similar to BV, 

with few voxels identified as significantly different in Fig. 3a. Like-wise, spatial contrast 

of fALFF and ReHo were not different from BF and MRO2 (Fig. 3f, 3g, 3j, 3k). Although 

fALFF and ReHo had the highest voxel-wise spatial cross correlation with MRGlu, there 

were specific regions that the z-normalized values of fALFF and ReHo did not agree with 

z-normalized MRGlu (Fig. 3h, 3i). The detailed layout of these surface-projected maps is 

provided in the Supplementary Materials 2.2, 2.3 and 2.4.

Across-region correlation confirmed the metabolic correspondence of fALFF and ReHo 

values. fALFF and ReHo were highly correlated to MRGlu and MRO2; ALFF was 

correlated to BV. This pattern was quantified in group-level, across-voxel correlations, as 

follows (Fig. 4, Table 1, lower). ALFF and fALFF were correlated with BV (r = 0.64, 

0.68; p < 0.0001); fALFF and ReHo were significantly correlated with BF (r = 0.68, 

0.50), MRO2 (r = 0.68, 0.54) and MRGlu (r = 0.79, 0.78, highest) (p < 0.0001). ALFF, 

though correlated with ReHo and fALFF, did not show strong significant correlations with 
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BF, MRO2, and MRGlu. For PET measurements, strong correlations of MRGlu-MRO2 

and BF-MRO2 were identified in the current dataset (Supplementary Results 1.2 Table A). 

Spearman partial correlation, regressing out partial volume contribution of gray matter and 

white matter on a voxel wise basis, showed results in good agreement with the across-region 

results (Supplementary Results 1.2 Table D). ROI-based partial volume correction was not 

performed in the ROI-based analyses (illustrated in Methods 2.7 Statistical analyses).

Pearson correlations weighted for the size of the ROIs (AAL template), indicated the same 

pattern of association, with slightly higher correlation coefficients in BF, MRO2, and MRGlu 

(Supplementary 2.5 Fig. 5). Specifically, the correlation of BV versus ALFF/fALFF/ReHo 

was not likely to be affected by weights. Mutual information indices (MI and GCMI) across 

voxels further verified the association pattern, suggesting that fALFF and ReHo contained 

information from blood flow, oxygen, and glucose utilization. As GCMI is a normalized 

form of conventional Mutual Information (Ince et al., 2017a), GCMI was generally lower in 

values than MI.

To further investigate whether the above-reported BOLD-metabolic correspondence is 

consistent in per-subject findings, voxel-wise cross correlation and region-wise linear 

correlation across modalities were also reported in Table 1 c and d. Overall, the degree 

of correlation is consistent (i.e. small standard deviation of the correlation coefficient), 

but the strength of correlation is weak (i.e. the p value is larger, and the correlation 

coefficient is smaller). Only ReHo showed a similar significant association with MRGlu 

(p < 0.0001 after Bonferroni correction), while fALFF and ALFF showed non-significant 

weaker correlations with respective metrics. Additionally, the respective metabolic and 

hemodynamic correspondence of both z-normalized and demeaned BOLD metrics were 

provided in Supplementary Result 1.2 Table B and C, as these results were in good 

agreement with the major findings to be reported in the manuscript.

Using AAL regions sampled within the brain, conditional MI further characterized the 

coupled and non-coupled physiological association of rsfMRI metrics (Fig. 5). Fractional 

ALFF and ReHo still contained information from oxygen and glucose consumption, 

when neglecting the contribution of BF (Fig. 5 c, with BF as a condition, conditional 

MI all > 0.1 bits). On the other hand, BF-specific information was minimal when 

neglecting the contributions of oxygen or glucose consumption (Fig. 5 d and e, with 

MRO2 and MRGlu as conditions, conditional MI all < 0.03 bits). There was limited 

MRO2 information when neglecting the contribution of BF. This discrepancy indicates that 

the BF information in fALFF/ReHo was highly metabolically coupled. When neglecting 

MRO2-specific information, MRGlu specific information remained in the fALFF and ReHo 

signal (conditional MI = 0.24, 0.41 bits, respectively). After removing the MRGlu-specific 

information, minimal BF and MRO2 information remained in the fALFF and ReHo signal 

(Fig. 5 e). Mutual information and conditional mutual information are theoretically nonzero. 

