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Abstract

Molecularly-targeted agents and immunotherapies have prolonged administration and complicated 

toxicity and efficacy profiles requiring longer toxicity observation windows and the inclusion 

of efficacy information to identify the optimal dose. Methods have been proposed to either 

jointly model toxicity and efficacy, or for prolonged observation windows. However, it is 

inappropriate to address these issues individually in the setting of dose-finding because longer 

toxicity windows increase the risk of patients experiencing disease progression and discontinuing 

the trial, with progression defining a competing event to toxicity, and progression free survival 

being a commonly used efficacy endpoint. No method has been proposed to address this issue 

in a competing risk framework. We propose a seamless phase I/II design, namely the competing 

risks continual reassessment method (CR-CRM). Given an observation window, the objective is 
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to recommend doses that minimizes the progression probability, among a set of tolerable doses 

in terms of toxicity risk. In toxicity-centered stage of the design, doses are assigned based on 

toxicity alone, and in optimization stage of the design, doses are assigned integrating both toxicity 

and progression information. Design operating characteristics were examined in a simulation 

study compared to benchmark performances, including sensitivity to time-varying hazards and 

correlated events. The method performs well in selecting doses with acceptable toxicity risk and 

minimum progression risk across a wide range of scenarios.
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1 Introduction

New classes of anti-cancer agents, such as molecularly-targeted agents (MTAs) and 

immunotherapy, have brought challenges to the development of new oncology drugs, 

particularly in the setting of dose-finding trials, because designs have long relied on 

assumptions based on the cytotoxic chemotherapy paradigm [1; 2; 3; 4]. The mechanism 

of action of these new classes of drugs differs from cytotoxic chemotherapy, leading to 

prolonged administration and different toxicity and efficacy profiles [3; 5]. The longer 

periods of administration have been associated with late-onset toxicities. Thus, longer 

toxicity observation windows have been advocated for dose-finding trials of these agents 

[1; 4; 6; 7; 8; 9; 10]. Moreover, while monotone increasing dose-efficacy relationships are 

assumed with cytotoxic agents, MTAs and immunotherapies can potentially exhibit non 

monotone dose-efficacy relationships. Therefore, the paradigm of selecting the highest dose 

that can be tolerated in the hope of achieving maximum efficacy, namely the Maximum 

Tolerated Dose (MTD), has been questioned, and the choice of a so-called optimal dose 
has been advocated [1; 11; 12]. While methods have been proposed to address these issues 

individually, they are closely related given that subjects enrolled in oncology dose-finding 

trials generally are those with poor prognosis, and longer toxicity windows are associated 

with a greater risk of patients experiencing disease progression. Disease progression or 

progression free survival is indeed a relevant efficacy endpoint that has been frequently used 

in phase II trials, and has recently gained interest in phase I/II trials for novel agents in 

oncology [13]. In the conduct of trials, for ethical reasons, study protocols usually allow 

treatment discontinuation after progression to propose alternative therapies if available. 

Similarly, patients who experience toxicity are generally dose reduced or discontinued and 

are inconsistently followed for efficacy or progression. Therefore, toxicity and progression 

are mutually exclusive, since both result in trial or treatment discontinuation. While this 

is a common issue in planning and managing oncology dose-finding trials, it has been 

traditionally handled in an ad-hoc manner and has been scarcely addressed in the literature.

Most dose-finding designs rely on the full observation of a binary toxicity endpoint in all 

patients (3+3 design, Continual Reassessment Method [14], escalation with overdose control 

(EWOC)[15], modified toxicity probability interval design (mTPI)[16], Bayesian Optimal 

Interval design (BOIN[17])). Therefore, progression with subsequent trial discontinuation 
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within the toxicity window results in mandatory patient replacement. Time-to-event designs, 

such as the time to event CRM (TITE-CRM), allow for partial observations to be used for 

sequential MTD estimation and dose assignments during the trial [18]. This leaves room 

to some practical strategies to handle discontinued partial observations due to progression 

and to avoid excluding them altogether [19]. However, we showed that the operating 

characteristics of the design remain impacted to some extent, with decreased performances 

in correctly selecting the MTD and limiting overdose selection, while progression is 

considered as an independent censoring event with no use made of this efficacy information 

[19]. We found that accounting for any discontinuation event as informative censoring, 

using the cumulative incidence of dose-limiting toxicities (DLT) in a survival CRM setting 

improved the design operating characteristics compared to the binomial TITE-CRM [20].

Phase I/II designs have been proposed incorporating efficacy to toxicity for dose finding, 

with binary or continuous endpoints [21; 22; 23] and time-to-event endpoints [24]. These 

designs mostly assume that both toxicity and efficacy can be observed within the time 

frame of the trial. However, in the context of these novel agents, it may not be possible to 

accommodate this requirement due to the lack of a reliable surrogate efficacy endpoints or 

the short time to progression relative to the toxicity observation window [25]. Nevertheless, 

as we discussed above, progression and toxicity usually result in trial discontinuation and 

informative censoring of one another, reciprocally. Overall, patients’ outcomes within the 

trial are: DLT, disease progression, or completed observation window without DLT nor 

progression. As we were finalizing our method, Zhang et al. [26] recently proposed a 

dose finding phase I/II design in this setting, relying on a multinomial distribution for 

these outcomes, combined with piecewise cause-specific hazards for DLT and progression, 

imputation of incomplete observations during the trial and a utility function for identifying 

the optimal dose. A comprehensive method for incorporating competing toxicity and 

progression as censored time-to-event outcomes has not been proposed.

