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ABSTRACT
The introduction of small molecules targeting viral functions has caused a paradigm shift in hepatitis C virus (HCV) 
treatment. Administration of these direct-acting antivirals (DAAs) achieves a complete cure in almost all treated 
patients with short-duration therapy and minimal side effects. Although this is a major improvement over the previous 
pegylated interferon plus ribavirin (PEG-IFNα/RBV) standard-of-care treatment for HCV, remaining questions address 
several aspects of the long-term benefits of DAA therapy. Interferon (IFN)-based treatment with successful outcome 
was associated with substantial reduction in liver disease–related mortality. However, emerging data suggest a 
complex picture and several confounding factors that influence the effect of both IFN-based and DAA therapies on 
immune restoration and limiting liver disease progression. We review current knowledge of restoration of innate and 
HCV-specific immune responses in DAA-mediated viral elimination in chronic HCV infection, and we identify future 
research directions to achieve long-term benefits in all cured patients and reduce HCV-related liver disease morbidity 
and mortality.
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INTRODUCTION
Hepatitis C virus (HCV) infection affects more than 
71 million individuals worldwide. Around 25% of 
acute HCV infections resolve spontaneously, and 
the remaining 75% develop into chronic infection 

and progressive liver damage, including fibrosis, 
cirrhosis, and hepatocellular carcinoma (HCC; 
reviewed in [1]). For more than a decade, the 
combination of pegylated interferon alpha and rib-
avirin (PEG-IFNα/RBV) was the standard-of-care  
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cells (KCs), monocytes, neutrophils, myeloid- 
derived suppressive cells, and various types of 
dendritic cells (DCs). Finally, non-parenchymal 
cells endowed with innate functions such as liver 
sinusoidal endothelial cells and hepatic stellate 
cells are also enriched in this organ and are impor-
tant for immune surveillance, antigen presenta-
tion, and tolerance induction.

RESTORATION OF INNATE IMMUNITY 
AFTER DAA TREATMENT
On infection, liver cells are involved in the sensing 
and early containment of HCV, induction of inflam-
matory and antiviral responses, and orchestration 
of virus-specific adaptive immune responses. Vari-
ous pattern recognition receptors (PRRs) have the 
capacity to sense the presence of viral proteins and 
nucleic acids as pathogen- associated molecular 
patterns (15,16). PRR-mediated innate signalling 
(i.e., Toll-like receptors, retinoic acid-inducible 
gene I (RIG-I)-like receptors) leads to the expres-
sion of a set of immediate early protective genes. 
These include antiviral genes such as type I and 
III IFNs, chemokines, and pro-inflammatory cy-
tokines, which then trigger IFN-stimulated genes. 
HCV has developed multiple mechanisms to im-
pair PRR-mediated signalling pathways and to 
escape innate immune responses. Nevertheless, 
significant upregulation of IFN-stimulated genes 
was reported in the livers of HCV-infected patients 
and chimpanzees (17–19). Chronic HCV infection 
and persistent IFN-stimulated gene signalling in-
duce activation of innate immune cells in the liver 
and the peripheral blood, and the resulting virus-
driven sustained inflammation is associated with 
the development of chronic liver disease, includ-
ing fibrosis, cirrhosis, and HCC.

The fact that HCV is able to establish chronic 
infection in the presence of such a strong antivi-
ral response suggests that expression of essential 
genes is disturbed during the early phase of the in-
nate immune response. We conducted studies with 
paired liver biopsies and corresponding purified 
hepatocytes isolated from HCV-infected patients 
undergoing liver transplantation and reported that 
antiviral response is largely supported by infected 
hepatocytes (20). Expression of early responsive 
IFN regulatory factor 3 IRF3-dependent genes 
(i.e., IFNB1, IL28A/B, CCL5) is severely compro-
mised and is associated with a global decrease in 
expression of the mitochondrial antiviral-signaling 

therapy for chronic HCV. This treatment was 
moderately effective in achieving a sustained vi-
rologic response (SVR) in approximately half of 
treated individuals (2). Furthermore, interferon 
(IFN)-based therapy was long (~48 wk) and was 
associated with substantial side effects (3). Direct-
acting antivirals (DAAs) that target and inhibit key 
HCV life-cycle proteins, including the NS3/4A 
protease, NS5A, and the RNA polymerase NS5B, 
have been available since 2011, with new mol-
ecules in the approval pipeline (4). Multiple all-
oral DAA combinations are pan-genotypic, with 
SVR rates of nearly 99%, shorter treatment dura-
tion (12 wk), and minimal side effects (5,6). Data 
on the IFN-based therapies demonstrate that SVR 
is associated with substantial reduction in liver 
disease–related mortality (7,8). Early but not late 
IFN therapy is also associated with restoration 
of HCV-specific immune response (9). Emerg-
ing data for DAA treatment support a rapid and 
complete restoration of most innate immune cells 
in the blood and in the liver with resolution of 
liver inflammation. However, whether successful 
DAA treatment will restore HCV-specific immune 
responses and abolish development of end-stage 
liver disease is not yet clear. Indeed, recent data 
suggest a complex picture and several confound-
ing factors that may influence the effect of DAA 
therapy on immune restoration and spontaneous 
HCV clearance on reinfection. In this article, we  
review the current knowledge on this topic.