Interaction information can be either positive, negative or zero, which is reported to be 

suggestive to causality besides descriptive statistics (Colenbier et al., 2020; Ghassami and 

Kiyavash, 2017; Nourhashemi et al., 2017; Young et al., 2021).
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Interaction Information was highest with a combination of fALFF, MRO2, and MRGlu 

(likewise for ReHo, MRO2, and MRGlu), indicating these combined variables are 

synergistic (Fig. 4 right). Interactions between ReHo/fALFF, BF, and MRO2 were not 

as high as interactions between ReHo/fALFF, MRO2, and MRGlu, indicating that a part 

of BOLD-metabolic interactions was not likely to be flow coupled. Negative interaction 

information (Ince et al., 2017a) in ALFF indicated the non-weak association among BF, 

MRO2, and MRGlu. Specifically, negative but close to zero (<0.01 bits) values were 

identified in conditional mutual information analyses. Negative interaction information was 

identified between ALFF:CBF/MRO2:MRGlu (<-0.01 bits). This indicates that although 

mutual information ALFF:MRGlu is very close to zero, both ALFF and MRGlu are 

associated with CBF and MRO2.

4. Discussion

The overarching hypothesis of voxel-based BOLD-metabolic coupling was confirmed for 

fALFF and ReHo and disconfirmed for ALFF. CMGlu and, to a lesser degree, MRO2 

provided the preponderance of metabolic information for fALFF and ReHo. Blood flow 

information in fALFF and ReHo were largely metabolically coupled. By contrast, ALFF 

was most strongly correlated with BV, having little information from MRGlu, MRO2 or 

BF. Regional and network-specific inter-subject correlations demonstrated that BV robustly 

covaried with ALFF, fALFF, and ReHo in frontoparietal and cerebellum networks across 

subjects. In these robust BOLD-physiology coupled regions, conditional mutual information 

analyses also identified non-flow-coupled metabolic information in fALFF and ReHo 

(Supplementary Fig. 2.6). Additionally, the blood flow information contained in fALFF 

and ReHo was largely metabolic coupled.

A paucity of studies have addressed the hemodynamic-metabolic correspondence of ALFF, 

fALFF, and ReHo. Li (Li et al., 2012b) and Aiello (Aiello et al., 2015) first reported spatial 

similarities of ALFF and ReHo versus blood flow and glucose metabolism, respectively, 

in the resting state brain. These early studies reported across-region correlations of ReHo 

and FDG uptake to be 0.47–0.73 (Aiello et al., 2015), 0.51–0.83 (Fu et al., 2018) and 

0.68 (Bernier et al., 2017) using different temporal-filtering and ROI sampling methods. 

All of these prior reports are in agreement with coefficients observed in the current data 

(0.78). As well, significant correlations of fALFF/ReHo, BF/MRO2, MRO2/MRGlu, and 

BF/BV in the current dataset (Supplementary Results 1.2. Table A) indicated the reliability 

of respective measurements, as such coupling relations at rest have been demonstrated in 

an extensive literature (fALFF/ReHo (Nugent et al., 2015; Yuan et al., 2013), BF/MRO2 

(Fox and Raichle, 1986), MRO2/MRGlu (Vaishnavi et al., 2010), and BF/BV (Grandin et al., 

2005; Wesolowski, 2019).

For BOLD-hemodynamic association, across-region correlation of voxel-based BOLD 

metrics and BF, as measured with Arterial Spin Labelling MRI, was reported to be 

0.41–0.49 for ALFF (Li et al., 2012b; Zou, 2015), and 0.19–0.28 for ReHo (Li et al., 

2012b), while the current data showed a weaker correlation (weighted r (ALFF/BF) = 

0.43 Supplementary Fig. 5; r(mALFF/BF) = 0.37, r(mReHo/BF) = 0.50, Supplementary 

Results 1.2 Table B). Variations of findings in the ALFF/BF association may be due to 
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different normalization methods, accuracy of registration, underlying venous vasculature (Li 

et al., 2012b; Vigneau-Roy et al., 2014) and proximity to ventricles in ROI samples (Zuo 

et al., 2010). Also, PET calculation of BF corrects for blood volume contamination via a 

small-to-large vessel ratio, which limits the contribution of BV in the current ALFF/BF 

analyses. Indeed, some studies showed that regions with high baseline BF may not have a 

high fluctuation amplitude (Zou et al., 2009).

