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Estimation of density functions supported on general domains arises when the data are naturally restricted
to a proper subset of the real space. This problem is complicated by typically intractable normalizing
constants. Score matching provides a powerful tool for estimating densities with such intractable
normalizing constants but as originally proposed is limited to densities on R

m and R
m+. In this paper,

we offer a natural generalization of score matching that accommodates densities supported on a very
general class of domains. We apply the framework to truncated graphical and pairwise interaction models
and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed
method from bounded to unbounded domains and empirically demonstrate the advantages of our method.
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1. Introduction

Probability density functions, especially in multivariate graphical models, are often defined only up to
a normalizing constant. In higher dimensions, computation of the normalizing constant is typically an
intractable problem that becomes worse when the distributions are defined only on a proper subset of the
real space Rm. For example, even truncated multivariate Gaussian densities have intractable normalizing
constants except for special situations, e.g., with diagonal covariance matrices. This inability to calculate
normalizing constants makes density estimation for general domains very challenging.

Score matching [3] is a computationally efficient solution to density estimation that bypasses the
calculation of normalizing constants and has enabled, in particular, large-scale applications of non-
Gaussian graphical models [2, 9, 13, 18, 19]. Its original formulation targets distributions supported
on R

m. It was extended to treat the non-negative orthant Rm+ in [4], with more recent generalizations
in [20, 21]. An extension to products of intervals like [0, 1]m was given in [6, 7, 14], and more general
bounded domains were considered in [10]. Despite this progress, the existing approaches have important
limitations: the method in [10] only allows for bounded support, and earlier methods for Rm+ and [0, 1]m

offer ad-hoc solutions that cannot be directly extended to more general domains. This paper addresses
these limitations by developing a unifying framework that encompasses the existing methods and applies
to unbounded domains. The framework enables new applications for more complicated domains yet
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retains the computational efficiency of the original score matching. The remainder of this introduction
provides a more detailed review of the score matching estimator and the contributions of this paper.

1.1 Score matching and its generalizations

The original score matching estimator introduced in [3] is based on the idea of minimizing the Fisher
distance given by the expected �2 distance between the gradients of the true log density log p0 on R

m

and a proposed log density log p, that is,∫
Rm

p0(x)‖∇x log p(x) −∇x log p0(x)‖2
2 dx. (1.1)

Integration by parts leads to an associated empirical loss, in which an additive constant term depending
only on p0 is ignored. This loss avoids calculations of the normalizing constant through dealing with the
derivatives of the log-densities only. Minimizing the empirical loss to derive an estimator is particularly
convenient if p belongs to an exponential family because the loss is then a quadratic function of the
family’s canonical parameters. The latter property holds, in particular, for the Gaussian case, where the
methods proposed by [11, 22] constitute a special case of score matching.

In [4], the approach was generalized to densities on R
m+ = [0,∞)m by minimizing instead

∫
R

m+
p0(x)‖∇x log p(x) � x −∇x log p0(x) � x‖2

2 dx. (1.2)

The element-wise multiplication (‘�’) with x dampens discontinuities at the boundary of R
m+ and

facilitates integration by parts for deriving an empirical loss that does not depend on the true p0.
In recent work, we proposed a generalized score matching approach for densities on R

m+ by using the
square root of slowly growing and preferably bounded functions h(x) in place of x in the element-wise
multiplication [20, 21]. This modification improves performance (theoretically and empirically) as it
avoids higher moments in the empirical loss. Another recent work extended score matching to supports
given by bounded open subsets D ⊂ R

m with piecewise smooth boundaries [10]. The idea there is to
minimize

sup
g∈G

∫
D

p0(x)g(x)‖∇x log p(x) −∇x log p0(x)‖2
2 dx, (1.3)

where G ≡ {g|g(x) = 0∀x ∈ ∂D and g is 1-Lipschitz continuous}, and ∂D is the boundary of D. The
supremum in the loss is achieved at g0(x) ≡ minx′∈∂D ‖x − x′‖, the distance of x to ∂D.

1.2 A unifying framework for general domains

In this paper, we further extend generalized score matching with the aim of avoiding the limitations
of existing work and allowing for general and possibly unbounded domains D with positive Lebesgue
measure. We require merely that all sections of D ⊆ R

m, i.e., the sets of values of any component xj
fixing all other components x−j, are countable disjoint unions of intervals in R. This level of generality
ought to cover all practical cases. To handle such domains, we compose the function h in the generalized
score matching loss of [20, 21] with a component-wise distance function ϕ = (ϕ1, . . . , ϕm) : D → R

m+.
To define ϕj(x), we consider the interval in the section given by x−j that contains xj and compute



GENERALIZED SCORE MATCHING FOR GENERAL DOMAINS 741

the distance between xj and the boundary of this interval. The function ϕj(x) is then defined as the
minimum of the distance and a user-selected constant Cj. The loss resulting from this extension, with
the composition h ◦ ϕ in place of h, can again be approximated by an empirical loss that is quadratic in
the canonical parameters of exponential families.

As an application of the proposed framework, we study a class of pairwise interaction models for an
m-dimensional random vector X = (Xi)

m
i=1 that was considered in [20, 21] and in special cases in earlier

literature. These a-bmodels postulate a probability density function proportional to

exp

{
− 1

2a
xaKxa + 1

b
η�xb

}
, x ∈ D. (1.4)

Where past work assumes D = R
m or D = R

m+, we here allow a general domain D ⊂ R
m. In (1.4), a �

0 and b � 0 are known constants, and K ∈ R
m×m and η ∈ R

m are unknown parameters to be estimated.
For a = 0 we define xa�Kxa/a ≡ (log x)�K(log x) and for b = 0 we define η�xb/b ≡ η�(log x). The
case where a = 0 was not considered in [20, 21]. This model class provides a simple yet rich framework
for pairwise interaction models. In particular, if D = D1 × · · · ×Dm is a product set, then Xi and Xj are
conditionally independent given all others if and only if κij = κji = 0 in the interaction matrix K; i.e.,
the a-b models become graphical models [12]. When a = b = 1, model (1.4) is a (truncated) Gaussian
graphical model, with Σ ≡ K−1 the covariance matrix and Σ−1η the mean parameter. The case where
a = b = 1/2 with D = R

m+ is the exponential square root graphical model from [5].
For estimation of a sparse interaction matrix K in high-dimensional a-b models, we take up an �1

regularization approach considered in [9] and improved in [20, 21]. In [20, 21], we showed that this
approach permits recovery of the support of K under sample complexity n = Ω(log m) for Gaussians
truncated to D = R

m+. Here, we prove that the same sample complexity is achieved for Gaussians
truncated to any domain D that is a finite disjoint union of convex sets with n = Ω(log m) samples.
In addition, we derive similar results for general a-b models on bounded subsets of Rm+ with positive
measure for a > 0, or if logD is bounded for a = 0. On unbounded domains for a > 0 or for unbounded
logD and a = 0, we require n to be Ω(log m) times a factor that may weakly depend on m.

1.3 Organization of the paper

The rest of the paper is structured as follows. We provide the necessary background on score matching
in Section 2. In Section 3, we introduce and detail our new methodology, along with the regularized
generalized estimator for exponential families. In Section 4, we define the a-b interaction models and
focus on application of our method to these models on domains with positive Lebesgue measure.
Theoretical results and numerical experiments are given in Sections 5 and 6, respectively. We apply
our method to a DNA methylation dataset in Section 7. Longer proofs are included in the Appendix. An
implementation that incorporates various types of domain D is available in the genscore R package.

1.4 Notation

We use lower-case letters for constant scalars, vectors and functions and upper-case letters for random
scalars and vectors (except some special cases). We reserve regular font for scalars (e.g. a, X) and
boldface for vectors (e.g. a, X), and 1m = (1, . . . , 1) ∈ R

m. For two vectors u, v ∈ R
m, we write u � v

if uj > vj for j = 1, . . . , m. Matrices are in upright bold, with constant matrices in upper-case (K, M)
and random data matrices in lower-case (x, y). Superscripts index rows and subscripts index columns in
a data matrix x, so, X(i) is the i-th row, and X(i)

j is its j-th feature.
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For vectors u, v ∈ R
m, u�v ≡ (u1v1, . . . , umvm) denotes the Hadamard product (element-wise multi-

plication), and the �a-norm for a � 1 is denoted ‖u‖a = (
∑m

j=1 |uj|a)1/a, with ‖u‖∞ = maxj=1,...,m |uj|.
For a ∈ R, let va ≡ (va

1, . . . , va
m). Similarly, for function f : Rm → R

m, x �→ (f1(x), . . . , fm(x)), we
write f a(x) ≡ (f a

1 (x), . . . , f a
m(x)). Similarly, we also write f ′(x) ≡ (∂f1(x)/∂x1, . . . , ∂fm(x)/∂xm).

For a matrix K = [κij]i,j ∈ R
n×m, its vectorization is obtained by stacking its columns into an R

nm

vector. Its Frobenius norm is |||K|||F = ‖vec(K)‖2, its max norm is ‖K‖∞ ≡ ‖vec(K)‖∞ ≡ maxi,j |κij|
and its �a–�b operator norm is |||K|||a,b ≡ maxx �=0 ‖Kx‖b/‖x‖a, with |||K|||a ≡ |||K|||a,a.

For a vector x ∈ R
m and an index j ∈ {1, . . . , m}, we write x−j for the subvector that has the jth

component removed. For a function f of a vector x, we may also write f (xj; x−j) to stress the dependency
on xj, especially when x−j is fixed and only xj is varied, and write ∂jf (x) = ∂jf (y; x−j)/∂y

∣∣
y≡xj

. For two

compatible functions f and g, f ◦ g denotes their function composition. Unless otherwise noted, the
considered probability density functions are densities with respect to the Lebesgue measure on R

m.

2. Preliminaries

Suppose X ∈ R
m is a random vector with distribution function P0 supported on domain D ⊆ R

m and a
twice continuously differentiable probability density function p0 with respect to the Lebesgue measure
restricted to D. Let P (D) be a family of distributions of interest with twice continuously differentiable
densities on D. The goal is to estimate p0 by picking the distribution P from P (D) with density p
minimizing an empirical loss that measures the distance between p and p0.

2.1 Original score matching on R
m

The original score matching loss proposed by [3] for D ≡ R
m is given by

J
Rm(P) ≡ 1

2

∫
Rm

p0(x)‖∇ log p(x) −∇ log p0(x)‖2
2 dx,

in which the gradients can be thought of as gradients with respect to a hypothetical location parameter
and evaluated at the origin [3]. The log densities enable estimation without calculating the normalizing
constants of p and p0. Under mild conditions, using integration by parts, the loss can be rewritten as

J
Rm(P) ≡

∫
Rm

p0(x)

m∑
j=1

[
∂jj log p(x) + 1

2

(
∂j log p(x)

)2
]

dx

plus a constant independent of p. One can thus use a sample average to approximate the loss without
knowing the true density p0.

2.2 Score matching on R
m+

Consider D ≡ R
m+. Let h : Rm+ → R

m+, x �→ (h1(x1), . . . , hm(xm))�, where h1, . . . , hm : R+ → R+
are almost surely positive functions that are absolutely continuous in every bounded sub-interval of R+.
The generalized h-score matching loss proposed by [20, 21] is

Jh,Rm+(P) ≡ 1

2

∫
R

m+
p0(x)

∥∥∥∇ log p(x) � h1/2(x) −∇ log p0(x) � h1/2(x)

∥∥∥2

2
dx. (2.1)



GENERALIZED SCORE MATCHING FOR GENERAL DOMAINS 743

The score matching loss for Rm+ originally proposed by [4] is a special case of (2.1) with h(x) = x2. In
[20, 21] we proved that by choosing slowly growing and preferably bounded h1, . . . , hm, the estimation
efficiency can be significantly improved. Under assumptions that for all P ∈ P (Rm+) with density p,

(A0.1) p0(xj; x−j)hj(xj)∂j log p(xj; x−j)

∣∣∣xj↗+∞
xj↘0+ = 0, ∀x−j ∈ R

m−1+ ∀j;

(A0.2) Ep0

∥∥∇ log p(X) � h1/2(X)
∥∥2

2 < +∞, Ep0

∥∥(∇ log p(X) � h(X))′
∥∥

1 < +∞,

where f (x)

∣∣∣xj↗+∞
xj↘0+ ≡ limxj↗+∞ f (x) − limxj↘0+ f (x), the loss (2.1) can be rewritten as

Jh,Rm+(P) ≡
∫
R

m+
p0(x)

m∑
j=1

[
h′j(xj)∂j(log p(x)) + hj(xj)∂jj(log p(x)) + 1

2
hj(xj)[∂j(log p(x))]2

]
dx

plus a constant independent of p. One can thus estimate p0 by minimizing the empirical loss Jh,Rm+(P).

