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ABSTRACT: Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this
problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different
diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the
pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened
drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore,
pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover,
the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together,
astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic
agent in the treatment of Ewing sarcoma.

1. INTRODUCTION
Drug development is a time-consuming and overpriced process
with particularly low success and relatively high failure rates.
To overcome such problems, there are multiple computational
drug-designing approaches, including drug repositioning that is
being used nowadays.1 Drug repositioning approaches assist in
minimizing the cost and time of the drug development process
due to their known efficacy and therapeutic potential against
other diseases.2 There are various computational methods such
as feature-based methods, matrix decomposition-based meth-
ods, network-based methods, and reverse transcriptome-based
methods for drug repositioning.3,4 However, it has been
observed that drug development efforts for the treatment of
Ewing sarcoma (ES) have been largely unsuccessful in the last
decade.5

ES is a cancerous tumor usually observed in bones and other
soft tissues like cartilages and nerve tissues, respectively.6

There are different types of ES based on the position of the
tumor within the body, such as extraosseous and bone
sarcomas, skin tumor, and peripheral primitive neuroectoder-
mal tumor (pPNET). ES usually occurs in the pelvic region,
shoulder blades, ribs, and femur bones.7,8 The major symptoms

of ES are long-lasting fever, pain in bones, swelling of muscular
and nerve tissues, and stiffness of long bones.9 It has been
observed that Ewing tumors account for 10% of malignancies
in humans and metastasize to the other parts of the body more
frequently like bone marrow and lungs.10 A prior research
report showed that the Ewing sarcoma protein (EWS) is the
basic target of ES and is directly involved in the formation of
ES bone carcinogenesis.11 EWS is an RNA binding protein that
binds to Friend leukemia integration 1 transcription factor
FLI1 forming EWS/FLI1 fusion protein. The N-terminus of
the EWS/FLI1 domain allows EWS/FLI1 to bind with RNA
polymerase II and recruit the barrier-to-autointegration factor
complex. However, the C-terminus of EWS/FLI1 retains the
DNA-binding domain of FLI1 and particularly binds with the
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ACCGGAAG core sequence. The EWS/FLI1 is preferentially
bound to GGAA-repetitive regions, and there is a positive
correlation between the GGAA microsatellites, EWS/FLI1
binding, and target gene expression.12

In the current study, a drug repositioning approach is
employed to screen the Food and Drug Administration
(FDA)-approved drugs against ES. The human Ewing protein
is used as a receptor molecule to screen FDA-approved drugs
through a shape-based screening approach. Pazopanib was
used as a standard template to access similar ligand structures
from FDA-approved compounds through the SwissSimilarity
approach. The screened hits having similar chemical structures
were accessed from the FDA-approved list and underwent
molecular docking analysis using PyRx. Moreover, pharmaco-
genomics analysis (drug−genes interactions) was carried out
by checking all possible genes against all selected drugs. The
best-selected drugs were again examined by a docking
procedure with AutoDock to check their binding affinities
against the Ewing sarcoma protein. Finally, the best-generated
docked complexes were further analyzed through molecular
dynamics simulations to observe the structural stability
through RMSD, RMSF, Rg, and SASA graphs.

2. COMPUTATIONAL METHODOLOGY
2.1. Retrieval of Protein Structure. The three-dimen-

sional (3D) solution structure of the RNA recognition motif of
the Ewing Sarcoma (EWS) protein having PDBID 2CPE
(https://www.rcsb.org/structure/2CPE) was retrieved from
the Protein Data Bank and its energy was minimized with
UCSF Chimera 1.10.1 using conjugate gradient algorithm and
Amber force field.13 The structural assessment of the Ewing
sarcoma protein such as α-helices, β-sheets, coils, and turns
was confirmed through the VADAR 1.8 (http://vadar.
wishartlab.com/) server. The Discovery Studio 2.1.0 Client
was used to view the 3D structure of the target protein and for
the generation of Ramachandran graphs.14

2.2. Shape-Based Screening of FDA-Approved Drugs
Using SwissSimilarity. The SwissSimilarity15 is an online
platform that allows one to identify similar chemical hits from
FDA and other libraries with respect to the reference template
structure. Pazopanib (Votrient) is an anticancer FDA-
approved drug that was used as the reference template
structure against ES.16,17 The chemical structure of pazopanib
was retrieved from the Drug Bank (DB06589) and used as a
template molecule to screen FDA-approved drugs. All of the
screened drugs were ranked according to their predicted
similarity score values (Table S2). The best-screened drugs
were sketched in ACD/ChemSketch and further utilized for
docking experiments.
2.3. Prediction of Active Binding Sites of the Ewing

Sarcoma Protein. The Prankweb (http://prankweb.cz/) is
an online source that explores the probability of amino acids
involved in the formation of active binding sites. The binding
pocket information was not available in PDB; therefore, active
binding site residues of the Ewing sarcoma protein were
predicted using Prankweb.
2.4. Molecular Docking Using PyRx and AutoDock.

Before conducting our docking experiments, all of the screened
drugs were sketched in the ACD/ChemSketch tool and
accessed in the mol format. Furthermore, the UCSF Chimera
1.10.1 tool was employed for energy minimization of each
ligand having default parameters such as steepest descent and
conjugate gradient with 100 steps with a step size of 0.02 (Å),

and the update interval was fixed at 10. In the PyRx docking
experiment, all screened drugs were docked with the Ewing
sarcoma protein using the default procedure.18 Before docking,
the binding pocket of the target protein was confirmed from
Prankweb and literature data. In docking experiments, the grid
box dimension values were adjusted as center − X = −0.8961,
Y = −1.6716, and Z = 0.3732, whereas size − X = 37.8273, Y =
36.5416, and Z = 36.5756, respectively, with the default
exhaustiveness value = 8. The grid box size was adjusted on
binding pocket residues to allow the ligand to move freely in
the search space. Furthermore, the generated docked
complexes were keenly analyzed to view their binding
conformational poses at the active binding site of the Ewing
sarcoma protein. Moreover, these docked complexes were
evaluated based on the lowest binding energy (kcal/mol)
values and binding interaction patterns between ligands and
target proteins. The graphical depictions of all of the docked
complexes were accomplished with UCSF Chimera 1.10.1 and
Discovery Studio (2.1.0).
Furthermore, another docking experiment was employed on