Across-voxel correlation of normalized ALFF and MRGlu is not significant in the current 

study, although reported as significant in other studies (Nugent et al., 2015; Tomasi et 

al., 2013). One prior study compared regional MRGlu to normalized ALFF and reported 

nonsignificant correlation in young adults (r = 0.001) (Bernier et al., 2017). Potential 

explanations for this disagreement are the BV correction in the MRGlu calculation, and 

the different frequency of filtering in the current study compared with initial reports by 

Tomasi and Nugent. A recent study by Jiao et al. (2019), which used multiple band-filtering 

methods including the band used in the current study (0.01 – 0.08 Hz), reported a weak 

but significant correlation between ALFF/MRGlu (r = 0.198), and moderate correlations 

between fALFF and ReHo versus MRGlu (r = 0.30, 0.53, respectively), which partly overlap 

with the current findings.

On the other hand, a significant correlation between ALFF and BV was observed. BV has 

been considered as a measurement of venous vasculature (Martin et al., 1987) and as a 

marker of microvascular density (Pathak et al., 2001). Vascular density and oxygenation in 

venules are found to contribute largely to the amplitude of the BOLD signal at rest, with 

an across-region correlation of 0.43 (Vigneau-Roy et al., 2014). This is in line with the 

current findings of ALFF/BV correlation, which shows stronger across-region correlation 

(r = 0.64, Table 1a; weighted r = 0.70, Supplementary Fig. 2.5). This association is partly 

concordant with the resting state findings of Kim et al. (1994) and with modeling of 

neurally induced oxygenation changes described by (Turner, 2002), which found that the 

amplitude of BOLD signals was greater along draining veins. In highly vascularized voxels, 

hemodynamic fluctuations, such as vasomotion and oscillation of microcirculation around 

0.1 Hz (Mayhew et al., 1996; Razavi et al., 2008), may contribute to the ALFF signal 

(Vigneau-Roy et al., 2014). This hypothesis may explain findings in patients with glioma, 

where an increase of ALFF and cerebral blood volume both accompany tumor-induced 

neovascularization (Emblem et al., 2008; Yang et al., 2021). Also, cortical areas with higher 

baseline BV show a higher BOLD response at task (Davis, 1998; Vigneau-Roy et al., 2014; 

Yu et al., 2012).

Mutual information theory (MIT) analyses were used to inform causal inference and 

interactions regarding voxel-based BOLD metrics and PET hemodynamic, and metabolic 

metrics. A multi-collinearity relation exists among the voxel-based BOLD metrics, glucose 

and oxygen utilization, blood volume and blood flow at rest. In this situation, statistical 

inferences methods, such as partial correlation and general linear modeling, may inflate 

the variance of regression and mislead inferences regarding relevance (Dormann et al., 

2013). Mutual information theory can supplement correlation analyses by quantifying 

shared information among variables including potential non-linear non-monotonic 

interdependencies (Song et al., 2012). MIT has been applied to quantify correlations of 
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structural-functional image registration (Maes et al., 1997), neuron oscillatory dynamics 

(Schyns et al., 2011), and, more recently, functional neuroimaging data (Ince et al., 2017a). 

Beyond the strength of association, mutual information can estimate coupling/synergy 

properties between BOLD-based and PET metabolic-hemodynamic metrics, via conditional 

and interaction analyses (Ince et al., 2017a; Olbrich, 2015). With this measurement, the 

metabolic information in fALFF and ReHo signal was reconfirmed. This supports the notion 

that fALFF and ReHo are potentially metabolic proxies (Bernier et al., 2017).