THE LIVER AS AN IMMUNE ORGAN
The liver is a multifunctional organ exposed to 
various toxins and nutrients, and it is thus primar-
ily an innate immune organ that plays an early 
and important role in host defence (10). It is also an 
immune-privileged organ that favours tolerance 
(11). The key immunologic function of the liver is 
immune surveillance, which is dependent on strik-
ing a balance between tolerance and activation 
of both innate and adaptive immunity. The liver 
is composed primarily of parenchymal cells or 
hepatocytes (~80%). The remaining 20% are non-
parenchymal cells composed of resident innate 
and adaptive immune cells of lymphoid origin 
including T cells, natural killer (NK) and natural 
killer T cells, innate lymphoid cells, and mucosal-
associated invariant T cells (MAIT). B cells are also 
found in the liver and can have a profibrogenic role 
(12–14). Non-parenchymal cells further include 
immune cells of myeloid origin, including Kupffer 
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adaptor (MAVS) in infected hepatocytes. More-
over, the RIG-I-like receptor pathway was shown 
to be severely compromised on the restricted ex-
pression of the NS3/4A protease, concomitant with 
mitochondrial antiviral-signaling adaptor proteo-
lytic cleavage in human primary hepatocytes (21). 
More important, this impairment was completely 
reversed by treatment with the HCV NS3 protease 
inhibitor BILN2061 (ciluprevir) (21), the first DAA 
to be tested in humans (22) (Table 1). Thus, thera-
peutic clearance of HCV with DAA is expected to 
restore innate functions of hepatocytes in vivo. In 
support of this notion, DAA therapy was reported 
to rapidly reduce inflammation in the livers of 
mice with humanized livers, a finding that was not 
associated with IFNα/ribavirin therapy (23).

NK cells are important players in the host re-
sponse to HCV infection (33). Innate protection 

Table 1: Innate immunity restoration after therapy

Note: ↑ = increased; ↓ = decreased. DAA = Direct-acting antiviral; DC = Dendritic cell; HCV = Hepatitis C virus; IFN = Interferon;  
IL = Interleukin; MAIT = Mucosal-associated invariant T cell; NK = Natural killer; PRR = Pattern recognition receptor; SVR = Sus-
tained virologic response

Immune compartment and status in 
chronic HCV

Restoration after successful treatment
IFN-based therapy DAA therapy

Viral sensing (PRR-mediated signalling)

Impaired signalling
Altered early IFN response

Not restored (23) Restored signalling and response to IFN 
(21,23)

NK cells

Low cytokine production
↑ activation
↑ degranulation
↓ response to IFNα

↑ NK function predictive of SVR (24) Restoration of NK phenotype (25,26)

DC

↓ Frequency
↓ Pro-inflammatory cytokines
↑ Immunosuppressive cytokines

Impaired DC associated with  
treatment failure (27)Restored  
allogenic responses (28)

Restored PRR-mediated defect (29)

Monocytes and macrophages

↓ IL-18 production
Impaired differentiation of monocytes 

into M1 and M2 macrophages

Not tested Partial restoration of macrophage  
polarization (30)

MAIT cells

↓ Frequency in liverGlobal activation 
of cells

↓ Response to bacteria

↑ MAIT activation (31)
↑ Frequency (31)

Partial normalization of frequency (32)
Reduced liver inflammation (32)
No restoration of response to bacteria (32)