In this paper, we propose a novel seamless phase I/II design which we call competing risks 

continual reassessment method (CR-CRM), that can estimate a dose or a set of doses that 

satisfies traditional toxicity thresholds while minimizing time to progression under the more 

realistic competing risk framework for time to events endpoints whereby both toxicity and 

progression can lead to treatment or trial discontinuation and only one of them is observed. 

This work was motivated by a phase I trial in unresectable sarcoma or malignant peripheral 

nerve sheath tumors, which is further discussed below.

2 Motivating example

The present work was motivated by a dose-finding trial in patients with unresectable 

sarcoma or malignant peripheral nerve sheath tumors that was recently completed at 

Columbia University Irving Medical Center (Clinical Trials Identifier: NCT02584647). The 

goal of the trial was to identify the maximum tolerated dose (MTD) out of five doses of 

interest. The trial was designed as a phase I trial, using the time-to-event CRM (TITE-CRM) 

[18] with a sample size of 24 patients and a pre-specified target DLT probability of 0.25. 

DLT was defined as any grade 3 or higher non-hematologic toxicity or grade 4 or higher 

hematologic toxicity in the first two cycles of treatment (i.e. 8 weeks). The TITE-CRM 
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was selected to allow for enrollment before fully observed outcomes at the end of 8 weeks. 

However, given a median progression-free survival (PFS) of 6 weeks under standard of care 

[27], we expected almost 50% of discontinuation due to progression by the end of the 8-

week toxicity observation window. Ad-hoc rules were used to handle progression events that 

occurred during DLT window using the TITE-CRM design [19]. Moreover, a phase II trial 

is currently on-going, directly following the phase I trial, to evaluate the drug efficacy, using 

progression-free survival as the main endpoint (Clinical Trials Identifier: NCT02584647). A 

seamless phase I/II design that selects the dose with the minimum progression risk while 

satisfying a pre-specified toxicity threshold would have been ideal in this setting.

3 Methods

We consider dose-finding trials where patients are followed through an observation window 

[0, t⋆] defined for safety assessment by observation of DLTs, and where there is a non 

negligible risk of disease progression, resulting in treatment discontinuation in this window 

and therefore precluding complete safety assessment. Disease progression, in the same 

manner as DLTs, can be defined in the trial protocol, as an aggravation of the patient 

status, related to the progression of the malignancy, which results in trial discontinuation, so 

that the patient can be proposed alternative therapy, for ethical reasons. At the same time, 

we assume that the occurrence of a DLT also results in treatment discontinuation or dose 

reduction, rendering the assessment of progression challenging and hence to assign a given 

dose level. In other words, DLT and progression under treatment are mutually exclusive 

events within [0, t⋆]. By time t⋆, a patient may have one and only one of the 3 different states 

or outcomes: DLT under treatment, progression under treatment, treated with neither DLT 

nor progression.

These considerations lead us to consider a competing risks framework in the dose-finding 

setting [28]. Additionally, we propose using a time-to-event approach which allows 

accommodating a longer follow-up time t* and straightforwardly handling right-censored 

observations, including those at interim dose-assignment analyses during the trial.

3.1 General notations for censored data

For a patient in a dose-finding trial, let t⋆ be the prespecified DLT follow-up time. Treatment 

with a particular drug dose will usually be discontinued or altered (treatment failure) 

following the occurrence of two events: DLT or disease progression (or non-toxicity-related 

death). For simplicity, given the framework of oncology dose-finding trials, we will assume 

no other cause of treatment discontinuation and no censoring due to lost-to-follow-up, since, 

generally, patients are followed very closely.

Let K indicate the cause of failures, with K = 1 failure due to DLT and K = 2 failure due to 

progression. Following notations in Putter et al. (2006)[28], let T be the time to failure and 

define

ℎk(t) = lim
Δt 0

Prob(t ≤ T < t + Δt, K = k ∣ T ≥ t)
Δt ,
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the cause-specific hazard of failing from a given cause k = 1 or 2, and

Hk(t) = ∫0
t
ℎk(s)ds,

the cause-specific cumulative hazard. The event-free survival at time t can then be defined as 

follows

S(t) = exp − ∑
k = 1

2
Hk(t) ,

which is the probability of not having experienced a failure from any cause at time t, that is, 

in our setting, remaining on treatment without DLT or disease progression. The cumulative 

incidence function of cause k, pk(t), is the probability Prob(T ≤ t, K = k), which can be 

estimated from the cause-specific hazards as

pk(t) = ∫
0

t
ℎk(s)S(s)ds . (1)

Of note, we see that pk(t) depends on all underlying competing process through S(t), not 

only on cause k and that pk(t) is an improper probability distribution, for pk(∞) = Prob(K = 

k) < 1.

