
Predictability of tick-borne encephalitis fluctuations

P. ZEMAN*

Medical Laboratories, Prague, Czech Republic

Received 8 May 2017; Final revision 2 July 2017; Accepted 12 July 2017;
first published online 9 August 2017

SUMMARY

Tick-borne encephalitis is a serious arboviral infection with unstable dynamics and profound
inter-annual fluctuations in case numbers. A dependable predictive model has been sought since
the discovery of the disease. The present study demonstrates that four superimposed cycles,
approximately 2·4, 3, 5·4, and 10·4 years long, can account for three-fifths of the variation in the
disease fluctuations over central Europe. Using harmonic regression, these cycles can be projected
into the future, yielding forecasts of sufficient accuracy for up to 4 years ahead. For the years
2016–2018, this model predicts elevated incidence levels in most parts of the region.
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INTRODUCTION

The capacity to understand disease dynamics and pre-
dict disease outbursts is the ‘holy grail’ of infectious
epidemiology. With tick-borne encephalitis (TBE), a
serious Eurasian arboviral infection with a particular
reliance on prevention [1], a dependable predictive
model has been sought since the discovery of the dis-
ease [2–4]. TBE is a classic transmissible zoonosis
promoted by an abundance of vectoring ticks and res-
ervoir animals, conditional on but not solely subject
to climatic conditions. Most of the proposed models
thus regress TBE morbidity against some indicative
climatic variables (e.g. mean annual temperature,
precipitation) or population estimates of key hosts
(e.g. murid rodents) or both. Thanks to a lag in the
disease’s circulation, 1 year’s covariate data can
predict the next year’s disease incidence. Validity of

such a prediction is, of course, contingent on available
covariate data and limited to 1–1·5 years ahead.

A possible alternative approach, independent of
haphazard environmental data and with a longer pro-
jection horizon, is indicated by the finding that TBE
fluctuations can be viewed as a superposition of sev-
eral distinct periodicities that are relatively stable
and synchronous over large areas [5]. They can be
interpreted as self-oscillations of components of the
disease system (such as the populations of ticks,
rodents, deer, etc.) that are (secondarily) synchro-
nized/modulated by external (e.g. climatic) factors.
In this case, an implicit predictive model would be a
harmonic regression fitted to a time series of TBE inci-
dence observed in the past and the present, and extra-
polated towards the future.

The aim of the present study is to validate this con-
cept. Based on epidemiological data on TBE in central
Europe, an amount of disease variance attributable to
plain harmonic oscillations (a (quasi-) biennial, trien-
nial, pentennial, or decadal cycle) is estimated, and the
potential to predict future fluctuations is analysed.
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METHODS

Epidemiological data

TBE incidence series fromAustria, the CzechRepublic,
Switzerland, and Bavaria (originating from national
surveillance systems, and spanning from the early
1970s to 2015) were used in this study. The length of
the series is 45 years, except for the Bavarian series,
which is 42 years. A previous spectral analysis revealed
that there exist cycles of ca. 2·5, 3, 5, and 10 years vary-
ing in intensity across central Europe; the four series
were chosen to form a representative sample in this
respect. The data were de-trended and standardized as
described previously [5] to simplify the model and neu-
tralize country-specific effects of population exposure,
vaccination, disease reporting, etc.

Model

The harmonic regression model assumes that the inci-
dence series, I, can be expressed in terms of a sum of k
sinusoids of fixed amplitude, a, frequency, b, and
phase, c, and a superimposed stochastic noise, ε:

I (t) =
∑k

i=1

ai cos(2πbit+ ci) + ε(t),

where t denotes the time [6]. Based on the previous
spectral analysis, k was set to 4 (i= ‘2’, ‘3’, ‘5’, and
‘10’, hereinafter indicates the quasi-biennial, triennial,
pentennial, and decadal cycles, respectively), and the
noise was assumed to be Gaussian, ε∼N(0, σ2). The
unknown parameters a2–10, b2–10, c2–10, and σwere esti-
mated bymeans of theBayesianmethod,which allowed
flexible modifications of the model. All computations
were done in the R 3.2.2 software environment inter-
facing the programme Stan 2.9.0, which is equipped
with a fast Markov Chain Monte Carlo computational
engine for fitting themodel [7]; theR/Stan code is exem-
plified in the online Supplementary Material.