from HCV acquisition in exposed individuals was 
associated with an increased frequency of mature 
NK cells, higher levels of natural cytotoxicity recep-
tors, and enhanced cytotoxicity (34). Increased NK 
cell degranulation was also observed in the early 
phase of HCV infection in people who inject drugs 
(PWID) who clear HCV spontaneously (35). Spon-
taneous resolution was associated with increased 
expression of the activating receptors (NKp44 and 
NKp46) (36) and decreased expression of the inhib-
itory receptor NKG2A (35). Moreover, increased 
NK cell cytotoxicity in the early phase of infection 
was related to strong T cell responses (35,36). Sev-
eral studies also report functional impairment of 
NK cells in chronic HCV infection, where NK cells 
exhibit an exhausted status with reduced produc-
tion of effector cytokines (eg, IFNγ) and increased 
cytotoxicity that can promote liver damage (33). 
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responses were decreased in patients with chronic 
hepatitis C and restored on clearance of cell-asso-
ciated viral RNA from myeloid DCs after 4 weeks 
of IFNα/RBV therapy (28). Collectively, these data 
from IFN-based therapies suggest that rapid and 
complete restoration of DCs after HCV elimination 
is possible. More important, the PRR-mediated de-
fect induced by HCV could be restored in vitro by 
treatment with DAA coincident with reduction in 
cell-associated viral load (29). Further studies are 
required to establish the functional restoration of 
DC after DAA therapy in vivo.

Monocytes and macrophages are essential play-
ers in the inflammatory response. Monocytes sense 
HCV-infected cells and produce IL-18 via the in-
flammasome. IL-18 is essential for NK and MAIT 
cell activation (45). Patients with chronic HCV 
exhibit reduced monocyte function, leading to 
impaired NK cell IFNγ-mediated responses (45). 
Furthermore, HCV core protein suppressed in vitro 
differentiation of monocytes into either M1 or M2 
macrophages through Toll-like receptor 2 activation 
(45). An interesting finding is that DAA-mediated 
HCV clearance (NS5A inhibitor) partially restored 
the impaired macrophage polarization (30). KCs 
are liver-resident macrophages particularly rel-
evant in chronic HCV infection. However, access 
to liver samples is challenging, and therefore most 
studies are conducted with either KCs isolated 
from healthy liver (obtained from a transplanta-
tion setting) or monocyte-derived macrophages 
that are then exposed to HCV antigen or Toll-like 
receptor ligands in vitro. Studies with KCs isolated 
from healthy liver suggest a role in inducing im-
mune tolerance to HCV, including the production 
of IL-10 (46,47). However, evidence suggests that 
KCs help control HCV infection through cytokine 
production (IL-1β, TNF-α), synergistic effects with 
other cells, and mediation of virus-specific im-
munity (46,48). TNF-α obtained from either KCs 
isolated from healthy liver or monocyte-derived 
macrophages was reported to promote viral infec-
tivity (HCVcc and HCVpp) in vitro (49). Neverthe-
less, little evidence has been reported to elucidate 
evasion mechanisms that might induce chronicity 
of HCV infection and whether treatment with IFN 
or DAA could restore aberrantly activated KCs’ 
function on HCV eradication (50).

MAIT cells are innate-like lymphocytes that 
are activated during HCV infection in a T cell  
receptor–independent pathway but reliant on  
IL-18 in synergy with IL-12, IL-15, or IFNα or IFNβ, 

Although the exact mechanisms leading to NK 
cell exhaustion are poorly defined, emerging stud-
ies show that multiple negative regulatory path-
ways are involved, such as dysregulated NK cell 
receptor signalling, as are suppressive effects by 
regulatory cells or suppressive cytokines (TGF-β) 
within the microenvironment (reviewed in [37]). 
Increased NK cell effector function during PEG-
IFNα/RBV therapy is predictive of a successful 
treatment outcome (24). Furthermore, treatment 
with DAA, asunaprevir (NS3 protease inhibitor), 
and daclatasvir (NS5A inhibitor) reduced serum 
levels of the NK cell–stimulating cytokines (in-
terleukin [IL]-12 and IL-18) and the inflamma-
tory chemokines CXCL10 and CXCL11 (25,26). 
DAA-mediated viral clearance also reversed the 
activated NK cell phenotype observed in patients 
with chronic HCV (25,26). This was associated 
with improved NK cell degranulation on in vitro 
stimulation with IFNα (38). The improved NK 
cell responsiveness on rapid reduction of viremia 
through a DAA regimen, although indicative of 
functional restoration of NK cells, may also be rel-
evant for improved immune surveillance and pre-
vention of viral relapse.