For any given set of cumulative incidences pk(t) resulting from k competing processes, 

cause-specific hazards can be estimated from the observed data under the hypothesis of 

independence between the competing events and censoring processes [28; 29; 30].

Consider a dose-finding trial with N patients. For each included patient i, i = 1, …, N, we 

observe the data (Ui, Yi), where Ui = min{Ti, t⋆}, Yi = KiI(Ti ≤ t⋆). Here I(·) is the indicator 

function.

3.2 Objective

With immunotherapies and other anti-cancer agents, which may not have a monotone 

dose-efficacy profile, the aim of a dose finding trial will be to identify a dose which 

optimizes efficacy outcomes among tolerable doses. In our setting, optimizing the efficacy 

outcome corresponds to maximizing the time to progression or progression-free survival 

(death usually included as a disease progression event).

Define Fk(t, d) = 1 − exp{−Hk(t, d)} the cause-specific cumulative distribution of event k at 

time t with dose d. Under the assumption that events are independent conditional on the drug 

dose, Fk(t, d) can be interpreted as the marginal or “potential” [30] probability of event k at 

time t, in the hypothetical situation where there is no competing event(s) [28]. We propose 

to use probabilities Fk(t, d) for dose finding, under the working assumption that toxicity and 

progression are independent consistent with previous work [13; 31]. The appropriateness of 

this assumption is evaluated in simulations.
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First, we define tolerable doses as those with a marginal probability of DLT by time t⋆, F1(t⋆, 

d), no more than a pre-specified threshold πDLT (e.g., 0.25), defining maximum tolerable 

toxicity risk. The set of tolerable doses is:

A = d:F1 t⋆, d ≤ πDLT . (2)

Then, we incorporate information on the time to progression to identify the most desirable 

dose. Among set A, we rely on F2(t⋆, d), the marginal probability of progression by time t⋆, 

to identify the best dose(s), dν, as the one(s) with minimum progression risk:

dν = arg min
d ∈ A

F2 t⋆, d . (3)

In some situations, with non-monotone or flat dose-progression relationships, and given the 

limited sample size of phase I/II trials, the definition of best dose may be too stringent. 

We therefore define a set Dν of good doses, as those among tolerable set A which are 

sufficiently close to the minimum progression risk:

Dν = d ∈ A:F2 t⋆, d − F2 t⋆, dν ≤ δP , δP ≥ 0 , (4)

where δP is a fixed known parameter that can be tuned based on clinical considerations 

related to the progression risk under standard of care, and depending on the planned trial 

sample size.

3.3 Working models

Let D be a drug dose assigned to a patient, and D = d1, …, dJ  be the set of doses that are 

investigated in the trial. We introduce the drug dose as a covariate in the competing risk 

framework presented above. Both events, DLT and progression, may depend on the drug 

dose and we propose to model the corresponding cause-specific hazards as functions of D. 

For simplicity, we model both competing event processes with constant hazard exponential 

distributions [32; 33].

Let h1(D) be the cause-specific hazard for DLT and h2(t, D) the cause-specific hazard 

for progression. We assume a monotone increasing dose-toxicity relationship on the cause-

specific hazard

ℎ1(t, D) = exp β1D . (5)

In the setting of immunotherapy and MTA, we allow for a non monotone dose-progression 

relationship on the cause-specific hazard h2 and we define

ℎ2(t, D) = ℎ2(D) = exp β20 + β21D + β22D2 . (6)
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Of note, exp(β20) represents the cause-specific hazard for progression under standard-of-

care. Given θ = (β1, β20, β21, β22) and N included patients, the model likelihood can be 

written as

L(θ ∣ U, Y, D) = ∏
i = 1

N
f1 Ui ∣ θ, Di

I Yi = 1 f2 Ui ∣ θ, Di
I Yi = 2 S Ui ∣ θ, Di

I Yi = 0 ,

where fk(t|θ, D) = dpk(t|θ, D)/dt = hk(θ(k), D)S(t|θ, D) are potentially improper density 

functions in the competing risk framework[33]. The likelihood therefore reduces to

L(θ ∣ U, Y, D) = ∏
i = 1

N
ℎ1 θ(1), Di

I Yi = 1
ℎ2 θ(2), Di

I Yi = 2
S Ui ∣ θ, Di .

Inference on cause-specific hazards can be performed separately for toxicity and 

progression, from the log-likelihood which factors into 2 distinct pieces. Defining the cause 

specific parameters vectors, θ(1) = β1 and θ(2) = (β20, β21, β22), h1(θ(1), D) and h2(θ(2), D) 

can be estimated separately [28; 32; 33].

3.4 Dose-finding algorithm

The proposed design, CR-CRM, is conducted in three stages: trial initiation, toxicity-

centered stage, optimization stage. The first two stages aim at identifying safe doses 

(equation 2), while allowing accumulating data; the last stage incorporates information on 

the dose-progression relationship to find the best dose among those which are safe (equation 

3). Throughout the trial, patients are dose-assigned in cohorts of size m.