2.3 Score matching on bounded open subsets of Rm

The method proposed in [10] estimates a density p0 on a bounded open subset D ⊂ R
m with a piecewise

smooth boundary ∂D by minimizing the following ‘maximally weighted score matching’ loss

Jg0,D(P) ≡ sup
g∈G

1

2

∫
D

g(x)p0(x)
∥∥∇ log p(x) −∇ log p0(x)

∥∥2
2 dx, (2.2)

with G ≡ {g|g(x) = 0,∀x ∈ ∂D and g is L-Lipschitz continuous} for some constant L > 0. The authors
show that the maximum is obtained with g0(x) ≡ L · infx′∈∂D ‖x − x′‖2, i.e. the �2 distance of x to the
boundary of D; using integration by parts similar to the previous methods, (2.2) can be estimated using
the empirical loss that can be calculated with a closed form.

3. Generalized score matching for general domains

3.1 Assumption on the domain

For x ∈ R
m and any index j = 1, . . . , m, write Cj,D(x−j) ≡ {y ∈ R : (y; x−j) ∈ D} for the section of D

obtained by fixing the coordinates in x−j. This jth section is the projection of the intersection between
D and the line {(y; x−j) : y ∈ R}. A non-empty jth section is obtained from the vectors x−j in the set

S−j,D ≡ {
x−j : Cj,D

(
x−j

) �= ∅
} ⊂ R

m−1. For notational simplicity, we drop their dependency on D.

Definition 3.1 We say that a domain D ⊆ R
m is a component-wise countable union of intervals if it

is measurable, and for any index j = 1, . . . , m and any x−j ∈ S−j,D, the section Cj,D(x−j) is a countable
union of disjoint intervals, meaning that

Cj,D(x−j) ≡ ∪Kj(x−j)

k=1 Ik(x−j), (3.1)

where Kj(x−j) ∈ N∪ {∞}, and each set Ik(x−j) is an interval (closed, open or half open) with endpoints
−∞ � ak,j(x−j) ≤ bk,j(x−j) � +∞, with the Ik(x−j)’s being the connected components of Cj,D(x−j).
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The last point rules out constructions like I1 = (0, 1] and I2 = (1, 2] but allows I1 = (0, 1) and
I2 = (1, 2]. We define the component-wise boundary set of such a component-wise countable union of
intervals as

∂D ≡
{

x ∈ R
m : ∃j = 1, . . . , m, x−j ∈ S−j,D, xj ∈ ∪Kj(x−j)

k=1 {ak,j(x−j), bk,j(x−j)}\{±∞}
}

. (3.2)

3.2 Generalized score matching loss for general domains

We first define a truncated component-wise distance, which is based on distances within connected
components of sections.

Definition 3.2 Let C = (C1, . . . , Cm) be composed of positive constants, so C � 0. Let D ⊆ R
m be

a non-empty component-wise countable union of intervals whose sections are presented as in (3.1). For
any vector x ∈ D, define the truncated component-wise distance of x to the boundary of D as

ϕC,D(x) ≡ (
ϕC1,D,1(x), . . . , ϕCm,D,m(x)

) ∈ R
m+, (3.3)

ϕCj,D,j(x) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cj, ak,j = −∞, bk,j = +∞,

min(Cj, bk,j − xj), ak,j = −∞, xj � bk,j < +∞,

min(Cj, xj − ak,j, bk,j − xj), −∞ < ak,j � xj � bk,j < +∞,

min(Cj, xj − ak,j), −∞ < ak,j � xj, bk,j = +∞,

(3.4)

where k is the index for which xj ∈ Ik(x−j) and ak,j � bk,j are the endpoints of Ik(x−j).

Our idea for defining a score matching loss suitable for general domains is now to use the generalized
score matching framework from (2.1) but apply the function h to ϕC,D(x) instead of to x.

Definition 3.3 Suppose the true distribution P0 has a twice continuously differentiable density p0
supported on D ⊆ R

m, a non-empty component-wise countable union of intervals. Given positive
constants C � 0, and h : R

m+ → R
m+, y �→ (h1(y1), . . . , hm(ym)) with h1, . . . , hm : R+ → R+, the

generalized (h, C,D)-score matching loss for P ∈ P (D) with density p is defined as

Jh,C,D(P) ≡ 1

2

∫
D

p0(x)

∥∥∥∇ log p(x) � (h ◦ ϕC,D

)1/2
(x) −∇ log p0(x) � (h ◦ ϕC,D

)1/2
(x)

∥∥∥2

2
dx.

(3.5)

In (5), we apply the loss from (2.1) with the choice (h ◦ ϕC,D) in place of h. The function ϕC,D
transforms a point x ∈ D into the component-wise distance vector in R

m+. The loss from Definition 3.3
is thus a natural extension of our work in [20, 21], with the appeal that ϕC,D usually has a closed-
form solution and can be computed efficiently. For D = R

m+ and C = (+∞, . . . ,+∞) it holds that
ϕC,Rm+(x) = x, and the generalized score matching loss from (2.1) becomes a special case of (5). In
[20, 21], we suggested taking the components of h as bounded functions, which may now also be
incorporated via finite truncation points C for ϕ. If h(x) = x2, C = (+∞, . . . ,+∞) and D ≡ R

m+, then
(h ◦ ϕC,D)1/2(x) ≡ x gives the estimator in [4, 9]; see (1.2). When choosing h(x) = 1m, i.e., constant
one, we have (h◦ϕC,D)1/2(x) ≡ 1m and recover the original score-matching for Rm from [3]; see (1.1).
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Fig. 1. Comparison of g0, ϕ12,D,1 and ϕ12,D,2 on D ≡ {x ∈ R
2 : ‖x‖2 < 1}.

Fig. 2. Comparison of g0, ϕ12,D,1 and ϕ12,D,2 on D ≡ {x ∈ R
2+ : ‖x‖2 < 1}.

For a bounded domain D, our approach is different from directly using a distance in R
m as proposed

in [10]; recall (1.3) with the optimizer g0(x) being the �2 distance of x to the usual boundary of D.
Instead, we decompose the distance for each component and apply an extra transformation via the
function h.

Figure 1 illustrates the case of the two-dimensional unit disk given by x2
1 + x2

2 < 1. While the

function from [10] is g0(x) = 1 −
√

x2
1 + x2

2, our method uses ϕ1(x) =
√

1 − x2
2 − |x1| and ϕ2(x) =√

1 − x2
1 − |x2|, assuming that C = (C1, C2) has C1, C2 � 1. In Fig. 2 we consider the two-dimensional

unit disk restricted to R
2+, where ϕ1(x) = min

{
x1,
√

1 − x2
2 − x1

}
, ϕ2(x) = min

{
x2,
√

1 − x2
1 − x2

}
,

g0(x) = min
{

x1, x2, 1 −
√

x2
1 + x2

2

}
.

3.3 Examples of component-wise distances

We give the form of the component-wise distance ϕC,D for different examples of domains.

Example 3.4 (Rm and R
m+). Two frequently encountered domains are the real space and its nonnegative

orthant. These are the original settings considered in [3, 4, 9, 20, 21]. It holds that ϕC,Rm(x) = C and
ϕC,Rm+(x) = (min(C1, x1), . . . , min(Cm, xm)).

Example 3.5 (Unit hypercube). Now consider the unit hypercube D = [−1/2, 1/2]m as an example of
a compact set and encountered in applications like [6, 7, 14]. Every non-empty section Cj,D(x−j) equals
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[−1/2, 1/2], and so ϕCj,D,j(x) = min{Cj, 1/2 − |xj|}. Since the hypercube is bounded by nature, it is
natural to drop the truncation by Cj and simply use ϕD(x) = 1m/2 − |x|.
Example 3.6 (L q ball). As a compact domain that is difficult for previously proposed approaches,
consider the L q ball with radius r > 0 and q � 1, so D ≡ {x ∈ R

m : ‖x‖q � r}. Given a point

x ∈ D and an index j ∈ {1, . . . , m}, the section Cj,D(x−j) is the interval [−(rq − 1�|x−j|q)1/q, (rq −
1�|x−j|q)1/q], and so ϕCj,D,j(x) = min

{
Cj, (r

q − 1�|x−j|q)1/q − |xj|
}
.

Example 3.7 (L q ball restricted to R
m+). Further restricted, consider D ≡ {x ∈ R

m+ : ‖x‖q � r}, the
nonnegative part of the L q ball with radius r > 0 and q � 1. Given a point x ∈ D and an index j, the
section Cj,D(x−j) is [0, (rq − 1�|x−j|q)1/q], and so ϕCj,D,j(x) = min

{
Cj, xj, (r

q − 1�|x−j|q)1/q − xj

}
.

Example 3.8 (Complement of L q ball). Now consider D ≡ {x ∈ R
m : ‖x‖q > r}, the complement of

the L q ball with radius r > 0 and q � 1. Given x ∈ D and j, we now have

Cj,D

(
x−j

)
=
{
R if 1�m−1|x−j|q > rq,(
−∞,−(rq − 1�m−1|x−j|q)1/q

)
∪
(
(rq − 1�m−1|x−j|q)1/q,+∞

)
otherwise;

ϕCj,D,j(x) =
{

Cj if 1�m−1|x−j|q > rq,

min
{

Cj, |xj| − (rq − 1�m−1|x−j|q)1/q
}

otherwise.

Example 3.9 (Complement of L q ball restricted to R
m+). Next consider D ≡ {x ∈ R

m+ : ‖x‖q > r}, the
complement of the nonnegative part of the L q ball with radius r > 0 and q � 1. Given x ∈ D and j,

Cj,D(x−j) =
{
R+ if 1�m−1|x−j|q > rq,(
(rq − 1�m−1|x−j|q)1/q,+∞) otherwise;

ϕCj,D,j(x) =
{

min{Cj, xj} if 1�m−1|x−j|q > rq,

min
{
Cj, xj − (rq − 1�m−1|x−j|q)1/q

}
otherwise.

Example 3.10 (Complicated domains defined by inequality constraints). More generally, a domain D

may be determined by a series of intersections/unions of regions determined by inequality constraints,
e.g., D = {x ∈ R

m : (f1(x) � c1 ∧ f2(x) � c2) ∨ f3(x) � c3}. In this case, to calculate ϕC,D we may
plug in x−j as given and solve numerically fi(xj; x−j) = ci for i = 1, 2, 3, and obtain the boundary points
for xj using simple algorithms for interval unions/intersections. This is implemented in the package
genscore for some types of polynomials fi and arbitrary intersections/unions.

3.4 The empirical generalized score matching loss

From this section on, we simplify notation by dropping the dependence of ϕ on C and D.

Lemma 3.1 Suppose C � 0, p0(x) > 0 for almost every x ∈ D and h1(y), . . . , hm(y) > 0 for all y > 0.
Then Jh,C,D(P) = 0 if and only if p0 = p for a.e. x ∈ D.
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Proof of Lemma 3.1. By the measurability and definition of D, and using the Fubini–Tonelli theorem,
the component-wise boundary set ∂D from Definition 3.1 is a Lebesgue-null set. Thus, ϕ(x) � 0
for almost every x ∈ D, so that (h ◦ ϕ)(x) � 0 for a.e. x ∈ D. So Jh,C,D(P) = 0 if and only if
∇ log p0(x) = ∇ log p(x) for a.e. x ∈ D, i.e., log p0(x) = log p(x)+ c0 for a.e. x ∈ D for some constant
c0, or p0(x) = c1 · p(x) for a.e. x ∈ D for some non-zero constant c1 ≡ exp(c0). Since p0 and p both
integrate to 1 over D, we have c1 = 1 and p0 = p for a.e. x ∈ D. �

According to Lemma 3.1 the proposed score matching method requires the domain D to have
positive Lebesgue measure in R

m. For some null sets, e.g., a probability simplex, an appropriate
transformation to a lower-dimensional set with positive measure can be given, but we defer discussion
of such domains to future work and assume D has positive Lebesgue measure for the rest of this paper.