best-screened drugs against the Ewing sarcoma protein using
the AutoDock 4.2 tool.19 In brief, for the receptor protein, the
polar hydrogen atoms and Kollman charges were assigned. For
the ligand, the Gasteiger partial charges were designated, and
nonpolar hydrogen atoms were merged. All of the torsion
angles for screened drugs were set free to rotate through the
docking experiment. A grid map of 80 × 80 × 80 Å3 was
adjusted on the binding pocket of the Ewing sarcoma protein
to generate the grid map and to obtain the best conformational
state of docking. A total of 100 runs were adjusted using
docking experiments. The Lamarckian genetic algorithm
(LGA) and empirical free energy function were applied by
taking docking parameters default. All of the docked complexes
were further evaluated on the lowest binding energy (kcal/
mol) values, and hydrogen and hydrophobic interaction
analysis using Discovery Studio (2.1.0) and UCSF Chimera
1.10.1 was performed.

2.5. Designing of Pharmacogenomics Networks. To
design the pharmacogenomics network model for best-selected
drugs, Drug Gene Interaction Databases (DGIdb) (https://
www.dgidb.org/) and Drug Signatures Database (DSigDB)
(http://dsigdb.tanlab.org/DSigDBv1.0/) were employed to
obtain the possible list of different disease-associated genes.
Furthermore, a detailed literature survey was performed against
all predicted genes to identify their involvement in ES.
Moreover, clumps of different disease-associated genes were
sorted based on Ewing sarcoma, and the remaining disease-
associated genes were eliminated from the data set.

2.6. Molecular Dynamics (MD) Simulations. The best-
screened drug-EWS complexes having good energy values were
selected to understand the residual backbone flexibility of
protein structure; MD simulations were carried out using the
Groningen Machine for Chemicals Simulations (GROMACS)
4.5.4 package20 with GROMOS 96 force field.21 The protein
topology was designed by pdb2gmx command by employing
GROMOS 96 force field. For ligand topology, all three drugs
were separated from docking complexes and retrieved in the
mol format using UCSF Chimera. Furthermore, SwissParam
(https://www.swissparam.ch/), an online server, was used to
generate ligands topologies files. Finally, both generated
topologies (protein and ligand coordinates) were merged to
run the simulation. Additionally, a simulation box with a
minimum distance to any wall of 10 Å (1.0 nm) was generated
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on the complex by the editconf command. Moreover, the box
was filled with solvent molecules using the gmx solvate
command by employing the spc216.gro water model. The
overall system charge was neutralized by adding ions. The
steepest descent approach (1000 ps) for protein structure was
applied for energy minimization. For energy minimization, the
nsteps = 50 000 were adjusted with an energy step size
(emstep) value of 0.01. The Particle Mesh Ewald (PME)
method was employed for energy calculation and for
electrostatic and van der Waals interactions; cutoff distance
for the short-range VdW (rvdw) was set at 14 Å, whereas
neighbor list (rlist) and nstlist values were adjusted as 1.0 and
10, respectively, in the em.mdp file.22 This method permits the
use of the Ewald summation at a computational cost
comparable to that of a simple truncation method of 10 Å
or less, and the linear constraint solver (LINCS)23 algorithm
was used for covalent bond constraints and the time step was
set to 0.002 ps. Finally, the molecular dynamics simulation was
carried out at 100 ns with nsteps 50 000 000 in the md.mdp
file. Different structural evaluations such as root mean square
deviations and fluctuations (RMSD/RMSF), solvent-accessible
surface areas (SASA), and radii of gyration (Rg) of backbone

residues were analyzed through Xmgrace software (http://
plasma-gate.weizmann.ac.il/Grace/) and UCSF Chimera
1.10.1 software.

3. RESULTS AND DISCUSSION

The overall design of the research is depicted in Figure 1,
showing the flow starting from screening the FDA database
into the best-screened drug having good therapeutic potential
against ES. Figure 1 shows the different computational
evaluation steps such as protein retrieval, drug screening,
docking, pharmacogenomic, and MD simulation studies at
both protein and drugs level to find out the keen and best
possible chemical hits against ES.

3.1. Structural Assessment of the Ewing Sarcoma
Protein. The Ewing sarcoma protein belongs to a class of
hydrolases and consists of a single chain and comprises 113
amino acids (346−458 AA). The overall protein structure
shows loops, α-helices, and β-sheets. It has been observed that
two twisted loop structures were present at the terminal
regions of the EWS protein and the central binding cavity of
helices. Moreover, VADAR 1.8 structure analysis depicted that
EWS consists of 25% α-helices, 30% β-sheets, 43% coils, and

Figure 1. Drug repositioning of ES.

Figure 2. (A, B) 3D structure of the Ewing sarcoma protein with Ramachandran graph.
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20% turns. The Ramachandran plots and values indicated that
93.5% of amino acids exist in the favored region with good
accuracy of phi (φ) and psi (ψ) angles. Moreover, the
coordinates of EWS residues were also plunged into the
acceptable region. The overall protein structure and
Ramachandran graphs are shown in Figure 2A,B.
3.2. Shape-Based Screening and Retrieval of Similar

Drugs. In the drug repositioning approach, the shape-based
screening, pharmacogenomics and molecular docking simu-
lation are considered significant parameters to predict the
possible therapeutic effects of known drugs against different
targets.1,24 Pazopanib was used as a standard drug against
ES25−27 and used as a template to screen FDA-approved drugs
having a similar skeleton. In our computational results,
SwissSimilarity results showed 100 FDA-approved drugs that
were selected from the pool of 220 FDA-approved drugs based
on similarity scoring values ranging from 0.005 to 0.998 (Table
S1). Of the 100 FDA-approved drugs, 24 were selected based
on best scoring values and have been reported in Table 1.
Droperidol (0.015), delavirdine (0.010), irbesartan (0.014),
tasosartan (0.013), and apixaban (0.010) showed the highest-
scoring values as compared to the rest of all drugs. The
screened drugs were ranked based on similarity scoring values,
ranging from 0 to 1. The 0 value represents dissimilarity
between compounds, whereas 1 is used for highly identical
compounds in the screening approach.1 The chlorthalidone,
mazindol, and progabide showed a unique value of similarity
score of 0.005 as compared to the standard value. Therefore,
24 drugs were categorized based on the highest, lowest, and
medium scoring values and further employed for the docking
procedure to check which drug has good binding potential
inside the binding pocket of the target protein. Therefore, the
selection of drugs was made based on both similarity and
docking energy values (Table 1).
Although SwissSimilarity scoring values were low relative to