3.4.1 Trial initiation—Initially, doses are assigned in a ruled-based fashion until at least 

one DLT has been observed, with cohort size m = 1. Given that patient i was assigned dose 

dj ∈ D, patient i + 1 is assigned as follows:

1. dose level dj, if patient i experienced neither DLT nor progression by t⋆;

2. dose level dmin{J, j+1}, if patient i experienced progression before t⋆;

3. if patient i experienced a DLT, the trial moves to the next stage and the dose 

for patient i + 1 is assigned according to the toxicity working model (see next 

section).

The initial stage requires completion of the observation window for a given patient, unless 

an event occurs, Ti ≤ t⋆.

In case the first patient experiences a DLT, the design transitions directly to the next 

stage, the survival exponential working model allowing maximum likelihood estimation and 

model-based dose-assignment for the next patient.

3.4.2 Toxicity-centered stage—At that early point in the trial, at least one DLT 

has been observed (nevertheless, information may not be sufficient to estimate the dose-

progression relationship within our model in equation (6)). This model-based stage therefore 
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relies on the toxicity working model (5) only. During this stage, we allocate an upcoming 

cohort of patients (i + 1)th similarly to the CRM algorithm [34], in the following manner:

dj
i + 1 = arg min

d ∈ D
|F1 t⋆, d − πDLT| .

This working model is used exclusively until a fraction r of the total planned sample size 

N has been included, that is up to n1 = rN included patients. At the extremes, setting r = 

1 defines a toxicity-centered design, similar to the TITE-CRM [18]. Setting r = 0 skips the 

toxicity-centered stage and directly includes the progression endpoint in dose-finding; it is 

not recommended as information is very limited at beginning of the trial which precludes 

robust estimation of progression working model (equation 6).

3.4.3 Optimization stage—Starting from the (rN+1)th patient, where r ∈ (0, 1) is a 

design parameter to be prespecified on planning the trial, we incorporate information on the 

dose-progression relationship in the dose-assignment process.

After the ith patient being included, i ≥ rN, we define the estimated set of acceptable doses 

as:

Ai⋆ = {dj ∈ D:dj ≤ arg min
d ∈ D

|F1 t⋆, d − πDLT|} .

The dose dj
i + 1 for patient i+1 (or cohort) is assigned based the minimization of the 

progression risk among the set Ai
⋆. Given the uncertainty on the dose-progression 

relationship in the setting of sparse data, we use adaptive randomization for dose assignment 

at this stage [13; 22; 23; 35]. Among the set Ai
⋆ of tolerable doses, a randomization 

probability Rj of each tolerable dose, dj ∈ Ai
⋆, is computed based on the estimate risk of 

progression, F2 t⋆, dj , as follows:

Rj =
1 − F2 t⋆, dj

∑dj ∈ Ai⋆1 − F2 t⋆, dj

3.4.4 Trial termination—When the maximum sample size N has been reached and 

the follow-up completed for every patient, the final estimate of the tolerable set, AN
⋆ , is 

identified.

We obtain the estimated best dose(s) dν as the dose(s) associated with the minimum 

progression marginal risk, among AN
⋆ :

dν = arg min
d ∈ AN

⋆
F2 t⋆, d .

(7)
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In most cases, a unique best dose is estimated, given the progression working model 

(equation 6). The estimate of the good doses set Dν is then estimated as the dose levels 

among AN
⋆  which are associated with an estimated marginal progression probability F2 t⋆

lying within a range δP of the minimum estimated:

Dν = d ∈ AN
⋆ :F2 t⋆, d − F2 t⋆, dν ≤ δP . (8)

4 Simulation study

4.1 Setting

We conducted a simulation study in this setting to evaluate the operating characteristics of 

the proposed CR-CRM, in comparison with benchmark performances, in the setting of our 

motivating example. The observation window was t⋆ = 8 weeks (with day-level precision) 

and we considered a setting with K = 5 candidate dose levels, a target maximum tolerable 

probability of DLT by t⋆: πDLT = 0.25, and a threshold δP = 0.10 to define the good doses 

close to the minimum progression risk.

Simulated trials were initiated with the first dose level. The cohort size was 1 patient and 

no dose skipping was allowed during dose-escalation. We compared total sample sizes of 

included patients N = (50, 70), for the proposed phase I/II CR-CRM design, consistently 

with current practice in planning oncology early phase trials [36].

4.2 Calibration of model parameters

The CR-CRM design was calibrated both on the dose skeleton and on the sample size n1 

for the toxicity stage of the design. Both aspects impact the design performance and require 

tuning.

The dose skeleton was calibrated using the indifference interval approach [37]. We 

applied this approach to the toxicity working model, which estimates the marginal 

cumulative incidence of toxicity at the end of the observation window, t⋆, for each dose: 

F1 d, β1 = 1 − exp −t⋆ exp eβ1d .