Lemma 3.2 Similar to (A0.1) and (A0.2) in Section 2.2, assume the following to hold for all p ∈
P (D),

(A.1) p0(xj; x−j)hj(ϕj(x))∂j log p(xj; x−j)

∣∣∣xj↗bk(x−j)
−

xj↘ak(x−j)
+ = 0 for all k = 1, . . . , Kj(x−j) and x−j ∈

S−j for all j;

(A.2)
∫
D

p0(x)
∥∥∇ log p(x) � (h ◦ ϕ)1/2(x)

∥∥2
2 dx < +∞,

∫
D

p0(x)

∥∥∥[∇ log p(x) � (h ◦ ϕ)(x)
]′∥∥∥

1
dx< +∞.

Also assume that

(A.3) ∀j = 1, . . . , m and a.e. x−j ∈ S−j, the component function hj of h is absolutely continuous
in any bounded sub-interval of the section Cj(x−j). This implies the same for (hj ◦ ϕj) and
also that ∂j(hj ◦ ϕj) exists a.e.

Then the loss Jh,C,D(P) is equal to a constant depending on p0 only (i.e., independent of p) plus

1

2

m∑
j=1

∫
D

p0(x) · (hj ◦ ϕj)(x) · [∂j log p(x)
]2 dx+

m∑
j=1

∫
D

p0(x) · ∂j

[
(hj ◦ ϕj)(x) · ∂j log p(x)

]
dx. (3.6)

The proof of the lemma is given in Appendix B. The lemma enables us to estimate the population
loss, or rather those parts that are relevant for estimation of P, using the empirical loss

Ĵh,C,D(P) = 1

2

m∑
j=1

n∑
i=1

1

2
(hj ◦ ϕj)

(
x(i)) · [∂j log p

(
x(i))]2 + ∂j

[
(hj ◦ ϕj)

(
x(i)) · ∂j log p

(
x(i))]. (3.7)

As the canonical choices of h are power functions in x, we give the following sufficient conditions for
the assumptions in the lemma.

Proposition 3.11 Suppose for all j = 1, . . . , m, hj(xj) = x
αj
j for some αj > 0. Suppose in addition that

for all j and x−j ∈ S−j and all p ∈ P we have

(1) p0(xj; x−j)∂j log p(xj; x−j) = o
(
1/|xj − ck,j|αj

)
as xj ↗ ck,j ≡ bk,j(x−j) or as xj ↘ ck,j ≡

ak,j(x−j) for all k such that ak,j(x−j) > −∞ or bk,j(x−j) < +∞, and

(2) p0(xj; x−j)∂j log p(xj; x−j) → 0 as xj ↗ +∞ if Cj(x−j) is unbounded from above, and as
xj ↘ −∞ if Cj(x−j) is unbounded from below.
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Then (A.1) and (A.3) are satisfied.

Proof of Proposition 3.11. Condition (A.3) is satisfied by the property of hj. (A.1) is also satisfied

since by construction (hj ◦ ϕj)(x) becomes |xj − ck,j|αj as xj → ck,j ∈ ∪Kj
k=1{ak,j(x−j), bk,j(x−j)} and also

(hj ◦ ϕj) is bounded by Cαj as xj ↗ +∞ or xj ↘ −∞, if applicable. �

3.5 Exponential families and regularized score matching

Consider the case where P (D) ≡ {pθ : θ ∈ Θ ⊂ R
r} for some r = 1, 2, . . . is an exponential family

composed of continuous distributions supported on D with densities of the form

log pθ (x) = θ�t(x) − ψ(θ) + b(x), x ∈ D, (3.8)

where θ ∈ R
r is the unknown canonical parameter of interest, t(x) ∈ R

r are the sufficient statistics,
ψ(θ) is the normalizing constant, and b(x) is the base measure. The empirical loss Ĵh,C,D (3.7) can then
be written as a quadratic function in the canonical parameter:

Ĵh,C,D(pθ ) =
1

2
θ�Γ (x)θ − g(x)�θ + const, with (3.9)

Γ (x) = 1

n

n∑
i=1

m∑
j=1

(hj ◦ ϕj)
(
X(i))∂jt(X

(i))
(
∂jt
(
X(i)))� and (3.10)

g(x) = −1

n

n∑
i=1

m∑
j=1

[
(hj ◦ ϕj)

(
X(i))∂jb

(
X(i))∂jt

(
X(i))

+(hj ◦ ϕj)
(
X(i))∂jjt

(
X(i))+ ∂j(hj ◦ ϕj)

(
X(i))∂jt

(
X(i))] , (3.11)

where ∂jt(x) = (∂jt1(x), . . . , ∂jtr(x))� ∈ R
r. Note that (3.10) and (3.11) are sample averages of functions

in the data matrix x only. These forms are an exact analog of those in Theorem 5 in [21]. As expected,
we can thus obtain the following consistency result similar to Theorem 6 in [21]:

Theorem 3.12 (Theorem 6 of [21]). Suppose the true density is p0 ≡ pθ0
and that

(C1) Γ (x) is almost surely invertible, and

(C2) Σ0 ≡ Ep0

[(
Γ (x)θ0 − g(x)

) (
Γ (x)θ0 − g(x)

)�], Γ 0 ≡ Ep0
Γ (x), Γ −1

0 , and g0 ≡ Ep0
g(x)

exist and are component-wise finite.

Then the minimizer of (3.9) is almost surely unique with closed form solution θ̂ ≡ Γ (x)−1g(x) with

θ̂ →a.s. θ0 and
√

n(θ̂ − θ0) →d N r

(
0, Γ −1

0 Σ0Γ
−1
0

)
as n → ∞.

Estimation in high-dimensional settings, in which the number of parameters r may exceed the sample
size n, usually benefits from regularization. For exponential families, as in [21], we add an �1 penalty
on θ to the loss in (3.9), while multiplying the diagonals of the Γ by a diagonal multiplier δ > 1:
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Definition 3.13 Let δ > 1, and Γ δ(x) be Γ (x) with diagonal entries multiplied by δ. For exponential
family distributions in (3.8), the regularized generalized (h, C,D)-score matching loss is defined as

Ĵh,C,D,λ,δ(pθ ) ≡
1

2
θ�Γ δ(x)θ − g(x)�θ + λ‖θ‖1. (3.12)

The multiplier δ > 1, together with the �1 penalty, resembles an elastic net penalty and prevents
the loss in (3.12) from being unbounded from below for smaller λ, in which case there can be infinitely
many minimizers. This is discussed in Section 4 in [21], where a default for δ is given, so that no tuning
for this parameter is necessary. Minimization of (3.12) can be efficiently done using coordinate-descent
with warm starts, which along with other computational details is discussed in Section 5.3 of [21].

3.6 Extension of the method from [10] to unbounded domains

A key ingredient to our treatment of unbounded domains is truncation of distances. This idea can also
be applied to the method proposed for general bounded domains in [10]; recall Section 2.3. For any
component-wise countable union of intervals D as in Definition 3.1, we may modify the loss in (2.2) to

Jg0,C,D(P) ≡ sup
g∈G

1

2

∫
R

m+
g(x)p0(x)

∥∥∇ log p(x) −∇ log p0(x)
∥∥2

2 dx,

but with G ≡ {g|g(x) = 0,∀x ∈ ∂D, g is L-Lipschitz continuous and g � C} instead. Here, we use
the same Lipschitz constant L > 0 but add an extra truncation constant C > 0. Moreover, we use the
component-wise boundary set ∂D (3.2) instead of the usual boundary set ∂D used in [10]. Following
the same proof as for their Proposition 1 and dropping the Lipschitz constant L by replacing C with C/L
(or equivalently choosing L = 1), it is easy to see that the maximum is obtained at

g0(x) ≡ min

{
C, inf

x′∈∂D
‖x − x′‖2

}
, (3.13)

the �2 distance of x to ∂D truncated above by C, which naturally extends the method in [10] to
unbounded domains. In the special case where ∂D = ∅, we must have D ≡ R

m and g0(x) ≡ C
by the expression above (with the convention of inf∅ = +∞), which coincides with the original score
matching in [3].

Assuming that (A.1) and (A.2) from Lemma 3.2 hold when replacing (h ◦ ϕ)(x) by g0(x)1m and
hj(ϕj(x)) by g0(x), the same conclusion there applies, i.e.

Jg0,C,D(P) ≡ 1

2

m∑
j=1

∫
D

p0(x)g0(x)
[
∂j log p(x)

]2 dx +
m∑

j=1

∫
D

p0(x)∂j

[
g0(x)∂j log p(x)

]
dx

plus a constant depending on p0 but not on p; this is the same loss as in Equation (13) in [10] with a
truncation by C applied to g0. The proof is in the same spirit of that for Lemma 3.2 and is thus omitted.
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4. Pairwise interaction models on domains with positive measure

4.1 Pairwise interaction power a-b models

As one realm of application of the proposed estimation method, we consider exponential family models
that postulate pairwise interactions between power transformations of the observed variables, as in (1.4):

pη,K(x) ∝ exp

(
− 1

2a
xa�Kxa + 1

b
η�xb

)
1D(x) (4.1)

for which we treat x0 ≡ log x and 1/0 ≡ 1, on a domain D ⊆ R
m with a positive measure. Here a � 0

and b � 0 are known constants and the interaction matrix K ∈ R
m×m and the linear vector η ∈ R

m

are unknown parameters of interest. As in [21], our focus will be on the support of K, S(K) = {(i, j) :
κij �= 0}, that for product domains defines the conditional independence graph of X ∼ pη,K. However,
we simultaneously estimate the nuisance parameter η unless it is explicitly assumed to be 0.

When a = b = 1, model (4.1) is a truncated Gaussian model. From a = b = 1/2, we may obtain
the exponential square-root graphical model in [5]. The gamma model in [21] has a = 1/2 and b = 0.

4.2 Finite normalizing constant and validity of score matching

The following theorem gives detailed sufficient conditions for the a-b density pη,K in (4.1) to be a proper
density on a domain D ⊆ R

m with positive Lebesgue measure.

Theorem 4.1 (Sufficient conditions for finite normalizing constant). Denote ρj(D) ≡ {xj : x ∈ D} the
closure of the range of xj in the domain D. If any of the following conditions holds, the density in (4.1)
is a proper density, i.e., the right hand of (4.1) is integrable over D:

(CC1) a > 0, b > 0, D is bounded;

(CC2) a > 0, b > 0, va�Kva > 0 ∀v ∈ D\{0}, and either 2a > b or η�vb � 0 ∀v ∈ D;

(CC3) a > 0, b = 0, ηj > −1 for all j s.t. 0 ∈ ρj(D), and one of the following holds:

(i) D is bounded;

(ii) D is unbounded and va�Kva > 0 ∀v ∈ D\{0};
(iii) D is unbounded, va�Kva � 0 ∀v ∈ D and ηj < −1 for all j s.t. ρj(D) is unbounded (which

implies that ρj(D) = [0,+∞) is not allowed for any j);

(CC4) a = 0, D is bounded and 0 �∈ ρj(D) for all j;

(CC5) a = 0, b = 0, log(x)�K log(x) > 0 ∀x ∈ D;

(CC6) a = 0, b > 0, log(x)�K log(x) > 0 ∀x ∈ D and ηj � 0 for all j s.t. ρj(D) is unbounded;

(CC7) a = 0, b > 0, log(x)�K log(x) � 0 ∀x ∈ D and ηj < 0 for all j s.t. ρj(D) is unbounded.

In the centered case where η = 0 is known, any condition in terms of b and η can be ignored.

To simplify our discussion, the following corollary gives a simpler set of sufficient conditions for
integrability of the density.
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Corollary 4.1 (Sufficient conditions for finite normalizing constant; simplified). Suppose

(CC0*) K is positive definite

and one of the following conditions holds:

(CC1*) 2a > b > 0 or a = b = 0;

(CC2*) a > 0, b = 0, η � −1m;

(CC3*) a = 0, b > 0, ηj � 0 for any j such that xj is unbounded in D.

Then the right-hand side of (4.1) is integrable over D. In the case where η ≡ 0, (CC0*) is sufficient.

For simplicity, we use conditions (CC0*)–(CC3*) throughout the paper. The following theorem
gives sufficient conditions on h that satisfy conditions (A.1)–(A.3) in Lemma 3.2 for score matching.

Theorem 4.2 (Sufficient conditions that satisfy assumptions for score matching). Suppose (CC0*) and
one of (CC1*) through (CC3*) holds, and h(x) = (

xα1
1 , . . . , xαm

m
)
, where for all j = 1, . . . , m,

(1) if a > 0 and b > 0, αj > max{0, 1 − a, 1 − b};
(2) if a > 0 and b = 0, αj > 1 − η0,j;

(3) if a = 0, αj � 0.