the reference standard value range, structural moieties were
similar at different parts in different screened FDA-approved
drugs with respect to the standard drug (pazopanib).
Therefore, a detailed docking study was run against all
screened 24 drugs to check their binding interactions behavior
in comparison with pazopanib. Based on these docking results,
drugs were selected for further analysis (Figure 3).
3.3. Binding Pocket Analysis of the EWS Protein. The

position of a ligand in the holostructure of a protein most
probably determines the binding pocket and channels of the
target protein.28 P2Rank is a novel machine learning-based
method for the prediction of ligand binding sites inside the

protein structure.29 PrankWeb, a web server built upon
P2Rank, was used by us to explore the binding pockets of
the target protein with different pocket sizes and positions
inside the target protein. Four different residue binding
pockets were predicted based on scoring values (3.52, 2.80,
1.18, and 0.98). The higher pocket score value is 3.52 and
constitutes amino acids (Asp359, Asn360, Ser361, Ala362,
Lys388, Met397, His399, Tyr401, Thr414, and Ser416) at the
central part of EWS. The Soluble Accessible Surface (SAS)
area represents the area having a propensity to interact with
neighboring atoms. Pocket 1 showed a good SAS value of 50 as
compared to other binding pocket values (37, 25, and 21) with
different amino acids of EWS (Figure 4). The graphical
representation of the binding pocket of EWS is highlighted and
depicted in Figure 5A,B.

3.4. Molecular Docking. 3.4.1. Binding Affinity Analysis
of Screened Drug through PyRx. Molecular docking is a
computational approach used to predict the binding conforma-
tional behavior of biomolecules, i.e., drugs and proteins.30−34

All of the screened drugs were docked and analyzed based on
binding affinity (kcal/mol) (see the Supplementary Data S2).
From docking results, it has been observed that from 100
FDA-approved drugs, 24 drugs showed binding affinity values
higher than −7 kcal/mol and may have good binding potential
inside the binding pocket of the EWS protein. The
comparative analysis showed that darifenacin (DB00496)
exhibited the highest binding affinity value of −9.2, whereas
the rest of the drugs showed values ranging from −7 to −9
kcal/mol (Table 2).

3.5. Pharmacogenomics Analysis. 3.5.1. Chlorthalidone,
Droperidol, Darifenacin, Adinozolam, and Mazindol. The
best-screened FDA-approved drugs having good binding
affinity results were further analyzed through pharmacoge-
nomics analysis. Pharmacogenomics aims to develop rational
means to optimize drug therapy with respect to the patients’
genotype to ensure maximum efficacy with minimal adverse
effects.35 In our computational analysis, a couple of
pharmacogenomics databases were employed to predict the
possible links of screened drugs with their respective genes and
their association with diseases. The drug’s predicted genes
were ranked based on interaction score values. In the
chlorthalidone−genes network, 10 genes (NPPA, SLC12A1,
AGT, SLC12A3, CA1, CA14, CA7, ACE, CA4, and MMP3)
were observed with different interaction values and their
association with multiple diseases (Table 3). Most of the genes
like SLC12A1, AGT, SLC12A3, ACE, and MMP3 are directly
involved in the osteosarcoma (a type of cancer that produces

Table 1. SwissSimilarity Scoring Values of FDA-Screened Drugs

drug bank ID screened drugs score drug bank ID screened drugs score

DB00310 chlorthalidone 0.005 DB01029 irbesartan 0.014
DB00450 droperidol 0.015 DB01122 ambenonium 0.008
DB00496 darifenacin 0.006 DB01138 sulfinpyrazone 0.007
DB00546 adinazolam 0.007 DB01342 forasartan 0.009
DB00579 mazindol 0.005 DB01349 tasosartan 0.013
DB00637 astemizole 0.006 DB01411 pranlukast 0.007
DB00643 mebendazole 0.006 DB06589 pazopanib 0.998
DB00705 delavirdine 0.010 DB06605 apixaban 0.010
DB00808 indapamide 0.008 DB08828 vismodegib 0.008
DB00837 progabide 0.005 DB08974 flubendazole 0.007
DB00972 azelastine 0.006 DB09003 clocapramine 0.006
DB01026 ketoconazole 0.008 DB00280 disopyramide 0.007
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immature bone). Therefore, chlorthalidone could be used as a
repositioned drug against bone cancer by targeting such gene-
encoded protein and their associated pathways (Table 3). In
droperidol−genes interactions, six genes, DRD2, KCNH2,

DRD4, ADRA1A, DRD3, and CYP2D6, have been observed to
have close interaction and involvement in different diseases.
The highest predicted interaction of droperidol was observed
with DRD2, which is directly linked with osteosarcoma of

Figure 3. Screened FDA-approved drugs.
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bones.36 Moreover, the predicted HTR2A is also involved in
osteosarcoma of bone, especially in childhood.37 Darifenacin
showed interactions with CHRM1/2, CHRM3, CHRM4,
CHRM5, and CYP2D6 genes with different correlation values.
Darifenacin−CHRM3 showed the highest interaction value
(0.61) and was involved in the osteosarcoma of bone.37

The Adinozolam−gene network showed that six genes,
GABRR1, GABRR3/2, GABRP, GABRE, GABRD, and
GABRG1, have a close association with Adinozolam having
different interaction values. Literature data showed that these
genes are involved in different disorders (Table 3); however,
there was no connection between these genes and ES or bone
osteosarcoma. Mazindol interacts with SLC6A3, SLC6A2,
SLC18A2, SLC6A4, NAT1, and HTT, having good interaction
values of 1.27, 0.97, 0.56, 0.21, 0.16, and 0.05, respectively. It
was observed that SLC6A2 and SLC18A2 have a close
association with childhood osteosarcoma in bone.38 The
osteosarcoma of bone in childhood is the basic characteristic
of ES; therefore, our proposed computational research favors
the chlorthalidone and mazindol could be used for ES after
evaluating and passing through clinical trials.
3.5.2. Astemizole, Indapamide, Delavirdine, Progabid,