Given πDLT the target probability of toxicity at t⋆, we define Θ = [b1, bJ+1] the parameter 

space for the working model (parameter β1), and the intervals θ1 = [b1, b2), θj = (bj, bj+1), 

for j = 2,…,J − 1, such as bj verifies F1(t⋆, dj−1; bj) + F1(t⋆, dj; bj) = 2πDLT. In case the MTD 

coincides with the dose with minimal progression risk among tolerable doses, the desired dν 

can be obtained using backward substitution: dν = F1
−1 t⋆, dν; β0 = πDLT with F1(t⋆, dν; β0) 

= πDLT, where β0 denotes the prior mean of β1. If an indifference interval of length 2δ is 

desired, dose levels dν−1 and dν+1 can be obtained from the following equations:

F1 t⋆, dν − 1; bν + F1 t⋆, dν; bν = 2πDLT, F1 t⋆, dν; bν + 1 + F1 t⋆, dν + 1; bν + 1 = 2πDLT,
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F1 t⋆, dν − 1; bν = πDLT − δ and F1 t⋆, dν + 1; bν + 1 = πDLT + δ .

To compute the initial guesses of the probabilities of toxicity by dose, p1, …, pJ , with F1(t⋆, 

d; β0) our exponential working model, we used the following equations:

dj − 1 = log
−log 1 − πDLT − δ

t⋆
× 1

ebj
,

for j = ν, …, J – 1

dj + 1 = log
−log 1 − πDLT + δ

t⋆
× 1

ebj + 1

for j = 1, …, ν, with pj = 1 − exp −exp eβ1dj t⋆ , for j = 1, …, J.

We implemented the algorithm described in Lee and Cheung (2009) [37] to calibrate the 

width of the indifference intervals in our trial setting, with J = 5 dose levels, and target 

toxicity probability πDLT = 0.25. The probability of correct selection (PCS) with the 

CR-CRM design was estimated over a range of candidate widths of indifference intervals 

defining the dose skeleton, and over simulation scenarios, by total sample size N = (50, 70).

We also calibrated the design on the size of stage 1, n1, given N. Specifically, for N = 70, we 

evaluated n1 = (20, 25, 30, 35, 40), and for N = 50, n1 = (15, 20, 25, 30). For each tuning 

combination (indifference interval width and n1), 2000 simulated trials were performed.

Overall, in our settings, the optimal length of the indifference interval was .06 and optimal 

n1 corresponded to 0.5N, respectively 25 and 35, for total N of 50 and 70. Detailed results of 

calibration are reported in Supporting Web Materials.

4.3 Simulation scenarios

The design was evaluated in different toxicity scenarios defined by the MTD location 

assuming accrual was of a rate of 2 patients per observation window. Different scenarios 

of dose-progression relationship were also considered, covering possible configurations 

of relationship between the dose-toxicity curve and the dose-progression curve, including 

monotone decreasing dose-progression relationship, plateau and U-shape. Overall, we 

performed simulations in 12 scenarios, combining the various dose-toxicity and dose-

progression relationships (Figure 1). We describe scenarios by the latent marginal cause-

specific cumulative incidences of toxicity and progression at t⋆, F1(t⋆, d) and F2(t⋆, d) 

respectively. Corresponding observed cumulative incidences pk(t) can be obtained following 

(1). The progression probability F2(t⋆, d) ranged from 0.60 to 0.27, depending on dose, 

corresponding to an improvement in progression-free survival (PFS) from a median of 6 

weeks to 18 weeks at best. As a sensitivity analysis, we also evaluated scenarios with a 
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smaller effect size in progression risk, with F2(t⋆, d) ranging from 0.60 to 0.37, the latter 

corresponding to a median PFS of 12 weeks (Supporting Web materials, figure S4).

As per the design objective, the best dose level was that with minimal progression risk 

among doses with tolerable toxicity risk (Equation 3); the good doses were those with 

minimal or close to (δP = 0.10) minimal progression risk among doses with tolerable 

toxicity risk (Equation 4).

For data generation, the instantaneous cause-specific hazards of both events, at each dose 

level, h1(t) and h2(t), were back computed from the marginal cumulative incidence values, 

under the assumptions of independence between events and time-constant hazards, and 

using exponentially-distributed event times. Following Beyersmann et al. (2009)[38] for 

competing risks data simulations, observations were then sampled from an exponential 

model for the time to the first event T (event-free survival), with all-cause hazard h1k(t) + 

h2k(t) and event cause at the sampled time Ti determined by a random draw from a Bernoulli 

distribution with probability 
ℎ1 Ti

ℎ1 Ti + ℎ2 Ti
 for toxicity (otherwise progression), which is 

constant over time in the case of exponentially-distributed event times. Last, administrative 

censoring was applied at t⋆ = 8 to mimic the trial observation window.

To assess the robustness of our proposed method, sensitivity simulations were also 

conducted using different approaches to generate observations. First, we used time-

dependent hazards, using Weibull distributions. Given t⋆ = 8, we set the Weibull shape 

parameter at 0.3 or 3, to simulate time-decreasing or increasing hazard respectively 

(Supplementary material, table 1 and figure S5). In each scenario, the scale parameter was 

then obtained based on the shape parameter and the marginal event incidence values at t⋆ 

= 8. Observations were then generated following the procedure described above [38]. We 

examined the different combinations of time-decreasing or increasing hazards for toxicity 

and progression. Furthermore, we also evaluated our method in the case of correlated 

time-to-events, using Clayton’s model for time-to-event data [24]. Details are available in 

Supporting Web Materials.

