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Abstract

Advances in infrared (IR) spectroscopic imaging instrumentation and data science now present 

unique opportunities for large validation studies of the concept of histopathology using spectral 

data. In this study, we examine the discrimination potential of IR metrics for different histologic 

classes to estimate the sample size needed for designing validation studies to achieve a 

given statistical power and statistical significance. Next, we present an automated annotation 

transfer tool that can allow large-scale training/validation, overcoming the limitations of sparse 

ground truth data with current manual approaches by providing a tool to transfer pathologist 

annotations from stained images to IR images across diagnostic categories. Finally, the results of a 

combination of supervised and unsupervised analysis provide a scheme to identify diagnostic 

groups/patterns and isolating pure chemical pixels for each class to better train complex 

histopathological models. Together, these methods provide essential tools to take advantage of 

the emerging capabilities to record and utilize large spectroscopic imaging datasets.
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Introduction

The histopathology of cells and tissue remains the gold standard for clinical diagnostics 

and a significant part of biomedical research. It currently involves a visual examination 

of stained tissue slides to recognize the structural changes in specific cell types that are 

indicative of disease. This process is time-consuming and often prone to interobserver 

variability. During the last 15 years, infrared (IR) spectroscopic imaging has been 

studied as a potential route to obtaining diagnostic markers of disease in a variety 

of conditions: for example, for detection of breast micrometastases in axillary lymph 

nodes using microspectral IR imaging in combination with hierarchical clustering and 

artificial neural networks,1 characterization of breast tumor tissue by developing supervised 

and unsupervised classifiers,2 correlating breast microcalcifications with malignancy,3 

detection of microscopic differences in xenografted tumors,4 prostate cancer recurrence 

prediction model,5 and tumor microenvironment characterization of the breast.6 Digital 

histopathological characterization has also been proposed for a variety of tissue types, 

including liver,7,8 lymph node analysis,9,10 kidney,11,12 lung adenocarcinoma,13 brain 

tumors,14–16 head and neck tumors,17 oral cavity,18 prostate,19,20 bone,21–23 colon,24–28 

and breast.6,29–35 In general, for these varieties of tissue types and diseases, spectroscopic 

imaging is coupled to a variety of data mining approaches. Recent developments in the 

capabilities of analytical instruments designed for vibrational IR spectroscopy to resolve 

microscopic structures have drastically advanced the feasibility of IR spectroscopic imaging 

for routine histopathology.6,28,35–39 These instruments also allow an unprecedented volume 

of data to be acquired and allow us to revisit analytical considerations in using spectroscopic 

imaging for histopathology. New advances in feature extraction and computational 

analysis have enabled the differentiation of intricate disease categories. These biological 

classes have subtle variations in the given feature space like molecular imaging data, 

genetics, proteomics, or other systems biology experiments. In addition to measurement 

and computational factors, statistical considerations in the potential implementation of 

spectroscopy-based approaches are sample size estimation, generation of an annotated 

cohort for training/validation, and data analysis; individually and together, these factors 

can have a large influence on the development and use of spectral histopathology methods. 

Underestimation of the sample size can lead to statistically deficient diagnostic tests, for 

example, while an overestimation can significantly increase experimental costs and time to 

develop protocols. Finally, the sample size for the desired classification task is critical to 

achieving statistical significance in the estimates of performance.

Another concern in the development of analytical protocols is the issue of gold standards. 

Typically, annotations within images are used to train machine learning algorithms and 

validate their analytical performance. The transfer of the annotated regions from standard 

clinical images to images of interest (IR images in this case) can further add to data 
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variability and time input. To accurately train systems for automated histopathology, 

accurate mapping of the desired regions of interest from current pathology gold standard 

(stained) images to the spectral image is necessary. Multimodal image registration 

techniques can be applied to map data from the histologic images to the IR spectral image 

data. They have been utilized to correlate multiple biomarkers in conventional staining 

data.40 Previous studies have also reported the use of image registration approaches for 

aligning mass spectroscopic images with Raman imaging data41 and optical images.42 

Image registration by applying affine transformations to correlate hematoxylin and eosin 