Then conditions (A.1), (A.2) and (A.3) in Lemma 3.2 are satisfied and the equivalent form of the
generalized score matching loss (6) holds, and the empirical loss (3.7) is valid. In the centered case
with η ≡ 0, it suffices to have a > 0 and αj > max{0, 1 − a} or a = 0 and αj � 0.

4.3 Estimation

Let Ψ ≡ [
K� η

]� ∈ R
(m+1)×m. In this section, we give the form of Γ ∈ R

(m+1)m×(m+1)m and g ∈
R

(m+1)m in the unpenalized loss 1
2 vec(Ψ )�Γ vec(Ψ ) − g�vec(Ψ ) following (3.10)–(3.11). Γ is block-

diagonal, with the j-th R
(m+1)×(m+1) block

Γ j(x) ≡
[

Γ K,j γ K,η,j
γ�

K,η,j γη,j

]

≡ 1

n

n∑
i=1

⎡
⎣ (hj ◦ ϕj)

(
X(i))X(i)

j

2a−2
X(i)a

X(i)a� −(hj ◦ ϕj)
(
X(i))X(i)

j

a+b−2
X(i)a

−(hj ◦ ϕj)
(
X(i))X(i)

j

a+b−2
X(i)a�

(hj ◦ ϕj)
(
X(i))X(i)

j

2b−2

⎤
⎦ .

On the other hand, g ≡ vec
([

g�K gη

]�) ∈ R
(m+1)m, where gK ∈ R

m×m and gη ∈ R
m correspond to K

and η, respectively. The j-th column of gK is

1

n

n∑
i=1

(
∂j(hj ◦ ϕj)

(
X(i))X(i)

j

a−1 + (a − 1)(hj ◦ ϕj)
(
X(i))X(i)

j

a−2)
X(i)a

+ a(hj ◦ ϕj)
(
X(i))X(i)

j

2a−2
ej,m, (4.2)
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where ej,m ∈ R
m has 1 at the j-th component and 0 elsewhere, and the j-th entry of gη is

1

n

n∑
i=1

−∂j(hj ◦ ϕj)
(
X(i))X(i)

j

b−1 − (b − 1)(hj ◦ ϕj)
(
X(i))X(i)

j

b−2
. (4.3)

If a = 0, set the coefficients (a − 1) to −1 and a to 1 in (2); for b = 0 set (b − 1) to −1 in the second
term of (4.3).

As in [21] we only apply the diagonal multiplier δ to the diagonals of Γ K,j ∈ R
m×m, not γη,j ∈ R.

Note that each block of Γ and g correspond to each column of Ψ , i.e. (κ ,j, ηj) ∈ R
m+1. In the

penalized generalized score-matching loss (3.12), the penalty λ for K and η can be different, λK and
λη, respectively, as long as the ratio λη/λK is fixed. For K we follow the convention that we penalize its
off-diagonal entries only. That is,

1

2
vec(Ψ )�Γ δ(x)vec(Ψ ) − g(x)�vec(Ψ ) + λK‖vec(Koff)‖1 + λη‖η‖1. (4.4)

In the case where we do not penalize η, i.e. λη = 0, we can simply profile out η, solve for η̂ =
Γ −1

η

(
gη − Γ �

K,ηvec(K̂)
)

, plug this back in and rewrite the loss in K only. Let Γ δ,K ∈ R
m2×m2

be

the block-diagonal matrix with blocks Γ K,j and diagonal multiplier δ, and let Γ K,η ∈ R
m2×m and

Γ η ∈ R
m×m be the (block-)diagonal matrices with blocks γ K,η,j and γη,j, respectively. Denote Γ δ,profiled

as the Schur complement of Γ δ,K of
[

Γ δ,K Γ K,η

Γ �
K,η Γ η

]
, i.e. Γ δ,K − Γ K,ηΓ

−1
η Γ �

K,η, which is guaranteed to be

positive definite for δ > 1. Then the profiled loss is

Ĵh,C,D,λ,δ,profiled(pK) ≡ 1

2
vec(K)�Γ δ,profiledvec(K) −

(
gK−Γ K,ηΓ

−1
η gη

)�
vec(K) + λK‖vec(Koff)‖1.

(4.5)

4.4 Univariate examples

To illustrate our generalized score matching framework, we first present univariate Gaussian models on
a general domain D ⊂ R that is a countable union of intervals and has positive Lebesgue measure. In
particular, we estimate one of μ0 and σ 2

0 assuming the other is known, given that the true density is

pμ0,σ 2
0
(x) ∝ exp

{
− (x − μ0)

2

2σ 2
0

}
, x ∈ D,

with μ0 ∈ R and σ 2
0 > 0. Let X(1), . . . , X(n) ∼ pμ0,σ 2

0
be i.i.d. samples. Without any regularization by

an �1 or �2 penalty and assuming the true σ 2
0 is known, we have similar to Example 3.1 in [21] that our

generalized score matching estimator for μ0 is

μ̂ ≡
∑n

i=1(h ◦ ϕC)
(
X(i)

) · X(i) − σ 2
0 (h ◦ ϕC)′

(
X(i)

)∑n
i=1(h ◦ ϕC)

(
X(i)

) .
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By Theorem 4.2, it suffices to choose h(x) = xα with α > 0. Similar to [21], we have

√
n
(
μ̂ − μ0

)→d N

(
0,

E0

[
σ 2

0 (h ◦ ϕC)2(X) + σ 4
0 (h ◦ ϕC)′2(X)

]
E

2
0

[
(h ◦ ϕC)(X)

]
)

, (4.6)

if the expectations exist. On the other hand, assuming the true μ0 is known, the estimator for σ 2 is

σ̂ 2 ≡
∑n

i=1(h ◦ ϕC)
(
X(i)

) · (X(i) − μ0

)2∑n
i=1(h ◦ ϕC)

(
X(i)

)+ (h ◦ ϕC)′
(
X(i)

) · (X(i) − μ0

) , with limiting distribution

√
n
(
σ̂ 2 − σ 2

0

)
→d N

⎛
⎝0,

E0

[
2σ 6

0 (h ◦ ϕC)2(X) · (X − μ0)
2 + σ 8

0 (h ◦ ϕC)′2(X) · (X − μ0)
2
]

E
2
0

[
(h ◦ ϕC)(X) · (X − μ0)

2
]

⎞
⎠ .

(4.7)

Figure 3 shows a standard normal distribution N (0, 1) restricted to three univariate domains:
D2 ≡ (−∞,−3/2] ∪ [3/2,+∞), D3 ≡ [−1,−3/4] ∪ [3/4, 1], and their union D1 ≡ (−∞,−3/2] ∪
[−1,−3/4] ∪ [3/4, 1] ∪ [3/2,+∞). The endpoints are chosen so that the probability of the
variable lying in each interval is roughly the same, with N (0, 1) ((−∞,−3/2]) ≈ 0.0668 and
N (0, 1) ([−1,−3/4]) ≈ 0.0680. To pick the truncation point C for the distance ϕC,D, we choose
π ∈ (0, 1] and let C be the π quantile of the distribution of ϕ+∞,D(X), where the random variable X
follows the truncation of N (0, 1) to the domain D. So, C is such that P

(
ϕ+∞,D(X) � C

) = π . Here,
ϕ+∞,D1

(X) = |X| − 3/2 if |X| > 3/2, or min(|X| − 3/4, 1 − |X|) otherwise, ϕ+∞,D2
(X) = |X| − 3/2,

and ϕ+∞,D3
(X) = min(|X| − 3/4, 1 − |X|).

The first subfigure in each row of Fig. 3 shows the density on each domain, along with the
corresponding ϕ+∞(X) in red, whose y axis is on the right. The second plot in each row shows the log
asymptotic variance for the corresponding μ̂, as on the right-hand side of (4.6), and the third shows that
for σ̂ 2 as in (7). Each curve represents a different α in h(x) = xα , and the x axis represents the quantiles
π associated with the truncation point C as above. Finally, the red dotted curve shows C versus π for
each domain. The ‘bumps’ in the variance for x0.5 are due to numerical instability in integration.

As we show in Section 5, for the purpose of edge recovery for graphical models, we recommend
using h(x) = (

xα1
1 , . . . , xαm

m
)

with α � 1 for D that is a finite disjoint union of convex subsets of Rm.
Although minimizing the asymptotic variance in the univariate case is a different task, α = 1 also seems
to be consistently the best performing choice.

For D2 and D3, all variance curves are U-shaped, while for D1 = D2 ∪D3 we see two such curves
piecewise connected at C0 ≡ max ϕ+∞,D3

(x) = (1−3/4)/2 = 0.125. To the right of C0, the truncation
is applied to the two unbounded intervals (i.e. D2) only. The first segments of most var(μ̂) curves for D1
as well as most curves for D2 indicate there might still be benefit from truncating the distances ϕ within
the bounded intervals, although the var

(
σ̂ 2
)

curves for D1 as well as both curves for x0.75 on D2 suggest
otherwise. On the other hand, the curves for D1 and D2 imply that a truncation constant larger than C0
is favorable; the ticks on the right-hand side indicate that the curves for D2 reach their minimum at
C � 0.5. Hence, a separate truncation point C for each connected component of D could be beneficial,
especially for unbounded sets. However, the necessary tuning of multiple parameters becomes infeasible
for m � 1 and we do not further examine it in this paper.
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Fig. 3. Univariate Gaussian example. Each row represents a domain, with the first subfigure plotting the density, the second the
asymptotic log variance of μ̂, the third that of σ̂ 2. In each first subfigure the red lines show the untruncated distances ϕ+∞ for
each domain, and the red dotted lines in the second and third show the truncation point C versus the π quantile.

5. Theoretical properties

This section presents theoretical guarantees for our generalized method applied to the pairwise
interaction power a-b models. We first state a result analogous to [21] for truncated Gaussian densities
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on a general domain D, and then present a general result for a-b models. In particular, similar to and
as a generalization of [21], we give a high probability bound on the deviation of our estimates K̂
and η̂ from their true values K0 and η0. The main challenge in deriving the results lies in obtaining
marginal probability tail bounds of each observed value in Γ and g. We first restate Definition 12
from [21].

Definition 5.1 Let Γ 0 ≡ E0Γ (x) and g0 ≡ E0g(x) be the population versions of Γ (x) and g(x) under

the distribution given by a true parameter matrix Ψ 0 ≡ [
K0, η0

]� ∈ R
m(m+1), or Ψ 0 ≡ K0 ∈ R

m2
in

the centered case with η0 ≡ 0. The support of a matrix Ψ is S(Ψ ) ≡ {(i, j) : ψij �= 0}, and we let
S0 = S(Ψ 0). We define dΨ 0

to be the maximum number of non-zero entries in any column of Ψ 0, and
cΨ 0

≡ ∣∣∣∣∣∣Ψ 0

∣∣∣∣∣∣∞,∞. Writing Γ 0,AB for the A×B submatrix of Γ 0, we define cΓ 0
≡ ∣∣∣∣∣∣(Γ 0,S0S0

)−1
∣∣∣∣∣∣∞,∞.

Finally, Γ 0 satisfies the irrepresentability condition with incoherence parameter ω ∈ (0, 1] and edge set
S0 if

∣∣∣∣∣∣∣∣∣Γ 0,Sc
0S0

(Γ 0,S0S0
)−1
∣∣∣∣∣∣∣∣∣∞,∞ � (1 − ω). (5.1)

5.1 Truncated Gaussian models on a finite disjoint union of convex sets

Truncated Gaussian models are covered by our a-b models described in Section 4.1 with a = b = 1.
When the domain D is a finite disjoint union of convex sets with a positive Lebesgue measure, we have
the following theorem similar to Theorem 17 in [21], which bounds the errors as long as one uses finite
truncation points C for ϕC,D and each component in h(x) is a power function with a positive exponent.

Specifically, we consider the truncated Gaussian distribution on D with inverse covariance parameter
K0 ∈ R

m×m and mean parameter μ0, namely with density

pη0,K0
(x) ∝ exp

(
−1

2
x�K0x + η�0 x

)
1D(x)

with K0 positive definite and η0 ≡ K0μ0. We assume D ⊂ R
m to be a component-wise countable union

of intervals (Def 3.1) with positive Lebesgue measure, and assume it is a finite disjoint union of convex

sets Δ ≡
{
D1, . . . ,D|Δ|

}
, i.e. D ≡ D1 � · · · �D|Δ|.