DCs play a critical role in sensing viruses di-
rectly through their PRRs and in linking innate 
and adaptive immunity (39). As such, chronic viral 
infections have evolved mechanisms to interfere 
with pathogen recognition and cytokine produc-
tion. HCV-induced alterations are detectable in 
peripheral blood myeloid DCs and plasmacytoid 
DCs, including reduced frequency, impaired pro-
duction of inflammatory cytokines, and increased 
production of the immunosuppressive cytokine 
IL-10 (40,41). Several investigators independently 
report impairment of PRR-induced synthesis of 
cytokines (IL-12, tumour necrosis factor [TNF]-α, 
IFNα/IFNβ, IL-12p70) from myeloid DCs in 
chronic hepatitis C (42–44). The HCV-mediated 
impairment was dependent on cell-associated 
HCV RNA levels (42) and via select PRRs (TIR-
domain-containing adapter-inducing IFNβ [TRIF] 
and IFNβ promoter stimulator 1 [IPS-1, also called 
MAVS] pathway) (29). The functional modulation 
of defective DCs seems to be directly associated 
with successful response to IFN therapy. Patients 
who did not respond to PEG-IFNα/RBV therapy 
had circulating DCs with significantly decreased 
capacity to stimulate allogeneic T lymphocytes 
and to produce IL-12 compared with patients 
who achieved SVR (27). Pertinently, allogeneic 
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(CD127hi) because they no longer recognize the 
autologous virus. Chronic antigen stimulation of 
CD8 T cells recognizing intact epitopes induces T 
cell exhaustion and expression of a spectrum of in-
hibitory receptors, including programmed death-1 
(PD1), T cell immunoglobulin and mucin-domain-
containing-3 (TIM-3), cytotoxic T-lymphocyte pro-
tein 4 (CTLA-4), 2B4, CD160, killer cell lectin-like 
subfamily G member 1 (KLRG1), T cell immunore-
ceptor with immunoglobulin and immunoreceptor 
tyrosine-based inhibitory motif domains (TIGIT), 
and CD39 (53). This is coupled with increased ex-
pression of the transcription factor eomesodermin 
(Eomes) and down-regulation of the T-box tran-
scription factors (T-bet) and cell surface expres-
sion of CD127 (54). Expression of the transcription 
factor T cell factor 1 (TCF1) distinguishes a subset 
of exhausted virus-specific CD8 T cells with mem-
ory-like properties (55). T cell exhaustion results in 
progressive loss of effector functions with limited 
cytokine production, proliferation capacity, and 
eventually disappearance of the majority of HCV-
specific CD8 T cells from peripheral blood and 
their localization to the liver (56,57). Exhaustion of 
bystander CD8 T cells targeting other viruses has 
been observed in individuals with chronic HCV in-
fection, especially in the liver (58).

PEG-IFNα/RBV treatment during the first 6 
months after HCV infection was associated with 
reconstitution of CD127hi Bcl2hi polyfunctional 
HCV-specific memory CD8 T cells, but late treat-
ment, after years of chronic infection, failed to re-
constitute a similar response (9,59–64) (Table 2). 
IFN-free DAA treatment with a combination of 
faldaprevir (NS3 protease inhibitor) and deleobu-
vir (non-nucleoside NS5B polymerase inhibitor) 
with or without ribavirin led to a rapid restoration 
of the in vitro proliferative capacity of HCV-spe-
cific CD8 T cells and a slight reduction in the ex 
vivo frequency of PD1+ HCV-specific CD8 T cells 
(65). Similarly, a regimen of daclatasvir, asunapre-
vir, and beclabuvir (NS5B polymerase inhibitor) 
demonstrated a partial reduction in the expression 
of PD1 on HCV-specific CD8 T cells at 24 weeks 
after the end of treatment (66). 

Recently, TCF1+CD127+PD1+ HCV-specific 
CD8 T cells expressing both exhaustion and 
memory markers were described in subjects with 
chronic infection. This T cell subset was main-
tained in subjects treated with different DAA 
regimens during and after treatment (67). Inter-
estingly, this population expanded in one subject 

resulting in cytokine release and granzyme B up-
regulation (31). In chronic HCV infection, MAIT 
cells are activated by monocyte-derived cytokines 
and impaired in their response to bacteria. MAIT 
cells exhibit reduced frequencies, activated pheno-
type, altered transcription factor expression, and 
reduced response to their cognate MR1-depen-
dent antigen stimulation in the blood of patients 
with HCV (51). These defects were not reversed 
after HCV elimination by DAA therapy (51). The 
frequency of MAIT cells in the liver was also sig-
nificantly decreased and correlated inversely with 
liver inflammation and fibrosis (32). DAA therapy 
resulted in a rapid decrease in liver inflammation 
and MAIT cell activation and an increase in intra-
hepatic MAIT cell frequency that remained below 
the frequencies in uninfected controls (32). It is in-
teresting that IFNα-based therapies have recently 
been shown to increase MAIT cell activation and 
frequency in treated HCV patients, most likely 
reflecting a direct type I IFN-mediated effect on 
MAIT cells (31).