With multi-level conditional MI analyses, the respective contributions of hemodynamic 

and metabolic metrics were confirmed. After removing the effect of MRGlu or MRO2, 

the remaining physiological information in fALFF and ReHo was minimal. This indicates 

that baseline BF information in fALFF and ReHo is largely attributable to underlying 

metabolic utilization. Jiang and Zuo (Jiang and Zuo, 2016) hypothesized that regions 

with high MRGlu showed enhanced ReHo due to enhanced hemodynamics, as higher 

glucose utilization requires higher perfusion (Huisman, 2012). The statistical inference 

from mutual information supports this causal inference: the fALFF/ReHo-BF association 

is likely to reflect inherent BOLD-metabolic coupling. Recent reports, using similar MIT 

measurements, show that BV and MRO2 drive baseline BF in neonatal brain in the resting 

state (Nourhashemi, 2020; Nourhashemi et al., 2017). These information theory findings 

extended early findings that different metabolic-demand conditions at rest may alter the ratio 

between low-amplitude BOLD and perfusion fluctuations (Fukunaga et al., 2008).

Also, conditional MI indicated that the metabolic information in voxel-based BOLD metrics 

was not accompanied by blood flow demand. Glucose, as a fuel of brain, is incorporated 

into neuronal glutamate (Shen et al., 1999) along with ongoing metabolic activities in 

neurons (Shen, 2013). Cerebral metabolic rate of glucose consumption is reflective of 

energy demand during oxidative phosphorylation of glucose, part of which covaries with 

metabolic rate of oxygen consumption, and glycolysis processes (Huettel et al., 2004; 

Magistretti et al., 1999; Raichle and Mintun, 2006). Further, glucose consumption is 

associated with glutamatergic synaptic activity (Shen et al., 1999) and synaptic density 

(Rocher et al., 2003; Stoessl, 2017). Beyond these associations, MRGlu is highly correlated 

with gamma-aminobutyric acid A–binding function across the whole brain (Nugent et al., 

2015), potentially due to coupled GABA and glutamate activities at rest (Tremblay et al., 

2013). Recent in vivo studies of glucose utilization and synaptic density further report 

regional variation of this association, partly because of varying levels of aerobic glycolysis 

and energy demand of inhibitory/excitatory synapses (van Aalst et al., 2021). Although 

no direct comparison of fALFF, ReHo versus glutamatergic/GABAergic function has been 

reported in the literature, there is evidence of an association between synaptic activity and 

BOLD signal at rest (Ekstrom, 2010). A supporting hypothesis is that synaptic changes 

will affect MRO2 (Di and Biswal, 2017). The change in synaptic activity, before and after 

motor training, is accompanied by baseline changes in MRO2 and MRGlu, but not in BF 

(Shannon et al., 2016). Therefore, the BOLD signal has great potential to map longitudinal 

disease-related synaptic and baseline metabolism changes (Brickman et al., 2009; Small, 

2003). A recent report indicated that increased glutamate is accompanied by decreased 

ReHo in basal ganglia in a subtype of depression, although an exact explanation is lacking 
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(Haroon et al., 2018). Clarification of the association between ReHo and synaptic function 

requires further experimentation.

In the current study, normalized MRGlu did not agree with zfALFF and zReHo in some 

brain regions, showing a spatial pattern consistent with another recent report by Wang 

(Wang, 2021). This replicable regional disagreement superimposed upon a pattern of overall 

concordance, may be due to the different time-scales of by PET and BOLD MRI, per Wang 

(Wang, 2021). As an alternative explanation, regional metabolic-balance (MR02:MRglu) 

variations may be in play. Although the temporal and regional linkage between neural 

activity and cerebral blood flow is generally considered consistent at rest (Phillips et al., 

2016), metabolic-pathways preferences can differ regionally. Vaishnavi et al., 2010 reported 

that the MRglu:MRO2 ratio varied regionally, with some regions (e.g. medial frontal and 

posterior cingulate) consuming excess glucose. Comparison of BOLD-based metrics with 

MRglu indicated a similar pattern of (Shokri-Kojori et al., 2019). Interestingly, the same 

regional pattern was observed in our current data for MRGlu-fALFF/ReHo disagreement, 

after intensity normalization.

On the other hand, the intensity normalization applied in the current study may also 

change regional contrast. Although z-normalization is recommended as increasing the 

inter-subject reliability of BOLD metrics (Yan et al., 2013), intensity normalization may 

alter image texture (Carré et al., 2020) and disease-related effects (Nugent et al., 2020). 

Given the prevailing application of intensity normalization in both rsfMRI and PET 

community, further investigation is needed to determine whether the regional disagreement 

of normalized BOLD and MRGlu contrast is reflective of regional difference in physiology 

or a normalization artifact.