Azelastine, and Ketoconazole Pharmacogenomic Analysis.
The astemizole pharmacogenomic analysis showed 10 genes,
EED, KCNH1, CYP2J2, HPSE, HRH1, KCNH2, PPARD,
ABCB1, CYP3A4, and CYP2D6, having different interaction
scoring values (Table 4). Our computational results showed
that astemizole has the potential to interact with multiple genes
that are directly linked with ES through different ways like
mutational or crosslinked signaling pathways. astemizole

showed the highest interaction value (7.57) with EED as
compared to other genes that are directly linked to ES.70

Moreover, astemizole has another interaction with the ABCB1
gene, which possesses a direct role in the etiology of ES.
Literature reports also showed that ABCB1 has a good
correlation with some diseases such as osteosarcoma of bone,
childhood osteosarcoma, sarcoma of soft tissues, fibrosarcoma,
adult fibrosarcoma, and peripheral primitive neuroectodermal
tumor.71−75 Another report showed that the KCNH1 and
HPSE genes are linked with multiple bone-associated diseases
such as childhood osteosarcoma, fibrosarcoma, and synovial
sarcoma.76−80 Indapamide interacts with SLC12A3, KCNE1,
KCNQ1, and APEX1 with different scoring values. Prior data
showed that SLC12A3 is involved in different diseases such as
sarcoma, neoplasms, chondrosarcoma, and adult synovial
sarcoma, respectively.42 Similarly, KCNE1, KCNQ1, and
APEX1 are linked with atrial fibrillation,81 adenocarcinomas,82

and adenocarcinoma of the lung.83

Another screened drug, delavirdine, showed possible
interactions with different genes such as ABCG2, ABCC3,
ABCC2, ABCC1, and ABCB1 with good interaction scoring
values. The literature data reports that all of the genes are
involved in the osteosarcoma, osteosarcoma of bone, child-
hood osteosarcoma, and fibrosarcoma.84−86 However, among
all five genes, ABCC1 is directly involved in ES through
different pathways.87,88 Therefore, our computational results
showed that delavirdine could also be used as a good chemical
scaffold for the treatment of ES after in vitro, in vivo, and
clinical trials.
Progabid showed interactions with GABBR1 and GABBA1,

respectively, which are causative partners of nasopharyngeal
carcinoma and osteochondrosis, respectively.89,90 The drug
network showed that azelastine showed interactions with
LTC4S, HRH1, HRH2, and PLA2G1B with different
interaction values. It has been observed that these genes are
myeloid leukemia, chronic atherogenesis, skin carcinoma, and
degenerative polyarthritis, respectively. Ketoconazole showed
interactions with CYP21A2, CYP3A43, CYP4F2, KCNA10,
CYP17A1, ABCG2, NR1I3, CYP3A4, NR1I2, and SNCA.
Literature data reported that among all 10 genes, four
(ABCG2, NR1I3, CYP3A4, and NR1I2) were involved in
childhood osteosarcoma84,91,92 (Table 4).

3.5.3. Irbesartan, Ambenonium, Sulfinpyrazone, Forasar-
tan, Tasosartan, Pranlukast, and Gene Interactions. In

Figure 4. Predicted binding pockets.

Figure 5. (A, B) Binding pocket of the EWS protein. The EWS protein is represented in cyan color, whereas the binding pocket site is highlighted
in yellow color with the labeling of different binding pocket residues.
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Irbesartan pharmacogenomic analysis, 10 genes (AGTR1,
SLC10A1, AGT, EDN1, APOB, APOE, ACE, JUN, SLC2A4,
and CYP2C9) were involved in interactions with different
scoring values. Among them, AGTR1, AGT, and SLC2A4 are
involved in osteosarcoma of bone, childhood osteosarcoma,
and osteoarthritis, respectively. However, the rest of the genes
were associated with different diseases (Table 5). Ambeno-
nium is associated with the acetylcholinesterase (AChE) gene,
which is directly involved in Alzheimer’s disease.113

Sulfinpyrazone showed interactions with SLC22A12,
ABCC1 and ABCC2, FPR1, UGT1A9, NR1I2, CYP3A4,
VDR, and HPGD, which are involved in renal hypouricemia,
fibrosarcoma, carcinogenesis, and different osteosarcomas.
Most importantly, the ABCC1 gene is also directly involved
in ES in different mechanistic pathways.87,88 Therefore,
computational prediction of the literature data justify that
sulfinpyrazone could be used as a screened drug against ES by
targeting ABCC1-encoded protein and their associated down-

Table 2. Binding Affinities of Screened Docking Complexes

accession numbers drugs complexes binding affinity (kcal/mol) accession numbers drug complexes binding affinity (kcal/mol)

DB00310 chlorthalidone −7.8 DB01029 irbesartan −7.2
DB00450 droperidol −7.2 DB01122 ambenonium −7.2
DB00496 darifenacin −9.2 DB01138 sulfinpyrazone −7
DB00546 adinazolam −7.7 DB01342 forasartan −7.8
DB00579 mazindol −7.4 DB01349 tasosartan −8.9
DB00637 astemizole −8.3 DB01411 pranlukast −8
DB00643 mebendazole −7.4 DB06589 pazopanib −7.6
DB00705 delavirdine −7.5 DB06605 apixaban −7.6
DB00808 indapamide −7 DB08828 vismodegib −7.7
DB00837 progabide −7.2 DB08974 flubendazole −7.1
DB00972 azelastine −8.7 DB09003 clocapramine −8.1
DB01026 ketoconazole −7.7 DB00280 disopyramide −7.1