(H&E) stained images with infrared imaging data has also been demonstrated.43 However, 

an accurate and user-friendly approach for transferring clinical annotations to chemical 

imaging data is still a challenge. Multimodal image registration has gained popularity and 

advanced in the area of medical imaging.44–46 While some aspects between these methods 

and our work here are related, there are also significant differences that do not allow a 

simple translation of these methods to vibrational spectroscopic imaging data. One of the 

chief ones is simply the size of the data set. While in vivo medical imaging sets that 

require registration are less than a few megapixels, emerging instruments in IR imaging 

now promise gigapixels per sample. A second major difference arises from the subtle 

structural changes that rapidly occur over a few pixel distances in microscopy. When the 

extant methods, which focus primarily on determining similarity between two images for 

developing a registration cost function, are applied to our images, major drawbacks emerge. 

The fully automated approaches require iterating through all possible affine transformations 

to find the optimal transformation. Performing the search to find the optimal registration 

would require sweeping over every possible combination of x-translation, y-translation, 

and rotation and then calculating the value of the registration cost function at every 

possible transformation. Due to the significant size disparity between the H&E image 

and the Fourier transform IR (FT-IR) region of interest (ROI) that we seek to register, 

this is a very large search space. It would be computationally expensive for most personal/

work computers, potentially requiring hours of computing time for a single registration. 

To optimize computation time and ease of use, we made the conscious choice to allow 

manual user control point selection over an automated iterative process. Also, our control 

point-based registration approach provides higher accuracy and validity.

Finally, even though unsupervised methods have been previously implemented on IR 

data,31,47–49 a combined approach of supervised and unsupervised analysis for identifying 

disease subgroups and isolating pure chemical pixels has not been widely explored. Here, 

we present a comprehensive toolbox containing sample size estimation for IR imaging-based 

histopathology utilizing multivariate analysis of variance, a user interface for automated 

annotations transfer, and the use of unsupervised clustering for identifying diagnostic 

patterns in breast tissue along with selecting pure IR pixels for building robust supervised 

models. Although the annotations transfer toolbox has been implemented and tested here on 

breast cancer tissue, the methods can easily be extended to other tissue types and diseases. 

It will enable the user to design and execute extensive studies utilizing IR spectroscopic 

imaging by estimating the diagnostic effect size to be captured by digital models, providing 

labeled data for model development, and understanding inherent pathologic and chemical 

distributions in the dataset.
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Methods

Sample Preparation and Data Collection

Formalin-fixed, paraffin-embedded serial breast tissue microarray sections (BR1003 and 

BRC961) were obtained from US Biomax, Inc. The array (BR1003) consisted of a total 

of 101 cores of 1 mm diameter from 47 patients, and BRC961 consisted of 96 cores of 

1.5 mm diameter from 48 patients. A few surgical specimens were imaged by selecting 

areas of interest representing diverse histological categories to closely simulate clinical 

settings as illustrated in Fig. 1. Unstained sections at 5 μm thick were placed on BaF2 

salt plates for transmission IR imaging. Corresponding adjacent sections were stained 

with H&E and imaged with a light microscope for ground truth generation. The sections 

were deparaffinized using an overnight hexane bath, and high-definition IR imaging was 

conducted using the Agilent Stingray imaging system as previously described.50 Data 

collected at the spectral resolution of 4 cm−1 was truncated to 3800–900 cm−1 wavenumbers 

and ratioed to a background single beam scan acquired on an empty space of BaF2 slide. 

Each sample was imaged and preprocessed by raster scanning a ~140 × 140 μm tile (2 min 

scanning, 30 s processing) and stitching individual tiles in ENVI+IDL 4.8 as previously 

described.50

Variance Analysis and Sample Size Estimation

The sample size is typically calculated by a priori power analysis51–54 for a given statistical 

power, significance level, and effect size. Statistical power55 is defined as the probability 

of detecting an effect (difference in the class groups) under a given confidence interval 

and sample size constraints. It highlights the achievable sensitivity and specificity of 

a diagnostic test. Effect size, also referred to as minimum expected difference, is the 

difference between group scores based on the feature set being used; this is typically 

calculated based on previously reported studies or pilot studies. It is a function of within-

group and between-group feature variance. For general clinical tasks, previously reported 

power analysis and lookup tables could also be utilized.52 It can also be estimated by 

carrying out an analysis of variance (ANOVA). Previously, ANOVA models for identifying 

primary sources of variance in spectroscopic data of different diagnostic categories have 

been demonstrated.56 Typically, in ANOVA, the effect of the disease states on infrared 

absorption at a particular frequency or a single feature vector is captured. In contrast, in 

multivariate analysis of variance (MANOVA), the effect of diagnostic groupings on multiple 