In summary, data to date suggest efficient resto-
ration of innate immune functions in DAA-cured 
individuals with the exception of MAIT cells. Fu-
ture studies are required that dissect the molecular 
mechanisms (eg, cytokine normalization vs anti-
gen removal) underlying the differential respon-
siveness of these immune cell subsets and others 
to DAA-mediated clearance of HCV.

RESTORATION OF ADAPTIVE IMMUNITY 
AFTER DAA TREATMENT
Spontaneous resolution of acute HCV infection 
is characterized by the early emergence of HCV-
specific CD8 T cells expressing the IL-7 receptor al-
pha (CD127), a marker of memory T cells, and the 
anti-apoptotic molecule Bcl-2 (reviewed in [1,52]). 
This response is typically of high magnitude, 
broad (targeting multiple HCV epitopes), and 
polyfunctional (producing multiple cytokines and 
displaying proliferative and cytotoxic properties). 
In contrast, infections that progress to chronicity 
are characterized by a CD8 T cell response of low-
frequency, narrow, or impaired effector functions 
(1). This limited immune response may transiently 
control viremia, but the immune selection pressure 
it exerts leads to the emergence of viral escape mu-
tants within targeted epitopes, thus facilitating vi-
ral persistence. CD8 T cells targeting epitopes that 
have mutated revert to a memory-like phenotype 
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who relapsed and differentiated into terminally  
exhausted TCF1−CD127−PD1hi HCV-specific CD8 
T cells. However, these memory-like CD8 T cells 
were distinct from conventional memory T cells 
detected in spontaneously resolved subjects be-
cause they expressed higher levels of Eomes and 
TCF1. They also produced lower levels of IFNγ 
and TNF-α on in vitro stimulation of peptide-ex-
panded HCV epitope-specific CD8 T cells. Finally, 
the CD127+PD1− HCV-specific CD8 T cell subset, 
abundant in spontaneously resolved individu-
als, did not recover in DAA-treated subjects (67). 
Together, these studies suggest partial reversal of 
HCV-specific CD8 T cell exhaustion state after DAA 
treatment. Whether early treatment during acute 
infection would reconstitute a better immune re-
sponse as observed in IFN-based therapy remains 
to be investigated. It is also essential to compare 
immune reconstitution and reversal of exhaustion 
in the liver versus peripheral blood, but it will be 

Table 2: Adaptive immunity restoration after therapy

Note: ↑ = increased; ↓ = decreased: CTLA-4 = Cytotoxic T-lymphocyte protein 4; DAA = Direct-acting antiviral; Eomes = eomesoder-
min; HCV = Hepatitis C virus; IFN = Interferon; IL = Interleukin; PD1 or CD279 = Programmed death 1; T-bet = T-box transcription  
factors; TIGIT = T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains;  
TIM-3 = T cell immunoglobulin- and mucin-domain-containing-3; TNF = Tumour-necrosing factor; Treg = Regulatory CD4 T cells

Immune compartment and status in 
chronic HCV

Restoration after successful treatment
IFN-based therapy DAA therapy

CD8

↓ Proliferation
↓ Cytokine production (IFNγ, TNF-α, IL-2)
Exhaustion profile (PD1, TIM-3, CTLA-4, 

2B4, CD160, KLRG1, TIGIT, CD39)

Restored only if treated early (9) ↑ Proliferation (65)
↓ PD1 expression (65,66)
No restoration of CD127+PD1− HCV-specific 

CD8 T cells (67)

CD4

↓ Proliferation
↓ Cytokine production (IFNγ, TNF-α, IL-2)

Exhaustion profile (PD1, TIM-3, CTLA-4)

↑ IFNγ responses (68)
Transient or no restoration (69,70)
Require further investigation

Bulk population (66):
  ↓ TIGIT
  ↑ Memory phenotype
  ↑ T-bet/Eomes ratio
HCV-specific: require further investigation

Treg

↑ Frequency
↑ Hepatic infiltration

Not normalized (71,72) Not normalized (73)

B cells

B cell abnormalities
(cryoglobulinemia vasculitis)
↑ Frequency of IgM+CD21– B cells

↓ Symptoms (74,75)
Normalization of B cell phenotype (74,75)
(↓ % of IgM+CD21− B cells) (74,75)

challenging because of the limited capacity to iso-
late circulating HCV-specific CD8 T cells, notably 
in individuals with advanced liver fibrosis (76).