Table 3. Screened Drugs Chlorthalidone, Droperidol, Darifenacin, Adinozolam, and Mazindol Association with Predicted
Genes

genes interaction scores functions/diseases references

chlorthalidone NPPA 5.68 osteoarthritis, spine 39
SLC12A1 3.03 osteosarcoma 40
AGT 0.33 childhood osteosarcoma 41
SLC12A3 0.32 sarcoma, neoplasms 42
CA1 0.44 neoplasms 43
CA14 0.41 malignant neoplasms 44
CA7 0.36 colorectal carcinoma 45
ACE 0.16 synovial sarcoma 46
CA4 0.25 retinitis pigmentosa 17 47
MMP3 0.21 osteosarcoma of bone; primary osteosarcoma 48, 49

droperidol DRD2 0.35 malignant bone neoplasm; osteosarcoma of bone 36
KCNH2 0.04 malignant neoplasm of prostate 50
DRD4 0.11 carcinoma of the lung 51
ADRA1A 0.09 osteoporosis 52
DRD3 0.08 neoplasms 53
CYP2D6 0.01 bone cysts, aneurysmal 54
HTR2A 0.04 osteosarcoma of bone; childhood osteosarcoma 37

darifenacin CHRM3 0.61 osteosarcoma of bone 37
CHRM1/2 0.32 mental depression 55
CHRM4 0.46 schizophrenia 56
CHRM5 0.45 systemic scleroderma 57
CYP2D6 0.03 eosinophilia-myalgia syndrome 58

adinozolam GABRR3/2 0.46 restless legs syndrome 59
GABRR1 0.43 migraine disorders 60
GABRP 0.22 tumor progression 61
GABRE 0.22 malignant neoplasms 62
GABRD 0.21 Rett syndrome 63
GABRG1 0.21 body height 64

mazindol SLC6A3 1.27 scoliosis 65
SLC6A2 0.97 childhood osteosarcoma; osteosarcoma of bone 66
SLC18A2 0.56 childhood osteosarcoma; osteosarcoma of bone 66
SLC6A4 0.21 synovial sarcoma 67
NAT1 0.16 neoplasms 68
HTT 0.05 Huntington Disease 69
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stream signaling pathways. Furthermore, a couple of other
drugs, forasartan and tasosartan, showed interactions with
AGTR1 and AGTR2, which are also connected with
osteosarcoma of bones.114,115

Pranlukast formed a complex with seven different genes such
as RNASE3, CYSLTR1, IL5, MUC2, CYSLTR2, TNF, and
NFKB1, which are involved in different diseases. Pranlukast−
RNASE3 showed the highest interaction value (20.29) as
compared to other pharmacogenomics complexes. Moreover,
the literature data showed that RNASE3 is involved in ES
through different mechanistic pathways. Therefore, computa-
tional prediction and literature mining suggest that pranlukast
could also be a good therapeutic agent against ES by targeting
RNASE3.116−118

3.5.4. Pazopanib, Apixaban, Vismodegib, Clocapramine,
and Disopyramide Pharmacogenomic Analysis. Pazopanib
showed interactions with SH2B3, FGF1, ABCG2, and HLA-B,
which play a key role in different diseases including leukemia,
osteosarcoma of bone, and ankylosing spondylitis, respectively.
Apixaban formed a pharmacogenomic complex with three
genes such as ABCG2, F10, and CYP3A5, respectively.
Literature data showed that these genes are mainly involved
in the osteosarcoma of bone in childhood and osteopo-

rosis.84,139 Vismodegib showed interactions with PTCH1,
SMO, and SHH with different interaction scoring values. Prior
data reported that these genes are involved in rhabdomyo-
sarcoma and osteoarthritis.140,141 Moreover, a couple of other
screened drugs, clocapramine and disopyramide, also formed
pharmacogenomic complexes with different genes, which are
involved in different diseases (Table 6).
Based on pharmacogenomics analysis and extensive data

mining of five screened FDA-approved drugs, chlorthalidone,
astemizole, ketoconazole, sulfinpyrazone, and pranlukast were
selected for further molecular docking and MD simulation
analysis. Figure 6 shows that these five drugs have direct
involvement in ES and related bone cancers. Chlorthalidone
has genomic interactions with different genes, which are
associated with different diseases. Similarly, astemizole has
pharmacogenomic interactions with different genes and is
associated with long bone cancer (ES), lung cancer, liver,
breast, and stomach sarcoma. It has been observed that
astemizole may be used as a good therapeutic potential against
Ewing sarcoma. The predicted pharmacogenomic results of
ketoconazole also showed its therapeutic potential against
osteoporosis (bone cancer) and different sarcomas. Sulfinpyr-
azone also has an association with osteoporosis and lung and

Table 4. Astemizole, Indapamide, Delavirdine, Progabid, Azelastine, and Ketoconazole Gene Interactions

genes
interaction
scores functions/diseases references

astemizole EED 7.57 Ewing sarcoma 70
KCNH1 0.95 osteosarcoma of bone; childhood osteosarcoma 76, 77
CYP2J2 0.76 carcinogenesis 93
HPSE 0.58 childhood osteosarcoma; fibrosarcoma; synovial sarcoma 78−80
HRH1 0.27 atherogenesis 94
KCNH2 0.12 malignant neoplasm of the prostate 50
PPARD 0.03 obesity 95
ABCB1 0.01 Ewing’s sarcoma; osteosarcoma of bone; childhood osteosarcoma; sarcoma of soft tissue; fibrosarcoma;

adult fibrosarcoma; peripheral primitive neuroectodermal tumor
71−75

CYP3A4 0.01 osteosarcoma 96
CYP2D6 0.01 bone cysts, aneurysmal 54

indapamide SLC12A3 3.94 sarcoma, neoplasms, chondrosarcoma, adult synovial sarcoma 42
KCNE1 7.1 atrial fibrillation 81
KCNQ1 5.01 adenocarcinoma 82
APEX1 0.08 adenocarcinoma of the lung 83

delavirdine ABCG2 0.36 childhood osteosarcoma; osteosarcoma of bone 84
ABCC3 0.91 carcinoma 85
ABCC2 0.42 sarcoma, fibrosarcoma 86
ABCC1 0.42 Ewing’s sarcoma of bone; osteosarcoma of bone; childhood osteosarcoma 87, 88
ABCB1 0.09 osteosarcoma of bone; childhood osteosarcoma 75, 97, 98

progabid GABBR1 15.49 nasopharyngeal carcinoma 89
GABRA1 1.76 osteochondrosis 90

azelastine LTC4S 7.1 myeloid leukemia, chronic 99
HRH1 1.08 atherogenesis 94
HRH2 1.58 skin carcinoma 100
PLA2G1B 0.92 degenerative polyarthritis 101