IR absorbance/metrics is estimated as illustrated in Fig. 2, closely simulating the multiclass 

classification downstream.

We performed MANOVA in Matlab (The Mathworks, Inc.) on IR images using eight 

spectral features (listed in Table S1, Supplemental Material) handcrafted based on known 

biochemical significance for the desired classification tasks and multiple histological 

classes. We have used these previously identified features for our classification task, but 

any set of features (even identified by automated schemes) can be used in this pipeline. The 

set of eight features illustrate our approach. Since the goal in our case is to determine the 

number of samples needed for a given statistical power and confidence, this is referred to 

as a priori power analysis. However, we also need to compute the effect size as the exact 

Mittal et al. Page 4

Appl Spectrosc. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detectable differences in the IR signature for our classification task are not available in the 

literature. To account for multivariate associations, the effect size is calculated by estimating 

the Pillai Trace in MANOVA analysis.57 It is a test statistic in MANOVA to compute the 

within-group versus between-group variance (defined in the equation 1). The total number 

of groups (or classes in the classification task) and the types of features in a classification 

task change the Pillai trace due to a different within-group versus between-group variance, 

thereby changing the corresponding effect size. Since we are trying to estimate the effect 

of different diagnostic groups on the IR absorbances and see whether they are significantly 

different or not, these IR absorbance features are referred to as response/outcome variables. 

Pillai trace is calculated in Matlab using the in-built library “manova1”

Piilai′s trace = ∑ 1
1 + λk

λ = eigenvalues of A
λ = SSW

−1SSB

(1)

Next, the sample size needed for a given statistical power for the estimated effect size 

is calculated using F-tests (MANOVA global effects in our case) using the G*Power 

software.58 Since in a clinical setting, the statistical power of at least 0.8 is recommended, 

all the sample size calculations in this manuscript are reported at 0.8 power and 0.05 

statistical significance. With decreasing effect size to be captured for a given classification 

task, the sample size required to achieve the same statistical power will increase. To allow 

the user to change the desired statistical power, we have also generated sample size versus 

statistical power curves for a given classification task (see the Results and Discussion 

section).

Multimodal Image Registration and Automated Ground Truth Transfer

Our image registration approach involved utilizing control point registration. The user can 

precisely annotate coordinates (three or more points) in the FT-IR image and the H&E 

image, corresponding to the same spatial architecture. Three or more points are needed to 

calculate an affine transform, including the rotational change accurately. The user needs to 

know the approximate location covered by the FT-IR image region within the larger H&E 

image to zoom in on the H&E image to select the points.

The user can alternate between the H&E and the IR image to precisely select these points, 

starting from the H&E image. First, mark the point 1 by double-clicking on the desired 

location on the H&E image, then mark the corresponding point 1 on the IR image, followed 

by point 2 on H&E, and so on. The first step is to calculate the needed dilations in both 

x- and y-axes to transform the H&E image to the same scale as the FT-IR image. Let (x1f, 

y1f) be the coordinates for a given control point 1 in the FT-IR image, and (x1h, y1h) be 

the coordinates for the corresponding control point in the H&E image. Similarly, let (x2f, 

y2f) be the coordinates for a different control point 2 in the FT-IR image, and (x2h, y2h) 

be the coordinates for the corresponding control point in the H&E image. A dilation value 

for the x-axis can be calculated thusly: dx = (x2f − x1f)/(x2h − x1h). This value represents 

the scaling factor needed to transform the x-dimension of the H&E image to the same scale 
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as that of the FT-IR image. Using the same formula, a dilation value for the y-dimension 

can also be obtained. Since there are three possible pairs of x- and y-axis dilations, we 

average the dilations to reduce any possible bias or random error. After applying the x- 

and y-axis dilation, we obtain the x- and y-axis translations needed to translate the scaled 