CD4 helper T cells are essential for maintaining 
the proliferation and polyfunctionality of HCV-
specific CD8 T cells and successfully clearing the 
infection (reviewed in [1,52]). A vigorous, broad, 
and sustained virus-specific CD4 T cell response 
is associated with spontaneous clearance of HCV 
infection. Although the majority of individuals 
with acute HCV infection do generate a virus-spe-
cific CD4 T cell response, it is typically of limited 
breadth. Chronic infection is associated with rapid 
exhaustion of HCV-specific CD4 T cells character-
ized by an increased expression of PD1, CTLA-4, 
and TIM-3 and gradual loss of the proliferative 
capacity and reduced production of IL-2, TNFα, 
IFNγ, and IL-21. Follicular helper T (Tfh) cells, 
crucial for germinal centre formation and develop-
ment of high-affinity antibodies, were detected in 
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treatment (73). Longer follow-up is needed to fully 
understand the persistence of these immunosup-
pressive Treg cells in the liver and their contribu-
tion to liver disease.

B cells are not well characterized in HCV infec-
tion. On one hand, increasing evidence suggests 
that anti-HCV neutralizing antibodies are asso-
ciated with spontaneous clearance of primary 
HCV infection and reinfection (82–84). Yet, on the 
other hand, neutralizing antibodies were detected 
several weeks after infection regardless of the in-
fection outcome, suggesting that the humoral im-
mune response is not the sole contributor to viral 
clearance (reviewed in [1]). Chronic HCV infection 
is associated with several B cell–related abnormali-
ties. Circulating mixed cryoglobulins are detected 
in 40%–60% of patients, and overt cryoglobuline-
mia vasculitis (CV) occurs in 5%–10% of cases (74). 
IFN-free DAA treatment was shown to be effective 
and associated with reduced symptoms in patients 
with CV. The kinetics of B cells were examined in 
a prospective study of patients with chronic HCV–
CV treated with sofosbuvir (NS5B polymerase in-
hibitor) plus ribavirin, sofosbuvir plus daclatasvir, 
or sofosbuvir plus simeprevir (NS3 protease inhib-
itor) (74) and in a multicenter study of sofosbuvir 
plus daclatasvir (75). HCV–CV patients had a re-
duced frequency of CD4+CD25hiFoxP3+  Treg cells 
compared with healthy donors, but higher fre-
quencies of IgM+CD21− and low-memory B cells, 
Th17 CD4 T cells, and CD4+CXCR5+IL-21+ Tfh cells 
before treatment. DAA therapy increased the fre-
quency of Treg cells and reverted the expansion of 
IgM+CD21− and low memory B cells, Th17, and Tfh 
cells (74,75). Additional studies with other cohorts 
and more detailed immunological characterization 
are needed to understand the impact of DAA treat-
ment on different B cell subsets, B cell lymphop-
roliferative disorders in HCV, and neutralizing 
antibodies.

DAA-INDUCED PROTECTION FROM 
CHRONIC INFECTION AFTER HCV 
REEXPOSURE
The risk of HCV reinfection after spontaneous or 
treatment-induced viral clearance remains a prob-
lem among individuals with high-risk behaviours, 
such as PWID (85,86). Spontaneous resolution of 
acute infection leads to the generation of HCV-
specific long-lived memory T cells that can protect 
against viral persistence on reexposure. Although 

the blood of patients with acute infection but were 
also highly enriched in the liver during chronic 
HCV infection (77,78). The exact contribution of 
Tfh cells in mediating spontaneous HCV clearance 
is not yet clear.

It has been difficult to examine immune restora-
tion of HCV-specific CD4 T cells because they are 
functionally impaired in individuals with chronic 
infection. A restricted set of major histocompatibil-
ity complex (MHC) class II tetramers of the most 
common helper epitopes is available, but the low 
frequency of virus-specific CD4 T cells has limited 
their use. Restoration of HCV-specific CD4 func-
tion during IFN-based therapy is controversial, 
with some studies demonstrating an enhanced 
response in IFNγ Enzyme-Linked ImmunoSpot 
(ELISPOT) assays in patients who achieve SVR 
(68), and others showing a transient restoration or 
no effect altogether (69,70).

DAA treatment was associated with re-
duced expression of TIGIT—a shift from central 
(CD45RA−CCR7+) to effector (CD45RA−/CCR7−) 
memory T cell phenotype and an increased T-bet/
Eomes ratio—in bulk CD4 T cells, characteristic 
of effector functions (66). However, restoration of 
HCV-specific CD4 T cell numbers or functionality 
was not examined, and it would be imprudent to 
make solid conclusions solely on the basis of these 
data. Similarly, immune restoration of both CD4 
and CD8 T cells in the liver remains an open ques-
tion. This may be difficult to address because of the 
shift to a noninvasive grading of liver fibrosis and 
ethical constraints in obtaining liver biopsies from 
patients treated with DAA.