ketoconazole CYP21A2 4.37 congenital adrenal hyperplasia 102
CYP3A43 0.62 carcinogenesis 103
CYP4F2 0.55 hypertensive disease 104
KCNA10 0.31 brain neoplasms 105
CYP17A1 0.31 osteoporosis; carcinoma; spondylarthritis; spondylarthropathies 106−108
ABCG2 0.07 childhood osteosarcoma; osteosarcoma of bone 84
NR1I3 0.16 childhood osteosarcoma; osteosarcoma of bone; synovial sarcoma; exostoses 91, 92
CYP3A4 0.02 childhood osteosarcoma; osteoporosis; osteosarcoma of bone 96, 109
NR1I2 0.04 osteosarcoma of bone; adolescent idiopathic scoliosis 110, 111
SNCA 0.07 Parkinson disease 1 112
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stomach cancer. The comparative result showed that a couple
of screened FDA-approved drugs have a direct association with
bone cancer such as ES, which could be further used to check
their efficacy through cellular and clinical evaluations.
3.6. Binding Affinity Evaluations Using AutoDock.

Based on PyRx docking energy (kcal/mol) and pharmacoge-
nomics analysis, the best five drugs chlorthalidone (DB00310),
astemizole (DB00637), ketoconazole (DB01026), sulfinpyr-
azone (DB01138), and pranlukast (DB01411) have been
selected for further binding conformational analysis. The

generated AutoDock results showed the binding energy, drug
efficiency, and internal, electrostatic, and torsional energy
values (kcal/mol) of best-selected screened drugs (Table 7).

3.6.1. Superimposition of Screened Drugs within the
Active Region of the EWS Protein. All of the docked
structures were superimposed to check the binding config-
urations of all five screened drugs within the active region of
the EWS protein. The binding pocket analysis showed that all
of the screened FDA-approved drugs were narrowed in the
binding pocket and bound with similar residues with little

Table 5. Screened Drugs Irbesartan, Ambenonium, Sulfinpyrazone, Forasartan, Tasosartan, Pranlukast and Gene Interactions

genes interaction scores functions/diseases references

irbesartan AGTR1 1.76 osteosarcoma of bone; childhood osteosarcoma; osteoarthritis 114, 115
SLC10A1 4.73 hepatitis B 119
AGT 1.11 childhood osteosarcoma 41
EDN1 0.79 carcinogenesis 120
APOB 0.5 carcinogenesis 121
APOE 0.47 Alzheimer’s Disease 122
ACE 0.2 osteoporosis 123
JUN 0.3 osteosarcoma 124
SLC2A4 0.22 osteosarcoma of bone; childhood osteosarcoma 125
CYP2C9 0.04 ankylosing spondylitis 126

ambenonium ACHE 9.19 Alzheimer’s disease 113
sulfinpyrazone SLC22A12 2.37 renal hypouricemia 127

ABCC1 0.88 Ewing’s sarcoma of bone osteosarcoma of bone; childhood osteosarcoma 87, 88
ABCC2 0.79 sarcoma, fibrosarcoma 86
FPR1 0.59 carcinogenesis 128
UGT1A9 0.5 carcinoma 129
NR1I2 0.1 osteosarcoma of bone; adolescent idiopathic scoliosis 110, 111
CYP3A4 0.02 osteosarcoma 96
VDR 0.01 osteoporosis 130
HPGD 0.02 carcinogenesis 131

forasartan AGTR1 8.91 osteosarcoma of bone; childhood osteosarcoma; osteoarthritis, knee 114, 115
tasosartan AGTR1 5.01 osteosarcoma of bone; childhood osteosarcoma; osteoarthritis, knee 114, 115

AGTR2 7.1 hypertensive disease 132
pranlukast RNASE3 20.29 Ewing’s sarcoma of bone; osteosarcoma of bone; deformity of bone 116−118

CYSLTR1 6.09 carcinogenesis; adenocarcinoma 133
IL5 6.09 asthma 134
MUC2 6.09 carcinoma, signet ring cell 135
CYSLTR2 1.01 carcinogenesis 136
TNF 0.37 rheumatoid arthritis 137
NFKB1 0.25 osteosarcoma 138

Table 6. Screened Drugs Apixaban, Vismodegib, Clocapramine, Disopyramide, and Genomic Interactions

genes interaction scores functions/diseases references

pazopanib SH2B3 0.84 precursor cell lymphoblastic leukemia lymphoma 142
FGF1 0.36 osteosarcoma of bone; bone neoplasms 143, 144
ABCG2 0.04 childhood osteosarcoma of bone 84
HLA-B 0.15 ankylosing spondylitis 145

apixaban ABCG2 0.89 childhood osteosarcoma of bone 84
F10 2.41 osteoporosis 139
CYP3A5 0.54 neoplasms 146

vismodegib PTCH1 31.56 rhabdomyosarcoma 140
SMO 25.25 osteoarthritis of the hip 141
SHH 12.62 polydactyly 147

clocapramine PPARD 0.39 obesity 95
disopyramide KCNH2 0.1 malignant neoplasm of the prostate 50

CHRM2 0.16 mental depression 55
CHRM1 0.12 mental depression 55
CHRM3 0.09 osteosarcoma of bone 37
CYP2D6 0.01 bone cysts, aneurysmal 54
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different conformational poses within the binding pocket of the
EWS protein. The binding of all FDA-approved drugs at the
same position justified the docking reliability and the accuracy
of predicted interactive results (Figure 7).
3.6.2. Chlorthalidone Hydrogen Binding Analysis. The

chlorthalidone−EWS docked complex is analyzed based on the
interaction pattern of binding pocket residues of EWS. The
chlorthalidone binds with EWS having a good conformational
position inside the active region encompassed by His399,
Ile398, Leu374, Thr373, Val372, Pro409, and Leu402 residues,
respectively. The oxygen atom of the thiol group in
chlorthalidone formed hydrophobic interactions with His399
with a bond distance of 4.10 Å. Moreover, another oxygen
atom is present in the five-member ring of the drug forming
another hydrogen bond with Thr373 with a bond distance of
2.66 Å. In both chlorthalidone docking interactions both bonds
provided good stable behavior to the docking complex, and
bond distances were comparable to standard values (<5
hydrophobic and <3 Å hydrogen bonds), respectively (Figure
8).