Theorem 5.2 Suppose the data matrix contains n i.i.d. copies of X following a truncated Gaussian
distribution on D as above with parameters K0 ∈ R

m×m and μ0, Let Ψ 0 ≡ [
K0, η0

]� ≡ [
K0, K0μ0

]�.
Assume that (A.1)–(A.3) in Lemma 3.2 hold, and in addition that h and the truncation points C in
the truncated component-wise distance ϕC,D satisfy 0 � (hj ◦ ϕCj,D,j)(x) � M and 0 � ∂j(hj ◦
ϕCj,D,j)(x) � M′ almost surely for all j = 1, . . . , m for some constants 0 < M, M′ < +∞. Note

that h(x) = (xα1
1 , . . . , xαm

m ) with α1, . . . , αm � 1 satisfies all these assumptions, according to Theorem
4.2. Let the diagonal multiplier δ introduced in Section 3.5 satisfy

1 < δ < C(n, m) ≡ 2 −
(

1 + 4e max
{
(6 log m + 2 log |Δ|) /n,

√
(6 log m + 2 log |Δ|) /n

})−1
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and suppose further that Γ 0,S0S0
is invertible and satisfies the irrepresentability condition (5.1) with

ω ∈ (0, 1]. Define cX ≡ 2 maxD′∈Δ maxj

∣∣∣2√(K−1
0 )jj +

√
eE0Xj1D′(X)

∣∣∣. Suppose for τ > 3 the

sample size and the regularization parameter satisfy

n > O

(
(τ log m + log |Δ|) max

{
M2c2

Γ 0
c4

Xd2
Ψ 0

ω2
,

McΓ 0
c2

XdΨ 0

ω

})
, (5.2)

λ > O

[
(McΨ 0

c2
X + M′cX + M)

(√
τ log m + log |Δ|

n
+ τ log m + log |Δ|

n

)]
. (5.3)

Then the following statements hold with probability 1 − m3−τ :

(a) The regularized generalized h-score matching estimator Ψ̂ that minimizes (3.12) is unique, has
its support included in the true support, Ŝ ≡ S(Ψ̂ ) ⊆ S0, and satisfies

‖K̂ − K0‖∞ �
cΓ 0

2 − ω
λ, ‖η̂ − η0‖∞ �

cΓ 0

2 − ω
λ,∣∣∣∣∣∣∣∣∣K̂ − K0

∣∣∣∣∣∣∣∣∣
F

�
cΓ 0

2 − ω
λ
√|S0|,

∣∣∣∣∣∣η̂ − η0

∣∣∣∣∣∣
F �

cΓ 0

2 − ω
λ
√|S0|,∣∣∣∣∣∣∣∣∣K̂ − K0

∣∣∣∣∣∣∣∣∣
2

�
cΓ 0

2 − ω
λ min

(√|S0|, dΨ 0

)
,

∣∣∣∣∣∣η̂ − η0

∣∣∣∣∣∣
2 �

cΓ 0

2 − ω
λ min

(√|S0|, dΨ 0

)
.

(b) If in addition minj,k:(j,k)∈S0
|κ0,jk| >

cΓ 0
2−ω

λ and minj:(m+1,j)∈S0
|η0,j| >

cΓ 0
2−ω

λ, then we have

Ŝ = S0, sign(κ̂jk) = sign(κ0,jk) for all (j, k) ∈ S0 and sign(η̂j) = sign(η0j) for (m + 1, j) ∈ S0.

In the centered setting, the same bounds hold by removing the dependencies on η̂ and η0.

The proposed method naturally extends our previous work, and the above results follow by applying
the proof for Theorem 17 of [21] with two modifications: (i) using the triangle inequality, split the
concentration bounds in (39), (43) and (44) in [21] into one for each set D1, . . . ,D|Δ| and combine
the results with a union bound; (ii) in the proof of Lemma 22.1 of [21], replace D ≡ R

m+ by each
D′ = D1, . . . ,D|Δ| and replace X1 by X11D′(X), as the proof there only uses the convexity of the
domain.

5.2 Bounded domains in R
m+ with positive measure

In this section we present results for general a-b models on bounded domains with positive measure.

Theorem 5.3 (1) Suppose a > 0 and b � 0. Let D be a bounded subset of Rm+ with positive Lebesgue
measure with D ⊆ [u1, v1] × · · · × [um, vm] for finite nonnegative constants u1, v1, . . . , um, vm, and
suppose that the true parameters K0 and η0 satisfy the conditions in Corollary 4.1 (for a well-defined
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density). Assume h(x) ≡ (xα1
1 , . . . , xαm

m ) with α1, . . . , αm � max{1, 2− a, 2− b}, and suppose ϕC,D has
truncation points C = (C1, . . . , Cm) with 0 < Cj < +∞ for j = 1, . . . , m. Define

ζj(αj, pj) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
{

Cj, (vj − uj)/2
}αj

(uj + vj)
pj/2pj , pj < 0, vj − uj � 2Cj,

min
{

Cj, (vj − uj)/2
}αj

(uj + Cj)
pj , pj < 0, vj − uj > 2Cj,

min
{

Cj, (vj − uj)/2
}αj

v
pj
j , pj � 0,

ςΓ ≡ max
j,k=1,...,m

max
{
ζj(αj, 2a − 2)v2a

k , ζj(αj, 2b − 2)
}

,

ςg ≡ max
j,k=1,...,m

max
{
αjζj(αj − 1, a − 1)va

k + |a − 1|ζj(αj, a − 2)va
k + aζj(αj, 2a − 2),

αjζj(αj − 1, b − 1) + |b − 1|ζj(αj, b − 2)
}
.

Suppose that Γ 0,S0S0
is invertible and satisfies the irrepresentability condition (5.1) with ω ∈ (0, 1].

Suppose that for τ > 0 the sample size, the regularization parameter and the diagonal multiplier satisfy

n > 72c2
Γ 0

d2
Ψ 0

ς2
Γ (τ log m + log 4)/ω2, (5.4)

λ >
3(2 − ω)

ω
max

{
cΨ 0

ςΓ

√
2(τ log m + log 4)/n, ςg

√
(τ log m + log 4)/(2n)

}
, (5.5)

1 < δ < Cbounded(n, m, τ) ≡ 1 +√(τ log m + log 4)/(2n). (5.6)

Then the statements (a) and (b) in Theorem 5.2 hold with probability at least 1 − m−τ .
(2) For a = 0 and b � 0, if u1, . . . , um > 0, letting wj ≡ max{| log uj|, | log vj|}, the above holds with

ςΓ ≡ max
j,k=1,...,m

max{ζj(αj,−2)w2
k , ζj(αj, 2b − 2)},

ςg ≡ max
j,k=1,...,m

max{αjζj(αj − 1,−1)wk + |a − 1|ζj(αj,−2)wk + aζj(αj,−2),

αjζj(αj − 1, b − 1) + |b − 1|ζj(αj, b − 2)}.

We note that the requirement on αj � 1 is only for bounding the two ∂j(hj ◦ ϕj) terms in g(x) and
might not be necessary in practice as we see in the simulation studies.

5.3 Unbounded domains in R
m+ with positive measure

For unbounded domains D ⊂ R
m+ in the non-negative orthant, we are able to give consistency results

but only with a sample complexity that includes an additional unknown constant factor that may depend
on m. For simplicity we only show the results for a > 0. The following lemma enables us to bound each
row of the data matrix x by a finite cube with high probability and then proceed as for Theorem 5.3.

Lemma 5.1 Suppose D has positive measure, and the true parameters K0 and η0 satisfy the conditions
in Corollary 4.1. Then for all j = 1, . . . , m, X2a

j is sub-exponential if a > 0 and log Xj is sub-exponential
if a = 0.
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We have the following corollary of Theorem 5.3. The result involves an unknown constant, namely
the sub-exponential norm ‖ · ‖ψ1

of X2a
j , and

n = Ω (log m) · max
j

O

(∥∥∥X2a
j

∥∥∥
ψ1

)(αj+max{4a,2b}−2)/a

becomes the required sample complexity. We conjecture that the sub-exponential norm scales like
Ω ((log m)c) for c small, but leave the exact dependency on m for further research.

Corollary 5.1 Suppose a > 0 and D is a subset of R
m+ with positive measure and suppose that

the true parameters K0 and η0 satisfy the conditions in Corollary 4.1. Let ρj(D) ≡ {xj : x ∈ D} and
ρ∗
D

≡ {j = 1, . . . , m : sup ρj(D) < +∞}, and suppose ρj(D) ⊆ [uj, vj] for j ∈ ρ∗
D

. Then Theorem

5.3 holds with log 4 replaced by log 6 in (5.4)–(5.6), and uj = max
{
E0X2a

j − ε3,j, 0
}1/(2a)

and vj =(
E0X2a

j + ε3,j

)1/(2a)

for j �∈ ρ∗
D

, where

ε3,j ≡ max

{
2
√

2e
∥∥X2a

j

∥∥
ψ1

√
log 3 + log n + τ log m + log

(
m − |ρ∗

D
|),

4e
∥∥X2a

j

∥∥
ψ1

(
log 3 + log n + τ log m + log

(
m − |ρ∗

D|))} ,∥∥X2a
j

∥∥
ψ1

≡ sup
q�1

(
E0|Xj|2aq)1/q

/q � E0X2a
j .

6. Numerical experiments

In this section we present results of numerical experiments using our method from Sections 3.2 and 3.4,
as well as our extension of [10] from Section 3.6.

6.1 Estimation—choice of h and C

Multiplying the gradient ∇ log p(x) with functions (h ◦ ϕC,D)1/2(x) is key to our method, where the
j-th component of ϕC,D(x) = (ϕC1,D,1(x), . . . , ϕCm,D,m(x)) is the distance of xj to the boundary of its
domain holding x−j fixed, with this distance truncated from above by some constant Cj > 0. We use
a single function h for all components (so, h(x) = (h(x1), . . . , h(xm))), which we choose as h(x) = xc

with exponent c = i/4 for i = 0, 1, . . . , 8. Instead of pre-specifying truncation points in C, we select 0 <

π � 1 and set each Cj to be the π th sample quantile of {ϕ+∞,D,j(x
(1)), . . . , ϕ+∞,D,j(x

(n))}, where x(i)

is the ith row of the data matrix x. Infinite values of ϕ+∞,D,j are ignored, and ϕj ≡ 1 if ϕ+∞,D,j(x
(1)) =

· · · = ϕ+∞,D,j(x
(n)) = +∞. This empirical choice of the truncation points automatically adapts to the

scale of data, and we found it to be more effective than fixing the constant to a grid from 0.5 to 3 as
done in [21]. Our experiments consider π = 0.2, 0.4, 0.6, 0.8, 1, where π = 1 means no truncation of
finite distances.

Note that for c = 0, (h ◦ ϕC,D)(x) ≡ 1 and the method reduces to the original score-matching for
R

m of [3]. The case where D ≡ R
m+ corresponds to [20, 21]. With c = 2, C = (+∞, . . . ,+∞) and

D ≡ R
m+, (h ◦ ϕC,D)(x) ≡ x2 corresponds to the estimator of [4, 9].

We also consider our extension of the method from [10], for which we use g0(x) from (3.13) as
opposed to (h ◦ ϕC,D)1/2(x); see Section 3.6. The constant C in this case is also determined using
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quantiles, but now of the untruncated �2 distances of the given data sample to ∂D. For C = +∞
(π = 1) there is no truncation and the estimator corresponds to [10].

6.2 Numerical experiments for domains with positive measure

We present results for general a-b models restricted to domains with positive Lebesgue measure.

6.2.1 Experimental setup Throughout, we choose dimension m = 100 and sample sizes n = 80
and 1000. For brevity, we only present results for the centered case (assuming η ≡ 0) where the b
power does not come into play, i.e., the density is proportional to exp

{−xa�Kxa/(2a)
}

for a > 0 or
exp

(−log x�K log x/2
)

for a = 0. Indeed, the experiments in [21] suggest that the results for non-
centered settings are similar with the best choice of h mainly depending on a but not b.

