Skip to main content
. Author manuscript; available in PMC: 2023 Jun 1.
Published in final edited form as: Ann Epidemiol. 2022 Mar 12;70:16–22. doi: 10.1016/j.annepidem.2022.03.003

Table 1.

Definitions of the measures and their estimates defined with bias factors.

Measure name Scale Estimand Estimateb
Linear difference, Dj Absolute Dj = Yj,1Yj,0 D^j=Y^j,1Y^j,0=(Yj,1+αj,1)(Yj,0+αj,0)
Ratio, Rj Relative Rj=Yj,1Yj,0 R^j=Y^j,1Y^j,0=Yj,1*βj,1Yj,0*βj,0
Percent difference,a PDj Relative PDj=Yj,1Yj,01 PD^j=Y^j,1Y^j,01=Yj,1*βj,1Yj,0*βj,01
Difference in differences, DD Absolute DiD = (Y1,1Y1,0) − (Y0,1Y0,0) DlD^=(Y^1,1Y^1,0)(Y^0,1Y^0,0)=((Y1,1+α1,1)(Y1,0+α1,0))((Y0,1+α0,1)(Y0,0+α0,0))
Ratio of ratios, RR Relative RoR=Y1.1Y1,0Y0,1Y0,0 ROR^=Y^1,1Y^1,0Y^0,1Y^0,0=Y1,1*β1,1Y1,0*β1,0Y0,1*β0,1Y0,0*β0,0
Ratio of percent differences, RPD Relative RPD=Y1,1Y1,01Y0,1Y0,01 RPD^=Y^1,1Y^1,01Y^0,1Y^0,01=Y1,1*β1,1Y1,0*β1,01Y0,1*β0,1Y0,0*β0,01
a

We omit the 100% multiplier for simplicity of notation; it does not affect conclusions.

b

For expressions involving the relative bias factor, we stipulate that βj,t ≠ 0 so that the adjacent Yj,t does not drop out of the expression, creating unusual results.