3.6.3. Astemizole Hydrogen Binding Analysis. In astemi-
zole−EWS docking, astemizole binds within the target site of
EWS with an appropriate conformational position through
interaction with different residues, His399, Ser416, Met397,
Thr393, Gln395, Leu374, Ile400, and Ile398. The nitrogen
atom of the amino group attached to a heterocyclic group
formed a couple of hydrogen bonds with Ile398 and His399,
with bond distances of 2.14 and 3.06 Å, respectively. Both
astemizole interactions have good comparable values with
standard values (<5 hydrophobic and <3 Å hydrogen bonds),
respectively (Figure 9).

3.6.4. Ketoconazole Hydrogen Binding Analysis. In
ketoconazole−EWS docking, the drug binds with site-specific
residues with appropriate conformational behavior. Ketocona-
zole encompassed different Arg392, Asn390, Gln395, Leu374,
Thr373, Ile402, Ile400, His399, Ile398, and Met397 residues.
Four hydrogen bonds were observed between the ketocona-
zole−EWS docking complex. The oxygen atom of the benzene
ring formed tetrahydrogen bonds at Arg392 and Asn390 with
bond distances of 2.04, 2.81, 2.66, and 2.72 Å, respectively.

Figure 6. FDA-approved drugs and associations with ES.

Table 7. Binding Affinities of Screened Docking Complexes

drugs binding energy (kcal/mol) drug efficacy internal energy (kcal/mol) electrostatic (kcal/mol) torsional energy (kcal/mol)

chlorthalidone −4.88 0.22 5.18 0.01 0.3
astemizole −1.20 0.04 3.59 0.01 2.39
ketoconazole −0.66 0.02 2.15 0.15 1.49
sulfinpyrazone −5.18 0.18 3.39 0.13 1.79
pranlukast −11.84 0.33 9.75 0.01 2.09
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Ketoconazole interactions with EWS exhibited stable behavior
in the docking complex (Figure 10).
3.6.5. Sulfinpyrazone and Pranlukast Hydrogen Binding

Analysis. In sulfinpyrazone−EWS and pranlukast−EWS
docking complexes, drugs bind with the binding pocket of
EWS at slightly deviant conformational positions. The oxygen
atom of sulfinpyrazone forms a single hydrogen bond with
Met397 with a bonding distance of 1.86 Å. However,
pranlukast forms two hydrogen bonds with EWS at Met397
and Tyr401 with bonding distances of 2.49 and 1.97 Å,
respectively (Figures 11 and 12).
3.6.6. Pazopanib Docking Analysis. To check the accuracy

of our docking results of screened FDA-approved drugs, the
pazopanib−EWS docking complex was analyzed and checked
for the interactive behavior against the target protein. The
pazopanib-docking results showed similar amino acids such as

Leu444, Ala445, Ala362, Ser416, Thr414, Tyr401, Tyr364,
Gln366, and Ser443. Two hydrogen bonds were observed
between the nitrogen of amino (NH2) and hydrogen atom of
the methyl group (CH3) with Tyr401 and Ala445 with bond
distances of 3.13 and 2.16 Å, respectively (Figure 13). The
comparative analysis showed that the best five screened drugs
bind with the EWS protein in a conformational pattern similar
to pazopanib−EWS interactions. Therefore, the screened drugs
may be used as a therapeutic template for the designing of
novel drugs for the treatment of ES.

3.7. Screened Drugs and Their Possible Repositioned
Functions. Based on pharmacogenomics, molecular docking,
and detailed literature mining, the selected five drugs,
chlorthalidone, astemizole, ketoconazole, sulfinpyrazone, and
pranlukast, were keenly observed, and their repositioned
functions were proposed by targeting different genes. It has
been observed that chlorthalidone is usually used in hyper-
tension; however, their proposed repositioned function is to be

Figure 7. Superimposition of five docking complexes.

Figure 8. Chlorthalidone−EWS docking complex. The protein
structure is represented in gray and purple color, whereas the binding
pocket of the EWS protein is highlighted in yellow color in the surface
format. The residues are highlighted in dark green color, whereas
chlorthalidone is highlighted in blue color and embedded moieties
such as oxygen, sulfur, and hydrogen are represented by red, yellow,
and light gray colors, respectively.

Figure 9. Astemizole−EWS docking complex. The EWS structure is
represented in light pink color, whereas the binding pocket of the
EWS protein is highlighted in gray color in the surface format. The
residues are highlighted in golden color, whereas astemizole is
highlighted in blue color and embedded moieties different colors,
respectively.

Figure 10. Ketoconazole−EWS docking complex. The interaction
residues are highlighted in light pink color, whereas red dotted lines
represent the hydrogen bonds in angstrom (Å).
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used against different osteosarcomas of bones and tissues.
Moreover, astemizole is frequently used as an antihistamine
and prescribed by medical staff against allergies. However,
based on pharmacogenomic study and detailed literature
mining, it could be used as a new therapeutic agent against ES

by targeting the EED gene. Similarly, ketoconazole is used
against Seborrheic dermatitis; however, its proposed reposi-
tioned function is osteosarcoma of bone in children.
Sulfinpyrazone and pranlukast usually are used against Gouty
arthritis and allergic rhinitis and asthma, respectively. However,
our computational results showed their significance against ES
by targeting ABCC1 and RNASE3 genes, respectively. The
comparative results showed that astemizole, sulfinpyrazone,
and pranlukast could be used as new drugs against ES by
encompassing animal and clinical approaches (Table 8).

3.8. Molecular Dynamics Simulation. Based on
molecular docking, pharmacogenomics, and literature mining
results, sulfinpyrazone, chlorthalidone, and astemizole docked
structures were selected to evaluate the residual flexibility in
the target protein. The MD simulation study was employed at
50 000 ps using Gromacs 4.5.4. tool to generate root mean
square deviations (RMSDs), root mean square fluctuations
(RMSFs), solvent-accessible surface area (SASA), and radius
of gyration (Rg) graphs.