H&E image to precisely overlap the FT-IR image. Using the same notation as above, we 

can see that the x-axis translation, for example, would be equal to x1f − x1h*dx, where 

dx is the calculated dilation in the x-dimension. We apply the same logic to obtain the 

y-axis translation. Finally, to obtain the rotation, we calculate the angle created by any two 

control points and a horizontal line, both for the FT-IR image and the H&E image. Then, 

we calculate the difference between the two calculated angles and apply the inverse rotation 

to correct any rotational misalignments. These transformations are then used to transfer the 

pathologist annotations to the FT-IR image automatically. Sometimes, accurate transfer of 

these annotations can be difficult due to histologic processing variations as the H&E and IR 

image coming from different tissue sections. While it is reasonable to assume a large degree 

of correspondence between the structures in two images, the sizes and proportions of these 

structures can vary.

For example, a duct that spanned 50 μm in the FT-IR image may have narrowed in the 

intervening difference in depth between the FT-IR image and H&E image and thus would 

have spanned 30 μm in the H&E image. As a result of this, transferred annotations can 

sometimes land on an incorrect structure. To overcome this issue, we utilized a pretrained 

random forest (RF) classifier that separates FT-IR pixels into the stroma, epithelium, and 

others50 using 36 features (listed in Table S2). The model was trained on 20 000 pixels per 

class and validated on 5000 pixels per class (coming from different patients) for external 

validation. A confusion matrix was generated to validate the model, with the true positive 

rate being 99% rate for epithelium, 93% for stroma, and 99% for the “others” category. The 

confusion matrix is provided in the Supplemental Material, Table S3.

The transferred annotations are compared with the corresponding pixel-level classifications 

to ensure that each annotation lands on a correct cell type. For example, if a part of the 

pathologist annotation of “benign epithelium” happened to land on a stromal section (as 

defined by the classifier), in that case, the algorithm automatically discards that part of the 

annotation. Next, by using both the classified image and transferred annotations, we applied 

a recursive method known as the breadth-first search to expand the transferred annotations to 

neighboring pixels for which there is an uninterrupted path of pixels of the same cell type. 

This approach allowed us to expand the number of pixels with confident labels. We applied 

this flooding only to the epithelial classes since it is difficult to obtain a large number of 

pixels for different diagnostic categories in the epithelium except for the invasive tumor 

class. The choice of the distance criteria for flooding is detailed in Fig. S4. The overall 

workflow described above is illustrated in Fig. 3. We built a graphical user interface (GUI) 

that allows the user to perform these operations without coding knowledge. Step-by-step 

instructions for using the GUI are provided in Section 2, Supplemental Material. We have 

also made the GUIs available as executable files both for Mac and Windows users.
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Unsupervised Analysis

In this section, we wanted to further investigate the different disease signatures in an 

unsupervised manner. Since the tumor originates in the epithelium, we cluster the IR 

image by masking only the epithelium using k-means clustering with both three and four 

cluster models. We have presented three- or four-class models to achieve basic diagnostic 

segmentation of in situ tumors, invasive tumors, and other epithelial/cellular components. 

Euclidean distance criteria are used, and all pixels are grouped to the nearest class until the 

number of pixels in each class changes by less than 5%. The three-class model (discussed 

in the previous section) was used to mask out epithelial regions selected for clustering. 

The clustered image is then compared against the ground truth H&E-stained image to 

identify diagnostic patterns and select pure spectral pixels in each diagnostic class for 

precise training of supervised models. Here, we have presented this approach for clustering 

the epithelium, but the same method can be used to cluster the stroma. In that case, the 

three-class model should be used to mask the stromal regions and the same clustering 

method can be applied. This is further discussed in the Results and Discussion section of the 

manuscript.