Given that low-pass filtering (<0.08 or 0.1 Hz) is commonly used in voxel-wised BOLD 

metrics analyses as a default pipeline (Yan and Zang, 2010), several studies have reported 

that BOLD fluctuations at frequencies below 0.1 Hz can share variances with fluctuation in 

cardiac/respiratory recordings (heart rate and respiratory bellows) (Birn et al., 2006; Chang 

et al., 2009; Chen et al., 2020; Power et al., 2017; Shmueli et al., 2007; Xifra-Porxas 

et al., 2021), end-tidal CO2 and arterial CO2 levels (Chang and Glover, 2009b; Lewis et 

al., 2020; Liu et al., 2017; Prokopiou et al., 2019), and pulse oximetry (Verstynen and 

Deshpande, 2011). Multiple model-based, data-driven, and hybrid noise-removal strategies 

are being actively developed (Beckmann et al., 2005; Behzadi et al., 2007; Birn et al., 

2008; Chang and Glover, 2009a; Kasper et al., 2017; Kassinopoulos and Mitsis, 2019; 

Kundu et al., 2012; Power et al., 2017, 2018; Pruim et al., 2015). Although these 

studies are mostly focusing on inter-regional functional connectivity, non-neuronally-driven 

physiological confounds on voxel-wise BOLD metrics call for further investigation. Indeed, 

global signal regression not only has effect on inter-regional BOLD signal correlation 

(i.e. functional connectivity) (Murphy and Fox, 2017), but also have complex effects on 

voxel-wise physiological metrics (Qing et al., 2015). As an alternative to global signal 

regression, nuisance signal regression of motion parameters, mean white-matter and CSF 

time series was implemented to reduce non-neuronally driven BOLD fluctuations on 

the current study, in accordance with a pipeline readily available to the neuroimaging 

community (Yan et al., 2013; Yan and Zang, 2010). Nonetheless, the band-pass filtering and 
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nuisance signal regression applied in the current study did not remove entirely the influence 

from non-neuronal systemic fluctuations. Of note, the remaining signals, although driven by 

hemodynamics during respiration bellows, cerebral-vascular reactivity and/or cardiac cycles, 

also can show regional variability that is spatially similar to specific brain networks (Bright 

et al., 2020; Chen et al., 2020). Additionally, a recent animal study illustrates regional 

variability of neurovascular-metabolic coupling between cortical and sub-cortical regions 

(Shaw et al., 2021). Together, filtered BOLD signals are reported to covary both with local 

vasculature and systematic hemodynamics, which also are considered to be informative 

for brain functional architecture. To improve BOLD signal quality and interpretation, more 

advanced casual inference strategies are needed to better link BOLD-derived metrics with 

the information underlying neuronal activity (Ekstrom, 2021), as explored in the current 

mutual information analyses.

4.1. Limitations and future directions

The current study has several limitations, as follows. The first limitation is the potential 

contribution of signals from large vessels. Previous studies have demonstrated the necessity 

of removing pixels containing large vessels for BF and BV analyses (Kudo et al., 2003). 

In the current study, the contribution from the large vessel is corrected via an overall 

threshold in the BV maps, a small-to-large vessel ratio in the BF calculation, and correction 

of blood volume signal in MRO2/MRGlu calculation. Using a lower threshold in the BV 

map could improve the correlation between BV and fALFF/ReHo, but would also eliminate 

true gray matter pixels. Indeed, reports which have positive ALFF/ MRGlu, and ALFF/BF 

correlations did not perform blood volume correction for the FDG and BF data, due to 

limitations of data acquisition.

Another limitation is the possible effect of partial volume correction. Earlier studies reported 

a considerable effect of partial volume correction on correlation coefficients (Aiello et 

al., 2016; Jiao et al., 2019). Specifically, Jiao et al., 2019 reported that partial volume 

correction on FDG images will lower the coefficient, but not the significance of findings. 