3.8.1. Root Mean Square Deviation and Fluctuations. The
RMSD and RMSF graphs were generated to understand the
protein backbone behavior in the simulation running time. The
RMSD results showed that in docking structures, protein
backbone deviation remained steady and stable with the
passage of simulation time frame 0−50 000 ps. All of the graph
lines exhibited an increasing trend with RMSD values ranging
from 0.1 to 0.3 nm from 0 to 30 000 ps.
Initially, all of the graph lines (blue, pink, and red) of wild

and both docked complexes showed an increasing trend with
RMSD values of 0.1−0.7 nm from 0 to 5000 ps. After 5000−
10 000 ps, the graph lines remained stable with a constant
RMSD value at 0.6 nm. From 10 000 to 20 000 ps, all three
graph lines remained stable; however, little fluctuation was
observed in the astemizole structure (red), and the value
increased to 0.8 nm. However, with the passage of simulation
time, again stable behavior was attained from simulation time
of 20 000−30 000 ps. After that, from 30 000 to 50 000 ps, all
of the structures exhibited a stable constant RMSD value (0.6
nm). The overall RMSD graphs lines showed that both docked
complexes and wild EWS protein remained stable and
fluctuated less in the simulation time frame. The generated
graph results showed stable behavior in the backbone of all
protein complexes. The results showed that the binding of all
of these drugs did not affect the structural configurations of
EWS and remained stable during the simulation time (Figure
14).
The RMSF results of both docked complexes and standard

EWS (blue, pink, and red curves) show that all residues
dynamically fluctuated from N to C terminals. The protein
structures are composed of 346−458 AA with different
structural architectures. A couple of peaks have been observed

Figure 11. Sulfinpyrazone−EWS docking complex. The interaction
residues are highlighted in light pink color, whereas red dotted lines
represent the hydrogen bonds in angstrom (Å).

Figure 12. Pranlukast−EWS docking complex. The interaction
residues are highlighted in light pink color, whereas red dotted lines
represent the hydrogen bonds in angstrom (Å).

Figure 13. Pazopanib−EWS docking complex.

Table 8. Selected Drugs and Their Involvement in Diseases

no. drugs functions repositioned functions

1 chlorthalidone hypertension osteosarcoma of bone in
childhood

2 astemizole allergy Ewing sarcoma
3 ketoconazole seborrheic dermatitis osteosarcoma of bone in

children
4 sulfinpyrazone gouty arthritis Ewing sarcoma
5 pranlukast allergic rhinitis and

asthma
Ewing sarcoma
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at both terminal regions. The remaining parts of all protein
structures in Figure 14 remained stable throughout the
simulation time (0−500 000 ps). Moreover, the central region
of the protein, which consists of the binding pocket also
showed few variations and fluctuations in the protein
molecules. However, these variations do not cause much
disturbance in the protein conformations, which ensures that
our docking results are much more stable and steady in
behavior. Residues from 346 to 401 AA showed fluctuations
due to the loop region, whereas from 15 to 30 fewer
fluctuations were observed with an RMSF value of 0.25 nm.
Moreover, amino acids comprising β-sheets and α-helices
(401−445 AA) also remained stable in the simulation graph.
After that, a couple of fluctuations peaks were observed from
445 to 460 AA. It has been observed that some interacting
residues are also present in this region; after binding with the
drug, they may disturb the protein structure, and the RMSF
value increased from 0.25 to 0.5 nm. Moreover, from 460 to
490 AA, again smooth and steady peaks were seen, whereas
after that again higher fluctuation peaks were observed due to
the loop region of the Ewing sarcoma protein (Figure 15).

3.8.2. Solvent-Accessible Surface Area and Radius of
Gyration. The structural compactness of protein was
calculated by the radius of gyration (Rg). The generated
results depicted that Rg values of all of the docked structures
showed few variations from 1.5 to 1.7 nm. Initially, the graph
lines were not much stable and showed few fluctuations from 0
to 5000 ps, while after that, stable behavior with few
fluctuations was observed from 5000 to 10 000 ps time scale.

After that, no bigger fluctuations were observed in graph lines
and the Rg value also remained stable at 1.6 nm. The solvent-
accessible surface areas (SASAs) were also observed and are
shown in Figure 16. The results showed that the values of
SASA of all five docked complexes were centered on 60 nm2 in
the simulation time 0−50 000 ps (Figure 17).

4. CONCLUSIONS
Drug repositioning is a computational approach employed for
drug discovery. The current study evaluates the repositioning
of known drugs for ES using shape-based screening, molecular
docking pharmacogenomics, and MD simulation approaches.
The computational shaped-based screening results showed that
100 FDA-approved drugs exhibited good structural similarity
and scores with standard (pazopanib). Moreover, docking
profile and pharmacogenomics evaluations depicted that from
the bunch of 24 only five drugs were most active and showed
good results compared to other drugs. The detailed
pharmacogenomics and extensive data mining showed that
three drugs have a direct association with ES by targeting
different genes. Moreover, MD simulation results also exposed
that these three drugs showed better profiles with respect to
their RMSD, RMSF, SASA, and Rg evaluations graphs and
steadily stable behavior was observed in all docking complexes.
Taken together, it has been concluded that predicted
astemizole, sulfinpyrazone, and pranlukast exhibited better
repositioning profiles as compared to other screened FDA-
approved drugs. Therefore, sulfinpyrazone, pranlukast, and
astemizole may be potentially used in the treatment of ES after
in vitro and clinical assessment in the future.

Figure 14. RMSD graph of sulfinpyrazone−EWS (blue), chlorthali-
done−EWS (pink), and astemizole−EWS (red) docked structures. In
the generated graph, the Y-axis showed RMSD values, whereas the X-
axis represents simulation time from 0 to 50 000 ps.

Figure 15. RMSF graph of sulfinpyrazone−EWS, chlorthalidone−
EWS, and astemizole−EWS docked structures. The Y-axis shows
RMSF (nm) values, whereas X-axis represents residues of EWS.

Figure 16. Rg graph of sulfinpyrazone−EWS, chlorthalidone−EWS,
and astemizole−EWS docked complexes for a simulation time of 0−
50 000 ps.

Figure 17. SASA graph of sulfinpyrazone, chlorthalidone, and
astemizole−EWS docked structures for a simulation time frame of
0−50 000 ps.
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