Results and Discussion

Multivariate Analysis of Variance and Sample Size Estimation

To capture interclass and intraclass variation while accounting for the effect of multiple 

IR metrics on disease classification, we utilized multivariate analysis of variance to project 

the data to a canonical variable space and calculate the between-group and within-group 

variance. Next, eigenvalue analysis is used to estimate the Pillai Trace that can be utilized 

to calculate an effect size for a given classification problem. In this section, we used an 

example set of problems to highlight the effect size; we selected four different breast tissue 

classification models using 8 IR spectral features (listed in Table S1). Figs. 4a–d illustrate 

the analysis curves as a function of desired statistical power for sample size requirements. 

Conventionally in clinical practice, the statistical power of 0.8 and a significance level of 

0.05 are often used to estimate sample size. Hence, we list in Fig. 4e the sample size 

requirements for this statistical power and significance level. It is interesting to note that 

the sample size can significantly change with different histologic classes due to alterations 

in the within-group versus between-group variations. For instance, the smallest sample size 

is for the three-class (benign, malignant, and stroma) model as the IR spectral signature of 

the stroma is significantly different from the other two epithelial classes, thereby increasing 

the effective between-group variance. On the other hand, the “others’” class contains many 

cell types such as necrotic tissue, blood cells, and secretions in the three-class (benign, 

malignant, and others) model. This results in the within-group variance being higher than 

the benign, malignant, and stroma model, thereby decreasing the effect size to be captured. 

Similarly, benign and malignant cells may not have as significant a spectral difference as 

the other cell types. Hence, though a (benign and malignant) model is only two classes, the 

effect size is small, and the sample size required is larger. As expected, a complicated model 

(four-class) that contains multiple cell types and small effect sizes require a larger sample 

size as detailed in Fig. S1 (Supplemental Material).
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Multimodal Registration and Annotations Transfer

While the sample size is often considered at the level of the number of specimens, a 

robust sampling of sufficient annotated pixels in each specimen is also required to serve 

as a ground truth. This section illustrates an automated tool for the transfer of pathological 

annotations directly on IR spectroscopic images. Typically, when the regions of interest are 

manually transferred from the stained images to IR images, they can be sparse due to a lack 

of one-to-one correspondence between the two images and often take a considerable amount 

of time.

Figure 5a shows the manually transferred images that a pathologist confirmed for different 

histological categories. Figure 5b illustrates the transferred regions by utilizing the presented 

automated ROI transfer tool for the same diagnostic categories. The tool correctly transfers 

the annotations and expands them by using tissue architecture constraints and the three-class 

spectral classifier and flooding as discussed in the methods section. This provides additional 

pixels, especially for pathological epithelial categories that are often limited by the number 

of pixels available for supervised classification. Digitally transferred annotations with no 

flooding are shown in Fig. 5c for additional comparisons.

While this automated tool can find great utility, we also caution that its use should be in 

the context of the disease. For example, we do not do additional expansion when invasive 

epithelium may be present in breast tumor samples as multiple disease states, like ductal 

carcinoma in situ (DCIS), can be interspersed with invasive tumors. We also apply a more 

stringent flooding distance constraint on the other epithelial classes in that case (detailed in 

Fig. S2). A strength of this tool is that it reduces the barriers to annotation and can be used 

multiple times to assure that correct annotation is maintained while maximizing coverage. 

This capability cannot be achieved rapidly using manual marking alone. Here, three 

representative images are shown, but the tool was tested on multiple tissue architectures 

and patient samples shown in Fig. S2. This tool has been developed and tested on regions of 

interest imaged from large surgical specimens but should be easily applicable to other types 

of biopsy (core or needle) samples. To apply this tool on samples from tissue microarrays 

or for heterogeneous tumors on surgical sections, it would be best to transfer the annotations 

on parts of the image separately before re-forming a large field of view as the registration 

transform from the H&E-stained image to the IR image would be different for different 

patients and may differ in different regions of a large sample. For best results, we choose 

the control points carefully (maximum correspondence) and add as detailed annotations 

on the H&E image as possible. The presented approach is semi-automated and provides 

more accurate registration than the possible fully automated schemes for IR images. Let 

us consider one possible approach to a fully automated image registration algorithm, a 

two-step process consisting of (i) automated detection of control points followed by (ii) the 

mathematical calculation of the resulting registration/transformation. In the fully automated 

approach, the second step of calculating the registration/transformation is the same as in 

the manual approach, so we will disregard that step when comparing accuracy and validity. 