This result agrees with a quantitative study comparing MRGlu and rsfMRI indices using a 

static FDG acquisition (Aiello et al., 2016). Indeed, partial volume correction on raw PET 

data with MR images may influence the accuracy of kinetic modeling and produce spatially 

different metabolic patterns (Aiello et al., 2016; Andersen et al., 2014; Greve et al., 2016; 

Hitz et al., 2014). There is limited consensus on optimal correction methods for dynamic 

PET data (dynamic 15O and 18F data in the current study), largely due to intra-scanning 

head-motion and low image contrast (Bettinardi et al., 2014; Greve et al., 2016). To keep the 

processing pipeline consistent among different PET tracers, partial volume correction was 

not performed on a regional basis. There may be a potential overestimation of the correlation 

coefficient, but the significance of the current findings is not likely to be hindered, as 

indicated in other studies (Aiello et al., 2016; Jiao et al., 2019).

The influence of band filtering and normalization for voxel-based BOLD metrics on the 

BOLD-physiology association is not negligible. Jiao et al., 2019 demonstrates that ALFF-

FDG correlation is dependent on denoising methods such as frequency band of filtering 

and global signal regression. In an attempt to inform the physiological interpretation of 
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the most widely used rsfMRI metrics, the current study implemented a conventional band 

(0.01 – 0.08 Hz), consistent with previous quantitative studies that identified fALFF/ReHo/

MRGlu correlation (Aiello et al., 2016). Also, several studies normalize the rsfMRI metrics 

with demeaning or z-standardization (Zuo et al., 2013), especially for ALFF, to eliminate 

inter-subject variation. To investigate the metabolic origin of BOLD metrics, the correlation 

of original rsfMRI metrics versus PET metrics is reported, with some of the normalized 

results in the supplementary materials. Interestingly, significant findings in across-subject 

comparisons are consistent in both original and normalized rsfMRI metrics, indicating that 

network-specific across-subject correlations are greater than the whole-brain variation in 

healthy subjects.

During the resting state acquisition of PET scans, subjects were in an eyes-closed condition 

with ongoing arterial blood sampling, sample-time recording and blood-sample counting. 

For rsfMRI, a similar eye-closed condition was chosen, although the alertness of the subjects 

during the 16 min scan was a concern. For rsfMRI, an eyes-open condition is often used, but 

can induced regional changes in the BOLD signal (Jao, 2013). Even with eye fixation, there 

is fluctuation in eye position (with attendant BOLD-signal changes) (Fransson, 2014). Given 

that equivalently reproducible patterns of fMRI have been described for both the eyes-closed 

and eyes-open conditions (Liu, 2013), the current study used eyes closed condition to keep 

consistent with the eyes close condition in the preponderance of PET studies. In the MRI 

preparation, the subjects were instructed to keep their eyes closed and not to move their 

body, including extremities and eyes. Before the actual acquisition of rsfMRI protocol, 

the subjects were notified again and asked to confirm with response. Nonetheless, level of 

alertness is among potential confounding factors in the current design of the resting state 

PET-MR study.

The sample size of the current study is small as compared with earlier studies. Some initial 

resting state studies reporting FDG association of ALFF have 54 subjects (Tomasi et al., 

2013), 48 subjects (Liang et al., 2013a) and 26 subjects (Aiello et al., 2015). None of the 

prior studies, however, had all the traditional hemodynamic-metabolic variables measured 

in the same subject. Thus, the current dataset is unique, reporting a complete set of PET 

metabolic (MRGlu MRO2), hemodynamic (BF, BV) and multi-band resting-state fMRI in 

each subject. Also, the PET and rs-fMRI measurements were not acquired simultaneously, 

even though confounding metabolic variables (diet, caffeine, activity condition during scans, 

time of day, etc) are largely restricted.

The current study implemented mutual information analyses mainly as a descriptive tool 

supplementary to correlation methods, while second-level mutual information analyses can 

further inform causality. The contribution of global and different vessel BOLD signals to 

the resting-state functional connectivity can also be decomposed with conditional mutual 

information analyses (Colenbier et al., 2020). The causality (i.e directionality) of BV/MRO2 

on BF can be inferred with transfer entropy and mutual information analyses (Nourhashemi 

et al., 2017). With conditional mutual information of BF in the current dataset, blood 

flow information in BOLD metrics was considered as a result of BOLD-metabolic 

correspondence, rather than an origin. Indeed, the mutual information approach for directed 

causality inference is being actively developed (Young et al., 2021; Varley, 2021), and is 
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not yet validated in large-scale multi-modality neuroimaging dataset. Therefore, the current 

study emphasized mutual information descriptions of the multi-linear relation between 

BOLD metrics, brain hemodynamics and metabolism.