For each scenario, we performed 10000 simulations and estimated: the probability of correct 

selection as the best dose, the probability of correct selection as good dose, the probability 

of DLT and progression per trial, the probability of allocation per dose level. Trial algorithm 

and computations were implemented using R statistical platform, with the L-BFGS-B 

optimizer for the dose-progression model maximum likelihood estimation. Code for the 

proposed design and methods is available on GitHub platform: https://github.com/luciebiard.

4.4 Alternative methods

As an indicator of the difficulty of the scenario, given the sample size and our trial objective, 

we computed benchmark performances in selecting best and good doses using an optimal 

benchmark non parametric approach for dose finding [39]. Specifically, since our trial 

objective relied on two endpoints (toxicity and progression), we used an approach similar 

to that of Cheung (2014)[40] for complex designs, also accounting for the time to event 

outcomes [41]. While trial designs only use observed outcomes under the doses assigned 
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during the trial, the benchmark uses complete information on patients’ outcomes under each 

dose, hence providing an optimal performance for the dose-finding objective [39].

Basically, for a given sample size, we first generated the complete outcome for each patient 

under each dose. Then we estimated the marginal cumulative incidence of toxicity and 

progression by dose using the non parametric Kaplan-Meier estimator using the complete 

data and applied the trial objective to determine the best dose (equation (7)). Details of the 

benchmark approach we applied to our setting are provided in Supporting Web Material.

For comparative purposes in dose selection performances, we also implemented the 

simulation scenarios with Wages and Tait (2015)’s design [22]. Since the design considers 

toxicity and activity as binary endpoints, both evaluable within the trial timeframe t⋆, 

marginal latent probabilities of toxicity and activity (absence of progression) at time t⋆ were 

used for scenarios definition (figure 1). In line with our motivating example, the target DLT 

rate was 25% and the minimum acceptable activity rate was 40% based on an expected 60% 

rate of progression within 8 weeks under standard of care (see section 2). The cohort size 

was 1, the maximum sample size was 70 and we did not implement any stopping rule based 

on the number of patients treated at one dose. A safety stopping rule relied on the exact 

binomial 95% confidence interval of the probability of toxicity at dose level 1: if the lower 

bound of the interval exceeded the target toxicity rate πDLT, the trial was stopped. Similarly, 

in the maximization phase of the design, a futility stopping rule defined that the trial 

was stopped if the upper bound of the 95% exact binomial confidence interval of activity 

probability was lower than the target activity rate for the estimated optimal dose level 

[22]. The starting dose level was level 1. We used the available online RShiny application 

(http://uvatrapps.uvadcos.io/wtdesign/) to obtain simulations results. We ran 5000 replicates 

simulations for each scenario.

4.5 Operating characteristics

Table 1 summarizes the dose finding performance with a total sample size of 70 patients 

(first stage n1 = 0.5N = 35) and constant hazards of events. For each scenario, 1 to 12, the 

table reports the probability of selecting a good dose, the probability of correctly selecting 

the best dose (PCS) and the probability of selecting a toxic dose (probability of overdose 

selection, POS), estimated over simulated trials implementing the proposed CR-CRM design 

and the benchmark approach.

In these settings, CR-CRM correctly selected the best dose in more than 60% of cases in 

all scenarios. The design’s performance was consistent with the difficulty of scenarios as 

assessed by the benchmark. The PCS for the CR-CRM ranged from 63.1 to 99.6%, while 

the benchmark PCS ranged from 81.0 to 100%. In cytotoxic scenarios (monotone decreasing 

dose-progression, scenarios 1, 5 and 9), the CR-CRM performed slightly better when the 

MTD was at the extremes of the dose range: 63.1% in scenario 1 when the MTD is dose 

level is 3 versus 90.7% and 72.4% in scenarios 5 and 9 when the MTD is dose level 1 and 5 

respectively. In plateau scenarios (3, 7, 10 and 11), our design selected the best dose in more 

than 75% of cases, wherever the location of the true MTD. In U-shape progression scenarios 

(4, 8 and 12), the PCS for the CR-CRM ranged from 68.6% to 90.7%. The CR-CRM 

outperformed the W&T design except in scenario 2.
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The CR-CRM correctly picked a good dose in more than 70% of cases, ranging from more 

than 94% in scenarios 2 and 10 with three good doses to 71.4% in scenario 12 with a single 

good dose, while the benchmark ranged from 100% to 83.4%. The CR-CRM performed 

slightly better than the benchmark in scenarios 5 and 8 when the MTD is at dose level 1, 

combined with decreasing progression risk from dose level 1 to 3.

In terms of risk to the patient, the probability of selecting a toxic dose at the end of the 

trial was lower than 10.23% across all scenarios for the CR-CRM (Table 2). During the 

trial, the probability of treating a patient with a toxic dose was lower than 20.5% and the 

probability of a DLT ranged from 13.86 (scenario 10) to 24.2% (scenario 6). The probability 

of progression during the trial ranged from 23.2 to 50.3% which remained lower than the 

assumed reference probability of progression without the evaluated drug.