We consider six settings: (1) a = 0 (log), (2) a = 1/2 (exponential square root; [5]), (3) a = 1
(Gaussian), (4) a = 3/2 as well as some more extreme cases (5) a = 2 and (6) a = 3. For all settings,
we consider the following subsets of Rm+ as our domain D:

(i) non-negative �2 ball {x ∈ R
m+ : ‖x‖2 � c1}, which we call �2-nn (‘non-negative’),

(ii) complement of �2 ball in R
m+: {x ∈ R

m+ : ‖x‖2 � c1}, which we call ��
2 -nn, and

(iii) [c1,+∞)m, which we call unif-nn,

for some c1 > 0. For the Gaussian (a = 1) case consider in addition the following subsets of Rm:

(iv) the entire �2 ball {x ∈ R
m : ‖x‖2 � c1}, which we call �2,

(v) the complement of �2 ball in R
m: {x ∈ R

m : ‖x‖2 � c1}, which we call ��
2 , and

(vi)
(
(−∞, c1] ∪ [c1,+∞)

)m, which we call unif .

The constant c1 in each setting above is determined in the following way. We first generate n samples
from the corresponding untruncated distribution on R

m+ for (i)–(iii) or Rm for (iv)–(vi), then determine
the c1 so that exactly half of the samples would fall inside the truncated boundary.

The true interaction matrices K0 are taken block diagonal as in [9] and [21], with 10 blocks of size
m/10 = 10. In each block, each lower-triangular element is set to 0 with probability 1 − ρ for some
ρ ∈ (0, 1), and is otherwise drawn from Uniform[0.5, 1]. Symmetry determines the upper triangular
elements. The diagonal elements are chosen as a common positive value such that K0 has minimum
eigenvalue 0.1. We generate five different K0 and run 10 trials for each of them. We choose (ρ, n) =
(0.8, 1000) and (0.2, 80) so that n/(d2

K0
log m) is roughly constant, recall our theory in Section 5.

6.2.2 Results Our focus is on recovery of the support of K0 = (κ0,i,j), i.e., the set S0,off ≡ {(i, j) :
i �= j ∧ κ0,i,j �= 0}, which corresponds to an undirected graph with S0,off as edge set. We use the

area under the ROC curve (AUC) as the measure of performance. Let K̂ be an estimate with support
Ŝoff ≡ {(i, j) : i �= j ∧ κ̂i,j �= 0}. Then the ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR), with

FPR ≡ |Ŝoff\S0,off|
m(m − 1) − |S0,off|

and TPR ≡ |Ŝoff ∩ S0,off|
|S0,off|

.

We plot the AUC averaged over all 50 trials in each setting against the probability π used to set the
truncation points C. Each plotted curve is for one choice of the function h(x), or for g0(x). The y-
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ticks on the right-hand side are the original AUC values, whereas those on the left are the AUCs
divided by the AUC for h(x) = 1, measuring the relative performance of each method compared to
the original score matching in [3]; h(x) = 1 does not depend on the truncation and is constant in
each plot.

Plots for a � 1 are shown below, and for a > 1 in Appendix A. We conclude that in most settings
our method using h(x) = xc with c ≈ max{2 − a, 0} works the best, as we also observed in [21].
In most settings the truncated g0 function does not work well ([10] corresponds to π = 1). The only
notable exceptions are the domains (iv)–(vi), i.e., Gaussian models on subsets of Rm not restricted to
R

m+, see Fig. 7. The original score matching in [3] seems to work the best in these settings, suggesting
that estimation of Gaussians on such domains might not be challenging enough to warrant switching to
the more complex generalized methods. However, Fig. 7, for the (iv) �2 and (v) ��

2 domains, shows only
insignificant differences in the performance of all estimators.

7. DNA methylation networks

We illustrate the use of our generalized score matching for inference of conditional independence
relations among DNA methylations based on data for 500 patients. The dataset contains methylation
levels of CpG islands associated with head and neck cancer from The Cancer Genome Atlas [17].
Methylation levels are associated with epigenetic regulation of genes and, according to [1], are
commonly reported as Beta values, values in [0, 1] given by the ratio of the methylated probe intensity
and the sum of methylated and unmethylated probe intensities, or M values, defined as the base 2-
logit of the Beta values. Supported on R, M values can be analyzed using traditional methods, e.g.,
via Gaussian graphical models. In contrast, our new methodology allows direct analysis of Beta values
using generalized score matching for the a-b model framework.

We focus on a subset of CpG sites corresponding to genes known to belong to the pathway for
Thyroid cancer according to the Kyoto Encyclopedia of Genes and Genomes. Furthermore, we remove
sites with clearly bimodal methylations, which we assess using the methods from the R package
Mclust. This results in n = 500 samples and m = 478 sites belonging to 36 genes.

When considering M values, we estimate the graph encoding the support of the interaction matrix
(and hence the conditional dependence structure) in a Gaussian model on R

m, i.e., the a-b model with
a = b = 1. In doing so, we use the profiled estimator in (5), and choose the upper-bound diagonal
multiplier 2 − (1 + 80

√
log m/n)−1 as suggested in Section 6.2 of [21]. The support being all of Rm

we simply use the original score matching with (h ◦ ϕ)(x) = 1m. For Beta values, we assume a log-
log model (a = b = 0) on [0, 1]m, and use the profiled estimator with the upper-bound diagonal
multiplier 1 + √(τ log m + log 4)/(2n) as in (5.6) with the choice of τ = 3. Suggested by our theory
in Theorem 5.3, we use h(x) = x2 (with exponent max{2 − a, 2 − b} = 2), and choose the truncation
points in ϕ to be the 40th sample percentile, as suggested by the simulation results in Fig. 4. For our
illustration, the λ parameter that defines the �1 penalty on K is chosen so that the number of edges is
equal to 478, the number of sites, following [9] and [21].

The estimated graphs are presented in Fig. 8, where panel (a) is for Beta values, (c) is for M values
and (b) shows their common edges, i.e., the intersection graph. The plots in (a), (b) and (c) exclude
isolated nodes and the layout is optimized for each graph. Figure A13 in the appendix includes isolated
nodes where the layout is optimized for the graph for Beta values. Figure A14 in the appendix shows
the graphs in Fig. 8 aggregated by the genes associated with the sites. In (a) and (c), red points indicate
nodes with degree at least 10. Sites with the highest node degrees are listed in Table 1, where those
shared by the two graphs are highlighted in bold.
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Fig. 4. AUCs averaged over 50 trials for support recovery using generalized score matching for log models (a = 0). Each curve
represents either our extension to g0(x) from [10] or a choice of power function h(x) = xc. The x axes mark the probabilities π

that determine the truncation points C for the truncated component-wise distances. The colors are sorted by the power c.
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Fig. 5. AUCs averaged over 50 trials for support recovery using generalized score matching for exponential square-root models
(a = 1/2). Each curve represents either our extension to g0(x) from [10] or a choice of power function h(x) = xc. The x axes
mark the probabilities π that determine the truncation points C for the truncated component-wise distances. The colors are sorted
by the power c.



GENERALIZED SCORE MATCHING FOR GENERAL DOMAINS 763

Fig. 6. AUCs averaged over 50 trials for support recovery using generalized score matching for Gaussian models (a = 1) on
domains being subsets of R

m+. Each curve represents either our extension to g0(x) from [10] or a choice of power function
h(x) = xc. The x axes mark the probabilities π that determine the truncation points C for the truncated component-wise distances.
The colors are sorted by the power c.
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Fig. 7. AUCs averaged over 50 trials for support recovery using generalized score matching for Gaussian models (a = 1) on
domains being subsets of Rm (not restricted to R

m+). Each curve represents either our extension to g0(x) from [10] or a choice of
power function h(x) = xc. The x axes mark the probabilities π that determine the truncation points C for the truncated component-
wise distances. The colors are sorted by the power c.
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Table 1 List of sites with the highest node degrees in each estimated graph

Beta values M values Beta values M values

CDH1—4 (28) RXRB—24 (25) LEF1—2 (20) PAX8—9 (20)
TCF7L1—18 (22) MAPK3—8 (22) TCF7L1—13 (20) TCF7—3 (18)
RXRA—19 (21) PAX8—6 (21) CDKN1A—10 (20) TCF7L1—9 (18)
RXRA—22 (21) CCND1—19 (20) CDKN1A—6 (19) TCF7L1—18 (18)
RET—22 (21) RXRA—10 (20) MAPK3—8 (17) TCF7L2—63 (18)
RXRB—82 (21) RXRA—19 (20) PAX8—28 (17) TPM3—12 (18)
NTRK1—40 (21) RXRB—18 (20) PAX8—29 (17) PAX8—29 (17)

Fig. 8. Graphs for CpG sites estimated by regularized generalized score matching estimator using Beta values (a) and M values
(c), and their intersection graph (b).

Fig. 9. Interlaced histogram (left) and Q-Q plot (right) showing the node degree distributions for both site graphs.

We quantify the similarity between the two site graphs (not aggregated) by their Hamming distance
and their DeltaCon similarity score [8]. The Hamming distance counts the number of edge differences,
and thus decreases as two graphs become more similar. Conversely, DeltaCon [8] generates a similarity
score in [0, 1], and the closer the score is to 1, the more similar the two graphs are.

The Hamming distance between the two graphs is 568, which is considerably smaller than 936, the
minimal Hamming distance between the graph for Beta values and 10000 randomly generated graphs
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with the same number of edges, and 940, that value using the graph for M values. On the other hand, the
DeltaCon similarity score between the two original graphs is 0.114, while the maximal score between the
Beta graph and 10000 randomly generated graphs is only 0.0781, while that for the M graph is 0.0761.
In Fig. 9, we compare the distribution of node degrees for both graphs , with interlaced histogram on
the left and Q-Q plot on the right. All these results suggest that the two estimated graphs are similar to
each other, but that the two analyses also reveal complementary features.

8. Conclusion

Generalized score matching as proposed in [21] is an extension of the method of [4] that estimates
densities supported on R

m+ using a loss, in which the log-gradient of the postulated density, ∇ log p(x),
is multiplied component-wise with a function h(x). The resulting estimator avoids the often costly
calculation of normalizing constants and has a closed-form solution in exponential family models.

In this paper, we further extend generalized score matching to be applicable to more general
domains. Specifically, we allow for domains D that are component-wise countable union of inter-
vals (Definition 3.1). We accomplish this by composing the function h with a distance function
ϕC = (ϕC1,1, . . . , ϕCm,m) : D → R

m+, where ϕCj,j(x) is a truncated distance of xj to the bound-
ary of the relevant interval in the section of D given by x−j. The resulting loss can again be
approximated by an empirical loss, which is quadratic in the canonical parameters for exponential
families.

In our applications we focus on a-b pairwise interaction models supported on domains D with
positive Lebesgue measure. For these models we give a concrete choice of the function h and extend the
consistency theory for support recovery in [21] to Gaussian models on domains that are finite disjoint
unions of convex sets, and on bounded domains with positive Lebesgue measure, requiring the sample
size to be n = Ω(log m). For unbounded domains with a > 0, we require an additional multiplicative
factor that may weakly depend on m. Deriving a more explicit requirement on the sample size would
be an interesting topic for future work. Finally, in our simulations, we adaptively select the truncation
points C of ϕC using the sample quantiles of the untruncated distances. Developing a method to choose
the best truncation points remains a topic for further research.
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A. Additional Plots

Below we present additional plots for our simulations in Sections 6 and 7.
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Fig. A10. AUCs averaged over 50 trials for support recovery using generalized score matching for the a = 3/2 models. Each
curve represents either our extension to g0(x) from [10] or a choice of power function h(x) = xc.
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Fig. A11. AUCs averaged over 50 trials for support recovery using generalized score matching for the a = 2 models. Each curve
represents either our extension to g0(x) from [10] or a choice of power function h(x) = xc. The x axes mark the probabilities π

that determine the truncation points C for the truncated component-wise distances. The colors are sorted by the power c.
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Fig. A12. AUCs averaged over 50 trials for support recovery using generalized score matching for the a = 3 models. Each curve
represents either our extension to g0(x) from [10] or a choice of power function h(x) = xc. The x axes mark the probabilities π

that determine the truncation points C for the truncated component-wise distances. The colors are sorted by the power c.
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Fig. A13. Graphs for CpG sites estimated by regularized generalized score matching estimator using Beta values (a) and M values
(c), and their intersection graph (b). Isolated nodes are included and the layout is optimized for the graph for Beta values; red
nodes have degree at least 10 (‘hub nodes’).

Fig. A14. Graphs in Fig. 8 (equivalently Fig. A13) aggregated by the genes associated with the CpG sites, with Beta values (a, d)
and M values (c, f), and their intersection graph (b, e). Red points indicate genes that are connected to at least 10 other genes in
the case of Fig. A14

B. Proofs

Before proving Lemma 3.2 we first prove the following lemma.