Finally, extension of the current work should explore the hemodynamic-metabolic 

correspondence of rsfMRI indices in a dynamic manner, including simultaneous acquisition 

using PET/MRI. Also, regional and network-specific hemodynamic-metabolic inferences 

regarding rsfMRI are needed for a more comprehensive and concrete physiological 

interpretation. In agreement with recent reports from Wang et al. (Wang, 2021), the regional 

disagreement of MRGlu and fALFF/ReHo, superimposing the overall BOLD-metabolic 

concordance, calls for further investigation. Current findings of non-flow coupled metabolic 

information in fALFF and ReHo needs future studies to characterize the exact relationship.

5. Conclusions

Consistent with previous studies, the current study detailed across-region correlations of 

static ALFF, fractional ALFF and ReHo versus voxel-based hemodynamic and metabolic 

variables. The current study provided strong evidence that hemodynamic features in the 

voxel-based BOLD signal at rest are reflective of underlying metabolic demand. Further, 

non-flow-coupled metabolic information in fALFF and ReHo was identified. The findings in 

the current study supports the notion that fALFF and ReHo can be considered as metabolic 

proxies.
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Refer to Web version on PubMed Central for supplementary material.
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ReHo regional homogeneity

fALFF fractional amplitude of low frequency fluctuations

MRGlu metabolic rate of glucose

MRO2 metabolic rate of oxygen

BF blood flow

BV blood volume

FDG fluorodeoxyglucose

MRI magnetic resonance imaging

PET positron emission tomography

rsfMRI resting state functional magnetic resonance imaging

BOLD blood oxygenation level dependent

EPI echoplanar imaging

MI mutual information

II interaction information

GCMI gaussian-copula mutual information

GM gray matter

WM white matter

F female

M male

AAL automated anatomical labelling (atlas)

MNI montreal neurological institute (atlas)

ROI region of interest

Ya arterial oxygen saturation

VBP voxel-based physiology
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Fig. 1. 
Illustration of data acquisition of the study.

Fig. 1A illustrates MRI procedures. Fig. 1B illustrates PET procedures. The PET 15O 

session is further illustrated in 1C. The overall timeline of the experiment for each subject is 

illustraed in 1D. Timing of PET acquisition is illustrated in 1E. Arrows in 1E indicate bolus 

administrations of radiotracers, either through inhalation or intravenous injection.
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Fig. 2. 
Spatial Similarities between ALFF, ReHo versus the PET Hemodynamic-metabolic Battery.

Group-averaged images are spatially normalized to MNI 152 template (2mm isotropic 

resolution).Z-normalization are performed on normalized images within the gray matter and 

white matter mask. The scale of the color bar is −1.5 to 1.5.
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Fig. 3. 
Regions Showing Different Regional Contrast in the Voxel-wise BOLD-PET Paired 

Comparisons.

Maps from individual subjects in each modality are z-normalized as Fig. 2, maintaining 

regional contrast, and compared pair-wise, resulting in voxel-wise p maps. Scale of the 

color bar before negative log transform is (0.0001, 0.01). Regions of gray color do not 

have significantly different values (z-normalized), indicating the spatial contrast are not 

significantly different.
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Fig. 4. 
Linear Regression of BOLD Indices (ALFF, fALFF and ReHo) and PET Hemodynamic-

metabolic Battery (BV, BF, MRO2 and MRGlu).

Blue dots indicate mean values acquired with gray matter AAL region as ROIs on group-

averaged images. Resulting correlation coefficient are reported in the Supplementary Results 

1.2 Table A.
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Fig. 5. 
Conditional Mutual Information and Interaction Information Analyses of BOLD Metrics 

and PET Hemodynamic-metabolic Battery. Conditional MI for ALFF, fALFF and ReHo 

are presented in separated tables. The mutual information in each pair of comparison, after 

statistically removing the effect of a certain condition. Scale of the color bar is 0–0.4. In 

the conditional mutual information analyses, the metrics that being used as a condition will 

not be computed with a conditional mutual information and interaction information, which is 

listed as “n.a.” (not available) in gray color.