With a smaller total sample size N = 50, the probability of selecting the best dose was 

slightly impaired but remained greater than 50% in all scenarios (Web figure S6). In the 

case of a smaller effect size of the drug, decreasing from 60% to 37% (instead of 27%) in 

the marginal probability of progression at 8 weeks, results were similar. The PCS slightly 

decreased (less than 10%) compared to the scenarios in table 1, except in scenarios 5, 6 and 

8 where the design performed slightly better (Web figure S7).

Results of sensitivity analyses on observations with time-varying hazards or correlated 

events are available in Supporting Web Materials (figures S8 and S9). In case of late-onset 

events (increasing hazards), the PCS was maintained, but the POS increased. In case of 

early onset events (decreasing hazards), while POS was consistently improved compared 

to constant hazards, PCS decreased except in scenarios with a flat dose-progression 

relationship (scenarios 2 and 3) or when the true MTD is dose level 1 (scenarios 5, 6, 8). 

PCS was mostly robust to data generated with correlated times to toxicity and progression, 

but POS increased.

Of note, in case patients safety is a major concern, the CR-CRM can be modified. The 

CRM algorithm chooses for dose assignment the dose level with the closest DLT probability 

to the target πDLT with the motivation to avoid treating patients at low and inefficacious 

dose levels [14; 34], which we similarly applied in the CR-CRM to define the tolerable set. 

Nevertheless, our method can be modified to restrict the tolerable set to dose levels with 

DLT probability lower than or equal to the target πDLT. Performances of such a modified 

CR-CRM (mCR-CRM) are shown in table S2 in Supporting Web Material; this lead to 

more conservative dose selection, closer to W&T design. The mCR-CRM was even more 

conservative in scenarios 7 and 12, choosing safer dose level 1 more frequently.

5 Discussion

In this paper, we propose a seamless phase I/II design named competing risks CRM (CR-

CRM) for novel anti-cancer drugs such as immunotherapies, with the purpose to identify 

doses with acceptable toxicity risk and minimum progression risk. This design is particularly 

useful for immunotherapy dose-finding trials whereby there is a non negligible risk of 

disease progression during the desired toxicity observation window. Using a competing risks 

Biard et al. Page 13

Stat Med. Author manuscript; available in PMC 2022 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



framework with cause-specific time-to-event working models for the dose-toxicity and dose-

progression relationships, the design accounts for the practical fact that disease progression 

and DLT are mutually exclusive events in a trial, since both usually result in treatment 

discontinuation, while making use of the progression information in the dose-finding setting, 

rather than handling it as non-informative censoring and replacing patients. A competing 

risks time-to-event framework also allows continuous enrollment of patients, prolonged 

observation windows and the inclusion of progression as an efficacy endpoint.

The CR-CRM design performs well in selecting an optimal dose, as well as selecting a set 

of tolerable good doses within a small range of the dose with the minimum progression risk, 

particularly in cases with non-monotone dose-progression relationship, where conventional 

dose-finding designs relying on toxicity only may not apply. The design also offers some 

flexibility by allowing for the specification of a threshold to define the selection of doses 

sufficiently close to the minimum progression risk, and the sample sizes split between the 

toxicity centered and optimization stage. The progression threshold should be specified 

based on clinical considerations of a clinically meaningful effect size. Based on our 

simulations, the sample size for toxicity centered stage should be similar to that of the 

optimization stage.

The proposed CR-CRM outperformed the benchmark in some scenarios, in terms of dose 

selection. In fact, this has been observed previously for the benchmark approach with a 

binary endpoint as compared to the original CRM [34]. In sparse settings such as phase I 

clinical trials, parametric working models may outperform the non parametric benchmark in 

capturing the dose-response relationship(s) since they allow sharing information across dose 

levels. The CR-CRM also outperformed the W&T design in most of the selected scenarios, 

in terms of dose selection. Moreover, via the use of right-censored endpoints, the CR-CRM 

allows continuous enrollment of patients, contrary to W&T design and other designs relying 

on binary endpoints which require complete observation of a cohort before including the 

next one. However, it should be noted that the definition of tolerable doses differs slightly 

between the designs. For the W&T design, the tolerable set comprises of dose levels with 

probability of DLT strictly lower than the target threshold [22], whereas the CR-CRM 

includes dose levels with DLT probability lower, as well as, closer to the target rate, to avoid 

overly conservative dose-assignments as the CRM [34]. Therefore, as expected the W&T 

design has lower rates of overdose selection and performs better in scenarios with toxic 

dose level(s) and flat dose-progression relationship, such as our scenario 2. In case safety 

of patients is a major concern, the CR-CRM can be modified to accommodate the more 

conservative definition of the tolerable set. Similarly, the designs differ in the definition of 

acceptable doses in efficacy. While the W&T design sets a minimum acceptable activity 

threshold and rely on candidate efficacy skeletons to identify the dose-efficacy relationship, 

the CR-CRM targets the dose level with maximum efficacy (minimum progression) and 

allows the specification of a tolerance below (above) it. Therefore, using our definition, 

poorer performances in selecting good doses are to be expected using the W&T design.