Lemma B1 Suppose h1, . . . , hm are absolutely continuous in any bounded sub-interval of R+. Then
for any j = 1, . . . , m and any x−j ∈ S−j,D, (hj ◦ ϕj) is absolutely continuous in xj in any bounded
sub-interval of Cj,D(x−j).



772 S. YU ET AL.

Proof of Lemma B1. In the proof we drop the dependency on x−j in notation. By assumption, under
Equation 3.1 any bounded sub-interval [a, b] of Cj,D(x−j) must be a sub-interval of [ak,j, bk,j] for some
k (for simplicity we do not differentiate among [a, b], (a, b], [a, b) and (a, b) here).

(1) If ak,j > −∞ and bk,j < +∞, denote C0 ≡ min{Cj, (bk,j − ak,j)/2} and rewrite

(hj ◦ ϕj)(x)

= hj

(
min(Cj, xj − ak,j, bk,j − xj)

)
= hj(xj − ak,j)1xj∈[ak,j,ak,j+C0] + hj(Cj)1xj∈[ak,j+C0,bk,j−C0] + hj(bk,j − xj)1xj∈[bk,j−C0,bk,j].

Then by absolute continuity of hj in [ak,j, bk,j] it is apparent that (hj ◦ ϕj) is differentiable in xj
a.e. with partial derivative

h′j(xj − ak,j)1xj∈[ak,j,ak,j+C0] − h′j(bk,j − xj)1xj∈[bk,j−C0,bk,j].

Then by the absolute continuity of hj again, for xj ∈ [ak,j, bk,j],

∫ xj

ak,j

∂j(hj ◦ ϕj)(tj; x−j) dtj

= hj(xj − ak,j)1xj∈[ak,j,ak,j+C0] + hj(Cj)1xj∈[ak,j+C0,bk,j−C0] + hj(bk,j − xj)1xj∈[bk,j−C0,bk,j]

= (hj ◦ ϕj)(x),

which proves that (hj ◦ ϕj)(x) is absolutely continuous in xj in [ak,j, bk,j], and hence in [a, b] ⊂
[ak,j, bk,j].

(2) If ak,j > −∞ and bk,j = +∞, on [a, b] (hj ◦ ϕj)(x) = hj(min(Cj, xj − ak,j)) is an absolutely
continuous function in a linear function of xj truncated above by Cj and is thus trivially
absolutely continuous in [a, b].

(3) If ak,j = −∞ and bk,j < +∞, on [a, b] (hj ◦ ϕj)(x) = hj(min(Cj, bk,j − xj)) is an absolutely
continuous function in a linear function of xj truncated above by Cj and is thus trivially
absolutely continuous in [a, b].

(4) If ak,j = −∞ and bk,j = +∞, (hj ◦ ϕj)(x) = hj(Cj) is constant and hence trivially absolutely
continuous in [a, b]. �

Proof of Lemma 3.2. By simple manipulation

Jh,C,D(p) ≡ 1

2

∫
D

p0(x)

∥∥∥∇ log p(x) � (h ◦ ϕ)1/2 (x) −∇ log p0(x) � (h ◦ ϕ)1/2 (x)

∥∥∥2

2
dx (B.1)
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= 1

2

m∑
j=1

∫
D

p0(x)(hj ◦ ϕj)(x)
(
∂j log p0(x) − ∂j log p(x)

)2
dx

= 1

2

m∑
j=1

∫
D

p0(x)(hj ◦ ϕj)(x)
(
∂j log p(x)

)2
dx

−
m∑

j=1

∫
D

p0(x)(hj ◦ ϕj)(x)∂j log p0(x)∂j log p(x) dx + const. (B.2)

By (B.2) it suffices to prove for all j = 1, . . . , m that

∫
D

p0(x)(hj ◦ ϕj)(x)∂j log p0(x)∂j log p(x) dx = −
∫
D

p0(x)∂j

[
(hj ◦ ϕj)(x)∂j log p(x)

]
dx. (B.3)

Since
∫
D

p0(x)
∥∥∇ log p(x) � (h ◦ ϕ)1/2(x)

∥∥2
2 dx and

∫
D

p0(x)
∥∥∇ log p0(x) � (h ◦ ϕ)1/2(x)

∥∥2
2 dx are

both finite under assumption, by |2ab| � a2+b2 the integrand in the left-hand side of (B.3) is integrable.
Then by Fubini–Tonelli

∫
D

p0(x)(hj ◦ ϕj)(x)∂j log p0(x)∂j log p(x) dx

=
∫
S−j

∫
Cj(x−j)

(hj ◦ ϕj)(x)∂jp0(x)∂j log p(x)︸ ︷︷ ︸
≡f (x)

dxj dx−j

=
∫
S−j

∫
R

1Cj(x−j)
(xj)f (x) dxj dx−j

=
∫
S−j

∫
R

⎡
⎣Kj(x−j)∑

k=1

1[ak,j(x−j), bk,j(x−j)](xj)

⎤
⎦ f (xj; x−j) dxj dx−j

=
∫
S−j

⎡
⎣Kj(x−j)∑

k=1

∫ bk,j(x−j)

ak,j(x−j)

f (xj; x−j) dxj

⎤
⎦ dx−j (B.4)

where the interchangeability of integration and (potentially infinite) summation is justified by Fubini–
Tonelli again. Then using the decomposition of the domain in (3.1) while omitting the dependency of
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ak,j and bk,j on x−j in notation, for a.e. x−j ∈ S−j and any k = 1, . . . , Kj(x−j) we have

∫ bk,j

ak,j

f (x) dxj

=
∫ bk,j

ak,j

(hj ◦ ϕj)(x)∂jp0(x)∂j log p(x) dxj

= lim
xj↗b−kj

(hj ◦ ϕj)(x)p0(x)∂j log p(x) − lim
xj↘a+kj

(hj ◦ ϕj)(x)p0(x)∂j log p(x)

−
∫ bk,j

ak,j

p0(x)∂j

[
(hj ◦ ϕj)(x)∂j log p(x)

]
dxj

= −
∫ bk,j

ak,j

p0(x)∂j

[
(hj ◦ ϕj)(x)∂j log p(x)

]
dxj,

by integration by parts and by Assumption (A1) on the limits going to 0. The integration by parts
is justified by the fundamental theorem of calculus for absolutely continuous functions (Lemma B1) as
well as the product rule (cf. proof of Lemma 19 in [21]). Thus, by going backwards using Fubini–Tonelli
twice again, (B.4) becomes

∫
S−j

⎧⎨
⎩−

Kj(x−j)∑
k=1

∫ bk,j(x−j)

ak,j(x−j)

p0(x)∂j

[
(hj ◦ ϕj)(x)∂j log p(x)

]
dxj

⎫⎬
⎭ dx−j

= −
∫
S−j

∫
Cj(x−j)

p0(x)∂j

[
(hj ◦ ϕj)(x)∂j log p(x)

]
dxj dx−j

= −
∫
D

p0(x)∂j

[
(hj ◦ ϕj)(x)∂j log p(x)

]
dx,

proving (B.3). �
Proof of Theorem 4.1. Note that the condition va�Kva > 0 ∀v ∈ D\{0} implies that va�Kva > 0
∀v ∈ D+ ≡ {v/‖v‖2 : v ∈ D\{0}} ⊆ {v ∈ R

m : ‖v‖2 = 1} ≡ S
m−1 with S

m−1 compact, so

NK ≡ inf
v∈D\{0} va�Kva/va�va = inf

v∈D+
va�Kva/va�va

� inf
v∈Sm−1

va�Kva/va�va > 0.

(1) Case a > 0 and b > 0 (CC1, CC2): Since p is bounded everywhere, it is integrable over a
bounded D (proving (CC1)). Otherwise, assume D is unbounded. If either a or b is non-integer, then
D ⊂ R

m+ and a sufficient condition is vaKva > 0 ∀v ∈ D\{0}, and either η�vb � 0 ∀v ∈ D or
2a > b > 0, corresponding to (i) and (ii) in the Proof of Theorem 9 in Section A.3 of [21], respectively.
If a and b are both integers, D ⊂ R

m and the same sufficient condition can be implied following the
same proof in [21], with integration over (−∞,+∞) instead of (0,+∞). This proves (CC2).

(2) Case a > 0 and b = 0 (CC3): by definition D ⊆ R
m+. If D is bounded, − 1

2a xa�Kxa as a

continuous function is bounded, and so it suffices to bound
∫
D

exp
(
η� log(x)

)
dx = ∫

D

∏m
j=1 x

ηj
j dx �
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∏m
j=1

∫
ρj(D)

x
ηj
j dxj < +∞ if ηj > −1 for all j such that 0 ∈ ρj(D), where for the � step we used the

fact that xj > 0. This proves (CC3) (i).

If D is unbounded and va�Kva > 0 for all v ∈ D\{0}, using the fact that exp(· · · ) > 0,∫
D

pη,K(x) dx =
∫
D

exp
(− xa�Kxa/(2a) + η� log(x)

)
dx

�
m∏

j=1

∫
ρj(D)

exp
(− NKx2a

j /(2a) + ηj log(xj)
)

dxj.

Note that the indefinite integral of the last display is

− 1

2a
x1+ηj

(
NK

2a
x2a
)−(1+ηj)/(2a)

Γ

[
1 + ηj

2a
,

NKx2a

2a

]

so the definite integral is finite if and only if ηj > −1 for all j s.t. 0 ∈ ρj(D). This proves (CC3) (ii).

If D is unbounded and va�Kva � 0 for all v ∈ D, then
∫
D

pη,K(x) dx �
∏m

j=1

∫
ρj(D)

x
ηj
j dxj < ∞ if

ηj > −1 for all j s.t. 0 ∈ ρj(D) and ηj < −1 for all j s.t. ρj(D) is unbounded. This proves (CC3) (iii).
(3) Case a = 0, D is bounded and 0 �∈ ρj(D) for all j (CC4): if D is bounded and 0 �∈ ρj(D) for

all j, then log(D) is bounded, and since the integrand is continuous and bounded, the integral is finite
without any further requirements.

(4) Case a = 0 and b = 0 (CC5): assume log(x)�K log(x) > 0 for all x ∈ D, then

∫
D

pη,K(x) dx =
∫
D

exp

(
−1

2
log(x)�K log(x) + η� log(x)

)
dx

=
∫

log(D)

exp

(
−1

2
x�Kx + (η + 1m)�x

)
dx

<

m∏
j=1

∫
log(ρj(D))

exp
(− NKx2

j /2 + (ηj + 1)xj

)
dxj

<

m∏
j=1

∫ ∞

−∞
exp

(− NKx2
j /2 + (ηj + 1)xj

)
dxj < +∞

since the integrand is proportional to a univariate Gaussian density.
(5) Case a = 0 and b > 0 (CC6, CC7): assume log(x)�K log(x) > 0 for all x ∈ D and ηj � 0 for

all j s.t. ρj(D) is unbounded (from above). Then

∫
D

pη,K(x) dx =
∫
D

exp

(
−1

2
log(x)�K log(x) + η�xb

)
dx

=
∫

log(D)

exp

(
−1

2
x�Kx + 1�mx + η� exp(bx)

)
dx
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<

m∏
j=1

∫
log(ρj(D))

exp
(− NKx2

j /2 + xj + ηj exp(bxj)
)

dxj

�
m∏

j=1

∫ ∞

−∞
cj exp

(− NKx2
j /2 + xj

)
dxj < +∞,

where cj ≡ 1 if ηj � 0 or cj ≡ exp
(
ηj

(
sup ρj(D)

)b)
> +∞ otherwise. This proves (CC6).

Finally, if log(D) is unbounded and log(x)�K log(x) � 0 for all x ∈ D, the integral is bounded by

m∏
j=1

∫
log(ρj(D))

exp
(
xj + ηj exp(bxj)

)
dxj,

which is finite if and only if ηj < 0 for all j s.t. ρj(D) is unbounded (from above). This proves (CC7).�
Proof of Theorem 4.2. It suffices to consider the case D = R

m+ for general a and b as well as D = R
m

for integer a > 0 and b > 0 (so that (4.1) is well defined on R
m): for (A.1), the irregularities only occur

at the boundary points, but with the composition (hj ◦ ϕj)(x) with xj approaching any finite boundary
point behaves like hj(xj) with xj ↘ 0+ in D = R

m+, and (hj ◦ ϕj)(x) with xj → ∞ behaves like hj(xj)

with xj → ∞ in D = R
m+ (or Rm if applicable). For (A.2), obviously integrability over D follows from

that over D = R
m+ or Rm. (A.3) is trivially satisfied by a power function hj.