Considering the first step of selecting control points, if we assume some measure of domain 

knowledge on the user’s part, manual control point selection will result in greater or equal 

accuracy in selecting control points compared to automatic control point selection. It would 
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also be problematic when there are small morphological differences between the FT-IR and 

H&E images due to processing or when a series of images may be used for registration 

(e.g., histochemical images). Indeed, our experiments with automatic control point detection 

yielded low accuracy, especially given the differences in images yielded by H&E and FT-IR. 

As such, we can generally state that our approach will yield equivalent or better accuracy 

than a fully automated approach.

Let us now consider a second possible approach to a fully automated registration algorithm, 

which would be to perform a stepwise search over all possible transformations, calculating 

a similarity function for each possible transformation, and then selecting the transformation 

that results in the highest similarity. The registration precision may be constrained by 

the step size used during the exploration of all possible transformations. In other words, 

if the optimal registration happens to require parameters not explicitly covered by the 

discrete search space, the resulting registration will be suboptimal. In contrast, our approach 

would yield an equal or higher “resolution of registration”, allowing for a more optimal 

registration.

Finally, our approach ensures the validity of the transferred annotations. In our approach, 

the registration calculated from manual control point selection is supported and “double-

checked” by the supervised cell type classifier; if an annotation happens to fall on an 

inappropriate tissue type determined by the classifier, it is discarded. This helps ensure 

the validity of the transferred annotations. As a final consideration, manual control point 

selection and registration allow for the earlier identification of intractable cases. Some of 

the H&E–FT-IR image pairs we attempted to register in the course of this work were so 

visually different that an automated registration approach would have a high chance of 

failure. Our manual approach allows for early identification and removal of these cases. 

This tool will allow rapid scaling of digital models based on spectroscopy and decrease 

interobserver variability in generating ground truth data. Currently, we have incorporated 

benign epithelium, DCIS, invasive tumor, dense stroma, reactive stroma, and others with 

defined color codes (listed in Section 4, Supplemental Material), but any additional classes 

can be easily added to the tool. The supplementary data includes the first version of this 

toolbox, and we anticipate that straightforward further development by us and others can 

make this widely usable for different problems.

Clustering for Selecting Pure Chemical Pixels and Identifying Distinct Histological Patterns

Illustrated here is how a combination of supervised and unsupervised learning allows 

identifying distinct diagnostic patterns and selecting pure spectral pixels for each class. 

It can be seen in Figs. 6c and 6d that invasive tumors get separated from early-stage disease 

by clustering the pixels based on IR absorbance at specific wavenumber locations (1079, 

1238, 1307, 1396, 1450, 1538, 1650, 2865, 2942, 3062, and 3286 cm−1) used as a bar code 

for recognition of disease. In this case, recorded absorbances at these wavenumbers are 

used as features for the unsupervised clustering. It is evident that there are other distinct 

clusters (blue cluster in Fig. 6c and in the blue and yellow clusters shown in Fig. 6d 

that are primarily lymphocytes or scattered nuclear entities classified as epithelium by the 

simple three-class model. These nuclear architectures have IR spectral signatures closer to 
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epithelium than stroma or “others” class. It can be observed that within the invasive and 

DCIS class, some pixels are overlapping with each other, which can be removed from the 

supervised analysis of complex histologic models downstream. The presented approach will 

isolate pure chemical pixels within each class and help tackle the subcellular variations for 

precise training of complex histopathological models. The approach applies to large and 

small samples and can be used to discover the structure and more detailed annotations. It can 

also be used to explain heterogeneity in classification or sources of error in the image that 

might have a correlated spectral profile. While image segmentation methods typically rely 

on supervised or unsupervised techniques, this mixed method can provide a powerful tool 

for exploration as well.