We compared the CR-CRM to the W&T design because it was closer to our design, which 

targets the marginal latent incidences of events (toxicity and progression). Conversely, 

Zhang et al.’s recently proposed design targets the observed incidence of outcomes and has 
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therefore a different dose-finding objective [26]. We believe our objective is closer to the 

current practice in dose finding and more realistic. However, there are pros and cons to 

either approach defining the dose-finding target, and a formal comparison is difficult, given 

the different targets.

Sensitivity simulations showed that the CR-CRM performances were mostly robust to 

time-varying hazards or correlated events. The probability of overdose selection tended 

to increase in case of late-onset events, especially when the MTD was among the lower 

dose levels while the dose-progression relationship favoured higher levels. Rules for early 

trial termination for safety could be defined for practical implementation of the design 

to limit overdose exposure and selection. Moreover, the proposed working model uses 

exponential distributions for the cause-specific hazards of toxicity and progression, with 

time-independent effect of the dose. This allows limiting the number of parameters to 

be estimated. While these simplified models assume constant and proportional hazards, 

they support our aim in dose-finding which is to identify the optimal dose, rather 

than meticulously modeling the dose-response relationships. More complex models might 

perform better in the setting of time-varying hazards, although their operating characteristics 

would need further evaluation, in comparison with parsimonious working models.

While the design is proposed along with a calibration procedure for the dose skeleton and a 

benchmark performance evaluation, both were adapted from existing methods to the present 

setting of censored endpoints, toxicity and progression. The calibration procedure relied on 

the toxicity working model to obtain working dose levels. The procedure could therefore be 

further adapted to more comprehensively account for progression in the calibration of the 

design. Furthermore, we have proposed the design in a likelihood framework with stages 

based on the heterogeneity of the outcome data. The implementation of the proposed design 

using a Bayesian estimation approach would allow for fewer stages and is the subject of 

further research.

With the increasing number of early stage clinical trials evaluating immunotherapies 

and MTAs, it is important to start incorporating both late-onset toxicities and efficacy 

information which are often collected as mutually exclusive events into the identification 

of optimal doses. This paper is a first attempt at using a comprehensive competing risk 

framework to solve this complex issue in the context of dose-finding clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Simulations scenarios: Marginal probability of DLT (dashed line) and progression (solid 

line) at time t⋆ by dose. Simulated trials included J = 5 candidate dose levels. For each 

scenario, the best dose is shaded in gray and the good doses are framed with a solid black 

line
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Table 1:

Simulation results: percent of selecting good, best or toxic dose, for the proposed CR-CRM design compared 

to benchmark performances and Wages and Tait’s design (W&T). Simulated trials with targeted maximum 

toxicity = 25% and N = 35 + 35. (n/a : not applicable)

Probability of picking (percent)

Scenario MTD Good Best Method Good dose Best dose Toxic dose

S1 3 2,3 3 CR-CRM 82 63 10

Benchmark 90 81 10

W&T 72 39 3

S2 3 1,2,3 1,2,3 CR-CRM 94 94 6

Benchmark 99 99 1

W&T 99 99 1

S3 3 2,3 2,3 CR-CRM 92 92 6

Benchmark 98 98 2

W&T 86 86 2

S4 3 2,3 3 CR-CRM 93 69 4

Benchmark 100 91 0

W&T 83 42 1

S5 1 1 1 CR-CRM 91 91 9

Benchmark 87 87 13

W&T 56 56 4

S6 1 1 1 CR-CRM 95 95 5

Benchmark 97 97 3

W&T 80 80 2

S7 2 2 2 CR-CRM 76 76 8

Benchmark 89 89 3

W&T 73 73 3

S8 1 1 1 CR-CRM 91 91 9

Benchmark 90 90 10

W&T 70 70 6

S9 5 4,5 5 CR-CRM 93 72 n/a

Benchmark 100 91 n/a

W&T 40 18 n/a

S10 5 3,4,5 3,4,5 CR-CRM 100 100 n/a

Benchmark 100 100 n/a

W&T 77 77 n/a

S11 5 5 5 CR-CRM 80 80 n/a

Benchmark 93 93 n/a

W&T 25 25 n/a

S12 2 2 2 CR-CRM 71 71 9

Benchmark 83 83 8

W&T 63 63 5

Stat Med. Author manuscript; available in PMC 2022 September 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biard et al. Page 20

Table 2:

Simulation results: average percent of DLT or progression per trial, of patients treated at toxic doses with the 

proposed CR-CRM design. Simulated trials with targeted maximum toxicity = 25% and N = 35 + 35. (n/a : not 

applicable)

Average percent per trial of

Scenario MTD Good Best DLT Progression Toxic assignment

S1 3 2,3 3 18 41 18

S2 3 1,2,3 1,2,3 17 24 14

S3 3 2,3 2,3 19 26 15

S4 3 2,3 3 18 30 15

S5 1 1 1 20 50 20

S6 1 1 1 24 23 17

S7 2 2 2 21 30 18

S8 1 1 1 22 42 20

S9 5 4,5 5 15 31 n/a

S10 5 3,4,5 3,4,5 14 28 n/a

S11 5 5 5 15 37 n/a

S12 2 2 2 20 35 18
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