Regulatory CD4 T cells (Treg cells; 
CD25+FoxP3+CD4 T cells) regulate both innate and 
adaptive immunity and are expanded in the pe-
ripheral blood and liver of individuals with chronic 
HCV infection (79,80). Increased intrahepatic infil-
tration of Treg cells and their activation may limit 
fibrosis through the production of IL-10 (80,81). 
However, Treg cells may also correlate with ad-
vancing fibrosis by limiting the antifibrotic activity 
of NK cells. Most studies of IFN-based treatment 
suggest that SVR does not significantly alter the in-
trahepatic infiltration or activation status of Treg 
cells for up to 4 years after the end of treatment 
(71,72). To date, only one study has examined Treg 
cells in the peripheral blood of patients treated 
with DAA either in combination with IFN or not 
(73). In both regimens, the frequency of Treg cells 
did not normalize up to one year after the end of 
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with a recombinant chimpanzee adenoviral vector 
(ChAd3) and a modified vaccinia Ankara (MVA) 
encoding the nonstructural polyproteins of HCV 
(NSmut) prime/boost, a vaccine regimen that 
has demonstrated impressive immunogenicity in 
healthy volunteers, could not reconstitute HCV-
specific T cell immunity in patients with chronic 
HCV infection (97). Nevertheless, de novo T cell 
responses were induced when there was a se-
quence mismatch between the autologous virus 
and the vaccine immunogen. This suggests that it 
may be possible to prime similar de novo immune 
responses using novel vaccine antigens and appro-
priate formulations.

DAA-INDUCED IMMUNE 
RECONSTITUTION AND EFFECT ON HCC
The risk of developing HCV-related HCC increases 
with advanced cirrhosis. Data from IFN-based 
therapy indicate a reduced risk of developing 
HCC among patients who achieved SVR versus 
those who did not. Thus, it was assumed that 
DAA would have a similar impact. However, data 
emerging from early DAA trials have been con-
flicting, with some demonstrating higher risk of 
HCC recurrence and development despite curative 
DAA therapy. Several confounding factors are im-
plicated that may explain the discordance between 
these studies; they are discussed elsewhere (98,99). 
More recent data from a larger cohort (22,500 pa-
tients) suggest that achieving SVR was associated 
with a lower risk of HCC, but the risk remains high-
est in individuals with advanced cirrhosis or prior 
HCC (100). Hence, there is a need to develop prog-
nostic markers that may predict the risk of devel-
oping HCC before and after DAA treatment. A set 
of liver gene signatures was identified and shown 
to predict post-SVR development of HCC (99). 
Similarly, a small study of 13 patients, 3 of whom 
developed HCC, identified a panel of nine cyto-
kines, measured in serum before treatment (mono-
kine induced by γ IFN [MIG], IL-22, TNF-related 
apoptosis-inducing ligand [TRAIL], A prolifera-
tion-inducing ligand [APRIL], vascular endothe-
lial growth factor [VEGF], IL-3, tumour necrosis 
factor-like weak inducer of apoptosis [TWEAK], 
stem cell factor [SCF], IL-21), that distinguished 
patients who developed de novo HCC (101). Al-
though promising, this interesting finding remains 
to be validated with larger cohorts. Recent RNA-
seq and ChIP-seq analyses have demonstrated that  

sterilizing immunity may be rare, humans and 
chimpanzees that are reexposed to HCV exhibit 
reinfection episodes of shorter duration and re-
duced viremia compared with primary infection 
(82,87,88). Protective immunity on reinfection was 
characterized by expansion of broad (targeting 
multiple epitopes) and polyfunctional memory 
CD4 and CD8 T cells (89,90) and generation of 
cross-reactive antibodies (82). In contrast, failure to 
recognize the reinfection viral variants and expres-
sion of variable levels of the exhaustion marker 
PD1 was associated with failure to clear HCV rein-
fection and viral persistence (89).

DAA treatment does not protect against HCV 
reinfection, which is estimated at a rate of 4.6 per 
100 person-years in a trial of elbasvir (NS5A in-
hibitor) and grazoprevir (NS3 protease inhibitor) 
therapy for 12 weeks (91,92). As discussed earlier, 
it is not clear whether treatment-induced HCV 
clearance is associated with the generation of com-
parable HCV-specific memory immune responses 
that may enhance the chance of clearing a subse-
quent HCV infection. A limited number of sponta-
neous resolution cases after a second homologous 
or heterologous reinfection were reported in IFN-
treated PWID (93). Because early, but not late, IFN 
treatment was associated with better restoration 
of HCV-specific memory T cells, it is tempting 
to speculate that a similar phenomenon is likely 
with DAA. Such a well-restored immune response 
may provide better protective immunity and 
higher rates of spontaneous clearance on reinfec-
tion. Studies comparing immune reconstitution in 
PWID who received DAA in acute versus chronic 
HCV infection and after treatment monitoring of 
reinfection are required to validate this hypothesis.