Conclusion

This study provides a systematic approach for extending IR spectroscopy-based digital 

models to large-scale studies by overcoming three challenges that are frequently encountered 

by practitioners. Precise sample size calculation will enable planning clinical studies and 

achieving the desired confidence in the diagnostic assessment. Even though we demonstrate 

effect size calculation from MANOVA, it can also be used as a canonical space to transform 

the IR feature space for better class differentiation or dimensionality reduction like the 

principal component analysis. The automated annotations transfer tool will allow rapid and 

consistent training and validation data for large-scale spectroscopic imaging studies. Modern 

IR imaging instruments are now allowing for rapid data acquisition. In studies involving 

large numbers of images, however, hand drawing of annotations on IR images using H&E 

annotations as a reference can be time-consuming and limit the yield and quality of ground 

truth pixels. This work tackles the broad problem of generating curated and annotated 

datasets in spectroscopy, allowing large-scale training and evaluation of spectroscopy-based 

digital histopathological models.

However, other registration approaches and further optimizations can be carried out to 

achieve desired efficacy for specific tasks. The existing methods and the approach presented 

in this paper can be extended for more sophisticated image registration approaches for 

spectroscopy. For example, one direction could include a preliminary step of establishing 

a relatively coarse registration through the manual control point tool and then having a 

subsequent step of iterative perturbation and registration for fine-tuning, according to one of 

the registration cost functions developed in the existing approaches. This would significantly 

reduce the search space and enable a fast, automated tuning step. Another possible future 

direction would be to develop this tool as a web application with a higher computational 

power in the backend. In this scenario, a powerful computational backend could be used to 

tackle the computationally expensive search problem, allowing for an automatic solution in a 

reduced amount of time, accessible to and usable by all researchers.

Finally, we present a combination of supervised and unsupervised analysis to identify 

distinct spectral signatures and isolate pure chemical pixels for each class in diagnostic 

images. It can be used both for an exploratory study focused on histopathology or to 

further segment the annotations for precise ground truth generation to further train complex 

histological models.58
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Figure 1. 
Selected regions of interest from a surgical specimen imaged using high-definition IR 

imaging. (a) H&E-stained image of the surgical specimen with the marked areas imaged 

using IR imaging. (b) Corresponding IR images of the selected regions.
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Figure 2. 
(a) Estimating the effect of diagnostic classes using ANOVA (only one metric is considered). 

(b) Effect size calculation using MANOVA where the interactions between multiple feature 

vectors can be incorporated.
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Figure 3. 
Overall workflow for automated annotations transfers from H&E images to the 

corresponding IR images. The user needs to select points that spatially match the two 

images. Then, control point registration and tissue architecture feedback from the classifier 

is utilized for annotations transfer.

Mittal et al. Page 17

Appl Spectrosc. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Statistical power analysis using MANOVA global effects. (a) Number of samples required 

for the desired statistical power for a four-class model (malignant, benign, stroma, and 

others). (b) Sample size calculation as a function of power for a three-class model 

(malignant, benign, and others). (c) Sample size calculation for three-class stromal model 

(malignant, benign, and stroma). (d) Sample size calculation for two-class model (malignant 

and benign). (e) Effect size and sample size for 0.8 statistical power and significance level of 

0.05.
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Figure 5. 
Digital transfer of annotations from the H&E image to the corresponding IR image. We 

compare both the manually transferred annotations confirmed by a pathologist in (a) with 

the digitally annotated images in (b, with flooding) and in (c, without flooding/expansion).
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Figure 6. 
K-means clustering of the epithelial component of a region of interest from a surgical 

specimen imaged using IR. (a) H&E-stained image of the selected area of a surgical 

specimen. (b) Digitally classified image using IR imaging and the three-class model random 

forest model described in the methods section separating epithelium, stroma, and others. 

(c) K-means clustered image of the epithelial component using three clusters. (d) K-means 

clustered image of the epithelial component using four clusters.

Mittal et al. Page 20

Appl Spectrosc. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Sample Preparation and Data Collection
	Variance Analysis and Sample Size Estimation
	Multimodal Image Registration and Automated Ground Truth Transfer
	Unsupervised Analysis

	Results and Discussion
	Multivariate Analysis of Variance and Sample Size Estimation
	Multimodal Registration and Annotations Transfer
	Clustering for Selecting Pure Chemical Pixels and Identifying Distinct Histological Patterns

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