As in the proof of Theorem 4.1, NK ≡ infv∈D va�Kva/va�va > 0.
(1) The case for a > 0 and b � 0 and D = R

m+ is covered in [21]. The proof for the case for a > 0
and b > 0 and D = R

m is analogous and omitted.
(2) Case a = 0 and b = 0:

∣∣∣p0(x)∂j log p(x)

∣∣∣
∝ exp

(
−1

2
log(x)�K0 log(x) + η�0 log(x)

) ∣∣∣x−1
j

(
ηj − κ�

j,−j log(x−j)
)− κjjx

−1
j log xj

∣∣∣
�
∣∣∣ (ηj − κ�

j,−j log x−j

)
exp

[
−NK0

(log xj)
2/2 + (ηj − 1) log xj

]
− κjj exp

[
−NK0

(log xj)
2/2 + (ηj − 1) log xj

]
log xj

∣∣∣
×
∏
k �=m

exp
(
−NK0

(log xk)
2/2 + ηj log xk

)

∝O
[
exp

(
−NK0

y2
j /2 + (ηj − 1)yj

)]
+ O

[
exp

(
−NK0

y2
j /2 + (ηj − 1)yj

)
yj

]
,

which apparently vanishes as xj ↘ 0+ and xj ↗ +∞ with yj ≡ log(xj) since it is dominated by a
constant times a Gaussian density in yj. Thus, by Proposition 3.11, (A.1) is satisfied with any αj � 0.
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Likewise, for (A.2), ∫
R

m+
p0(x)

∥∥∥∇ log p(x) � (h ◦ ϕ)1/2(x)

∥∥∥2

2
dx

� const ·
m∑

j=1

∫
R

m+

m∏
k=1

exp
[
−NK0

(log xk)
2/2 + ηk log(xk)

]
×

hj(xj)
[
x−1

j

(
ηj − κ�

j,−j log(x−j)
)
− κjjx

−1
j log xj

]2
dx,

which can be decomposed into a sum of products of univariate integrals of the form

const · exp
(− NK0

(log xj)
2/2 + A log(xj)

)
(log xj)

B(hj(xj))
C

with B = 0, 1, 2, C = 0, 1 and constants A. With hj(xj) = x
αj
j for any αj � 0 this is bounded by some

Gaussian density in log xj, so
∫
R

m+ p0(x)‖∇ log p(x) � (h ◦ ϕ)1/2(x)‖2
2 dx < +∞. Similarly, we have∫

R
m+ p0(x)‖[∇ log p(x) � (h ◦ ϕ)(x)]′‖1 dx < +∞ and the proof is omitted.

(3) Case a = 0 and b > 0: Recall ρj(D) ≡ {xj : x ∈ D}. Let ρ∗
j (D) ≡ sup ρj(D). Since we assume

that ηj � 0 for any j such that ρ∗
j (D) < +∞,

p0(x)∂j log p(x)

∝ exp

(
−1

2
log(x)�K0 log(x) + 1

b
η�0 xb

)

×
[
ηjx

b−1
j − x−1

j κ�
j,−j log(x−j) − κjjx

−1
j log xj

]

� exp

⎛
⎜⎝−1

2
log(x)�K0 log(x) + 1

b

∑
j:ρ∗

j (D)<+∞
η0j(ρ

∗
j (D))b

⎞
⎟⎠

×
[
−x−1

j κ�
j,−j log(x−j) − κjjx

−1
j log xj

]
∝ exp

(
−1

2
log(x)�K0 log(x)

)[
−x−1

j κ�
j,−j log(x−j) − κjjx

−1
j log xj

]
is bounded by the corresponding quantity in the a = b = 0 case with η = 0m, and (A.1) is thus satisfied.
Similarly, the two quantities for (A.2) are bounded by a constant times those in the a = b = 0 case with
η = 0m and (A.2) is thus also satisfied. �
Proof of Theorem 5.3. It suffices to bound Γ and g using their forms in Section 4.3 and apply Theorem
1 in [9]. Thus, we first find the bounds of (hj ◦ ϕj)(x)x

pj
j xpk

k xp�

� with hj(x) = xαj , αj � 0, αj � −pj,
pj ∈ R, pk � 0, p� � 0 and xi ∈ [ui, vi] for i = 1, . . . , m. Suppose without loss of generality that j, k, �

are all different, as

max
xj

fj,1(xj) max
xj

fj,2(xj) max
xj

fj,3(xj) � max
xj

(
fj,1(xj)fj,2(xj)fj,3(xj)

)
� 0

for any nonnegative functions fj,1, fj,2, fj,3.
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As xj approaches its boundary, ϕj(x) ↘ 0+ and hence (hj ◦ ϕj)(x)x
pj
j ↘ 0+ if αj > −pj. The lower

bound 0 for (hj ◦ ϕj)(x)x
pj
j xpk

k xp�

� is thus tight enough.
As for the upper bound, the only way for the quantity to be unbounded from above is when xj ↘ 0+

and pj < 0, but as xj ↘ 0+, (hj ◦ϕj)(x) = x
αj
j so this cannot happen with the choice of αj � −pj. Noting

that hj is monotonically increasing, we consider the following cases:

(1) Suppose xj � (uj + vj)/2. Then

(hj ◦ ϕj)(x) � hj

(
min

{
Cj, vj − xj

})
� hj(min{Cj, (vj − uj)/2})
� min{Cαj

j , (vj − uj)
αj/2αj},

and x
pj
j � (uj + vj)

pj/2pj if pj < 0 or x
pj
j � v

pj
j if pj � 0.

(2) Suppose xj � (uj + vj)/2. Then

(hj ◦ ϕj)(x)x
pj
j � hj

(
min

{
Cj, xj − uj

})
x

pj
j

= min{Cαj
j , (xj − uj)

αj}xpj
j .

Now let f (x) = (min{Cj, x − uj})αj xpj . Then (log f (x))′ = αj/(x − uj)1x<uj+Cj
+ pj/x. For

x � uj+Cj this has the same sign as pj, otherwise it is equal to ((αj+pj)x−ujpj)/(x(x−uj)) � 0
on (uj, vj) since x > uj, αj � −pj and αj � 0. This implies that if pj � 0 or vj − uj � 2Cj, f is

increasing on (uj, (uj + vj)/2), and so (hj ◦ ϕj)(x)x
pj
j � min

{
Cj, (vj − uj)/2

}αj(uj + vj)
pj/2pj ;

otherwise, f is increasing on (uj, uj + Cj) and decreasing on (uj + Cj, (uj + vj)/2), so (hj ◦
ϕj)(x)x

pj
j � C

αj
j (uj + Cj)

pj .

Thus, defining

ζj(αj, pj)

≡

⎧⎪⎨
⎪⎩

min
{
Cj, (vj − uj)/2

}αj(uj + vj)
pj/2pj , pj < 0, vj − uj � 2Cj,

min
{
Cj, (vj − uj)/2

}αj(uj + Cj)
pj , pj < 0, vj − uj > 2Cj,

min
{
Cj, (vj − uj)/2

}αj v
pj
j , pj � 0,

we have 0 � (hj ◦ ϕj)(x)x
pj
j xpk

k xp�

� � ζj(αj, pj)v
pk
k vp�

� . Now assume additionally that αj � max{1, 1− pj},
then by h′j(x) = αjx

αj−1
j , 0 � ∂j(hj ◦ ϕj)(x)x

pj
j xpk

k � αjζj(αj − 1, pj)v
pk
k .

First assume a > 0. Then assuming α1, . . . , αm � max{1, 2 − 2a, 2 − 2b, 1 − a, 2 − a, 2 − b} =
max{1, 2 − a, 2 − b}, using the form of Γ and g in Section 4.3, for all j, k, � we have

0 � γj,k,�(x) � ςΓ ≡ max
j,k=1,...,m

max{ζj(αj, 2a − 2)v2a
k , ζj(αj, 2b − 2)}
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and

0 � gj,k(x)

� ςg ≡ max
j,k=1,...,m

max{αjζj(αj − 1, a − 1)va
k + |a − 1|ζj(αj, a − 2)va

k + aζj(αj, 2a − 2),

αjζj(αj − 1, b − 1) + |b − 1|ζj(αj, b − 2)}.

Then by Hoeffding’s inequality,

P

(
max
j,k,�

∣∣∣γj,k,� − E0γj,k,�

∣∣∣ � ε1/2

)
� 2 exp

(− nε2
1/(2ς2

Γ )
)
, (B.5)

P

(
max

j,k

∣∣∣gj,k − E0gj,k

∣∣∣ � ε2

)
� 2 exp

(− 2nε2
2/ς2

g
)
. (B.6)

Let ε1 ≡ ςΓ

√
2(log mτ + log 4)/n and ε2 ≡ ςg

√
(log mτ + log 4)/(2n). With the choice of δ � 1 +√

(log mτ + log 4)/(2n) and using the fact that 0 � maxj,k,� γj,k,� � ςΓ = ε1/(2δ − 2), (B.5) and (B.6)
imply that

P

(
max
j,k,�

∣∣∣δγj,k,� − E0γj,k,�

∣∣∣ � ε1

)
(B.7)

�P

(
max
j,k,�

∣∣∣γj,k,� − E0γj,k,�

∣∣∣+ (δ − 1) max
j,k,�

γj,k,� � ε1

)

�P

(
max
j,k,�

∣∣∣γj,k,� − E0γj,k,�

∣∣∣ � ε1/2

)
� m−τ /2, (B.8)

P

(
max

j,k

∣∣∣gj,k − E0gj,k

∣∣∣ � ε2

)
� m−τ /2. (B.9)

The results then follow by applying Theorem 1 in [9].
In the case where a = 0, and uk > 0 for all k,

|(hj ◦ ϕj)(x)x
pj
j log(xk) log(x�)| � ζj(αj, pj) · max{| log(uk) log(u�)|, | log(vk) log(v�)|}

and everything else follows similarly as for a > 0. �
Proof of Lemma 5.1. We show that X2a

j for a > 0 or log Xj for a = 0 is sub-exponential by showing its
moment-generating function is finite. Then the sub-exponentiality follows from Theorem 2.13 of [16].

First consider the case where a = 0. In Corollary 4.1, we only require K to be positive definite
without any restrictions on η, and thus for any t ∈ R, E0 exp(t log Xj) is the inverse normalizing constant
for the model with parameters K0 and η0 + tej, where ej is the vector with the j-th coordinate equal to 1
and the rest equal to 0, and is thus finite.
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Next, consider a > 0. Corollary 4.1 requires K0 to be positive definite, and in addition η0 � −1m if
b = 0. Then, again writing x0/0 = log x for the b part,

p0(x) exp
(
tx2a

j

) ∝ exp

(
− 1

2a
xa�K0xa + 1

b
η�0 xb + tx2a

j

)

� exp

(
m∑

k=1

((− λmin

(
K0

)+ 2at1k=j

)
x2a

k /(2a) + η0,kxb
k/b
))

,

a constant times the density for parameters diag
(
λmin

(
K0

)
1m − 2atej

)
and η0. Thus, E0 exp

(
tX2a

j

)
is

finite for t ∈ (−∞, λmin

(
K0

)
/(2a)

) " 0. �
Proof of Corollary 5.1. Let the sub-exponential norm of X2a

j be
∥∥∥X2a

j

∥∥∥
ψ1

≡ supq�1(E0|Xj|2aq)1/q/q,

then by Lemma 21.6) of [21] or Corollary 5.17 of [15],

P

(∣∣∣X2a
j − E0X2a

j

∣∣∣ � ε3,j

)
� exp

⎛
⎜⎜⎝−min

⎛
⎜⎜⎝ ε2

3

8e2
∥∥∥X2a

j

∥∥∥2

ψ1

,
ε3

4e
∥∥∥X2a

j

∥∥∥
ψ1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

Letting

ε3,j ≡ max
{

2
√

2e
∥∥X2a

j

∥∥
ψ1

√
log 3 + log n + τ log m + log

(
m − ∣∣ρ∗

D

∣∣),
4e
∥∥X2a

j

∥∥
ψ1

(
log 3 + log n + τ log m + log

(
m − ∣∣ρ∗

D

∣∣)) },

then max
{
E0X2a

j − ε3,j, 0
}1/(2a) � X(i)

j �
(
E0X2a

j + ε3,j

)1/(2a) for all j �∈ ρ∗
D

and i = 1, . . . , n with
probability at least 1 − 1/(3mτ ). The rest follows as in the proof of Theorem 5.3. �
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