POTENTIAL OF HCV VACCINATION IN 
DAA-TREATED INDIVIDUALS
Vaccine development against HCV remains a re-
search priority (85,94). One vaccine targeting 
HCV-specific T cells is currently in clinical trials in 
PWID (NCT01436357) (95), and another targeting 
humoral responses (96) is set to start in the near 
future. These two vaccines have demonstrated 
very good efficacy in healthy donors. A key ques-
tion is whether such vaccines will provide protec-
tive immunity in DAA-treated individuals. The 
immune system of these individuals has already 
failed once, and whether such failed immune re-
sponse can be resuscitated is not clear. Vaccination 
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FUTURE DIRECTIONS
The introduction of DAAs has caused an enormous 
paradigm shift in the treatment of chronic HCV in-
fection. DAAs have a huge potential to prevent pro-
gressive liver disease. Despite the high cure rates, 
continued clinical follow-up, and studies of the im-
mune response, liver disease progression and pro-
phylactic HCV vaccination are still required for 
high-risk and marginalized populations. Priorities 
include mechanistic studies on immune restoration 
in individuals treated during acute or chronic HCV 
and understanding the molecular mechanisms as-
sociated with development of HCC and how these 
mechanisms are affected by DAA. Studies of the 
evaluation of the extent of immune restoration ac-
cording to liver fibrosis stage are also very important 
to better understand the effect of fibrosis on immune 
dysfunction as well as to strengthen the argument 
that early treatment has increased benefits. Cohort 
studies are required to monitor reinfection in DAA-
treated high-risk individuals. In addition, vaccination 
of DAA-cured individuals and their inclusion in clini-
cal trials is essential to validate the efficacy of vaccines 
in long-term protection from re-infection after DAA 
cure. Finally, long-term systematic follow-up of all 
DAA-treated patients through large cohort studies, 
administrative databases, and registries is essential. 
The data obtained will provide better estimates of 
the rates of fibrosis regression, incidence of HCC, and 
impact of treatment on limiting the burden of HCV-
related liver disease in the long term.
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HCV infection induces marked changes in histone 
modifications on a genome-wide level in cell cul-
ture and in livers from HCV-infected individuals. 
Curative DAA therapy resulted in only a partial 
reversal of virus-induced transcriptional changes. 
Furthermore, cured cells exhibited the previously 
described liver gene signatures associated with a 
risk for developing HCC (102). Altogether, these 
data suggest that HCV infection may induce ir-
reversible changes in the liver microenvironment 
that may continue to enhance the risk of develop-
ing HCC.

For immune reconstitution after curative DAA 
therapy, it will be important to distinguish be-
tween individuals who have no previous history 
of HCC and those who do. Among the former, it 
is likely that viral elimination will reduce intra-
hepatic inflammation that promotes oncogenic 
transformation. Furthermore, DAA treatment will 
reconstitute innate immune mediators such as NK 
cells and slightly MAIT cells (see above) that have 
important immune surveillance characteristics 
against cancers. In the case of individuals with a 
history of HCC, the effect on T cells targeting tu-
mour-associated antigens (TAAs) or neoantigens 
will likely be important. As discussed earlier, lim-
ited data suggest reduced activation of bulk lym-
phocytes after DAA therapy (66), but the effect on 
TAA-specific T cells is unknown. With the recent 
approval of nivolumab, a PD1 inhibitor, for treat-
ment of HCC (103), it is crucial to understand how 
DAA treatment reshapes the immune landscape 
in the liver, the exhaustion status of TAA-specific 
tumour-infiltrating lymphocytes, and the expres-
sion of inhibitory ligands (eg, PDL1) on liver cells. 
Data from hepatitis B–related HCC has suggested 
that HCC TAA-specific T cells are more exhausted 
in these individuals than are HCC TAA-specific T 
cells from other etiologies (104), whereas a more 
recent study demonstrates no difference (105).

Finally, preliminary studies suggest that Treg 
cells do not normalize in the peripheral blood 
after DAA treatment. Additional analysis with 
larger cohorts and in the liver is warranted. The 
frequency of blood and tumour-infiltrating Treg 
cells correlates with CD8 T cell dysfunction and 
poor survival in HCC patients (106). If DAA ther-
apy does not significantly alter the localization 
and suppressive activity of intrahepatic Treg cells, 
this will create an immune-suppressive environ-
ment permissive to tumour growth.
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