Deng et al. Page 32

Neuroimage. Author manuscript; available in PMC 2023 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Deng et al. Page 33

Ta
b

le
 1

V
ox

el
-w

is
e 

cr
os

s 
co

rr
el

at
io

n 
an

d 
re

gi
on

-w
is

e 
lin

ea
r 

co
rr

el
at

io
n 

am
on

g 
B

O
L

D
 a

nd
 P

E
T

 m
et

ri
cs

.

G
ro

up
 A

ve
ra

ge
d

Pe
r-

Su
bj

ec
t

(a
)

V
ox

el
-w

is
e 

C
ro

ss
 C

or
re

la
tio

n
(c

)
V

ox
el

-w
is

e 
C

ro
ss

 C
or

re
la

tio
n

A
L

FF
fA

L
FF

R
eH

o
A

L
FF

 ±
0.

10
fA

L
FF

R
eH

o

M
R

G
lu

−
0.

1
0.

49
0.

63
M

R
G

lu
−

0.
05

±
0.

06
0.

29
±

 0
.0

5
0.

41
±

0.
05

M
R

O
2

0.
06

0.
39

0.
53

M
R

O
2

0.
02

±
0.

05
0.

16
±

 0
.0

4
0.

24
±

0.
05

B
F

0.
15

0.
36

0.
49

B
F

0.
07

±
0.

06
0.

15
±

 0
.0

4
0.

23
±

0.
05

B
V

0.
29

0.
31

0.
37

B
V

0.
18

±
0.

07
0.

14
±

 0
.0

6
0.

18
±

0.
08

(b
)

A
cr

os
s-

re
gi

on
 L

in
ea

r 
C

or
re

la
tio

n
(d

)
A

cr
os

s-
re

gi
on

 L
in

ea
r 

C
or

re
la

tio
n

A
L

FF
fA

L
FF

R
eH

o
A

L
FF

fA
L

FF
R

eH
o

M
R

G
lu

0.
04

0.
79

*
0.

78
*

M
R

G
lu

−
0.

42
±

0.
12

0.
49

±
0.

17
0.

60
 ±

0.
10

*

M
R

O
2

0.
29

0.
68

*
0.

54
*

M
R

O
2

−
0.

08
±

0.
15

0.
22

±
0.

09
0.

29
 ±

0.
12

B
F

0.
37

*
0.

68
*

0.
50

*
B

F
−

0.
02

±
 0

.2
1

0.
12

±
0.

11
0.

20
 ±

0.
11

B
V

0.
64

*
0.

68
*

0.
50

*
B

V
0.

27
±

0.
12

0.
05

±
0.

17
−

0.
03

±
0.

10

Ta
bl

e 
1 

(a
) 

an
d 

(b
):

 S
pa

tia
l s

im
ila

ri
ty

 a
nd

 v
al

ue
 c

or
re

sp
on

de
nc

e 
on

 g
ro

up
-a

ve
ra

ge
d 

im
ag

es
. T

ab
le

 1
 (

c)
 a

nd
 (

d)
: S

pa
tia

l s
im

ila
ri

ty
 a

nd
 v

al
ue

 c
or

re
sp

on
de

nc
e 

on
 p

er
-s

ub
je

ct
 im

ag
es

 (
m

ea
n 

an
d 

st
an

da
rd

 
de

vi
at

io
n)

. V
ox

el
-w

is
e 

cr
os

s 
co

rr
el

at
io

n,
 c

om
pu

te
 b

y 
fs

lc
c,

 d
oe

s 
no

t o
ut

pu
t a

 p
 v

al
ue

. V
ox

el
-w

is
e 

cr
os

s 
co

rr
el

at
io

n 
is

 p
er

fo
rm

ed
 o

n 
or

ig
in

al
 im

ag
es

, t
o 

qu
an

tif
y 

sp
at

ia
l s

im
ila

ri
ty

.

* P 
<

 0
.0

00
1

Neuroimage. Author manuscript; available in PMC 2023 April 15.


	Abstract
	Introduction
	Methods
	Participants
	Study procedures
	MRI Acquisitions
	PET acquisitions
	RsfMRI data processing
	PET data processing
	Statistical analyses
	Spatial similarity
	Across-region correlation
	Mutual information


	Results
	Discussion
	Limitations and future directions

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1