Prediction

Model predictions were generated using Stan’s Monte
Carlo built-in facilities (‘generated quantities’ block).
To measure the model’s accuracy, the means of the
predicted distributions of I (year) (taken as point esti-
mates) were set against actual observations, and two
common correspondence measures – Pearson correl-
ation coefficient, r, and mean squared deviation,
MSD – were calculated. As any predictive model gen-
erally performs better within the sample of data that
were fitted rather than beyond it, it was also necessary

to gain some idea of out-of-sample performance. To
this end, a (sliding) segment of 20 observations of an
incidence series was used to estimate the parameters
of the model, and an ensuing segment of 10 observa-
tions served as a diagnostic sample for the forecast. In
total, 16 evaluations (14 for Bavaria) were made in a
forward direction (each time shifting the subsample
windows ahead by 1 year, and re-estimating the pre-
diction accuracy), and analogous 16/14 evaluations
were made in a backward direction. All forecast and
‘backcast’ results were combined to assess average pre-
diction accuracy for a decade ahead. To make the
model more parsimonious when fitted to the shor-
tened training segments, the frequency parameters
(b2−10, which consistently showed greatest stability
across evaluation trials) were fixed to values obtained
from fitting to the full-length series (thus reducing the
number of parameters from 13 to 9). Furthermore,
assigning greater significance in the regression model
to the most recent observations was tested as a
means of forecast improvement. This reflects the fact
that the disease cycles may evolve over time (e.g.
due to climatic changes), and hence their character
in an immediately preceding period is more pertinent
for their projection into the future than that in the
more distant past. For this purpose, the observations
were progressively ‘weighted’ along the training seg-
ment, forcing the model to fit more closely towards
the end of the series. Weights were defined heuris-
tically; the gradient (R = first w/last w; mean w = 1)
ranged between 1 and 3.

RESULTS

TBE-fluctuations model

The harmonic regression model fitted to TBE fluctua-
tions is illustrated in Figure 1. The model explains a
relatively high proportion of data variance: Pearson’s
r averages out at ca. 75%, and ranges between 71%
and 79% in different regions. The closeness of the fit
is obviously conditional on the four oscillations (par-
ticularly the 5- and 10-year cycles) being clearly mani-
fest in the disease incidence. The more strongly and
uniformly pronounced they are (such as in the Czech
Republic), the closer the fit of the harmonic regres-
sion. Table 1 summarizes the periods and amplitudes
of the cycles as estimated in different regions (further
details are shown in online Supplementary Figure S1).
While no marked differences are seen between lengths
of the periods, the amplitudes are diverse indicating
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that it is the mixing of the cycles (rather than variabil-
ity of the cycles themselves) that accounts for the mis-
cellany of regional TBE patterns.

Prediction accuracy

An evaluation of the predictive potential is summar-
ized in Figure 2; it shows that the model can be

(with an understandably increasing uncertainty) extra-
polated beyond the estimation period. It suggests
continuation of the data generating process (i.e., self-
oscillations of the disease system) over the background
of random turbulent disturbances (e.g. climatic
events). The effect of weighting is illustrated in
Figure 2a and b; weighting of the regression signifi-
cantly improves accuracy of the forecast for the next

Fig. 1. TBE incidence (open circles and solid line), and predicted means, 50% and 95% credible intervals (solid line,
darker and lighter bands, respectively) from the harmonic regression model: (A) Austria, (B) Bavaria, (C) Czech Republic,
and (S) Switzerland.

Table 1. Oscillations distinguished in TBE fluctuations; shown are periods in years and amplitudes

TBE cycle

Biennial Triennial Pentennial Decadal

Period
(years) Amplitude

Period
(years) Amplitude

Period
(years) Amplitude

Period
(years) Amplitude

Austria 2·38 0·41 2·94 0·70 5·32 0·19 11·75 0·42
Czech
Republic

2·26 0·42 2·95 0·48 5·37 0·51 8·48 0·46

Bavaria 2·40 0·20 2·92 0·20 5·71 0·42 11·42 0·79
Switzerland 2·42 0·49 3·04 0·46 5·33 0·24 9·97 0·24
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4 years. In optimized models, the projected and
observed incidences are (over the whole validation
period) significantly closer to each other than in a
null model that assumes independence; the projected
and actual data exhibit correlation of ca. 50% over
the next 4 years and ca. 40% over the more distant
future (Fig. 2c and d).

Forecast

Figure 3 illustrates a TBE forecast for the years from
2016 to 2025. Most importantly, for the next 3–4
years (i.e. within the period of improved accuracy),
the model predicts high incidence levels in all areas,
with an interim decrease in Switzerland during 2017.

A marked increase post-2015 is highly likely in all
regions (caused by a culmination of multiple cycles).
The probability that TBE levels in Austria, the
Czech Republic, Bavaria, and Switzerland will be
higher in 2016 than in 2015 can be estimated at 76%,
92%, 84%, and 86%, respectively. Moreover, prelimin-
ary epidemiological data available to date for the year
2016 is in close agreement with this forecast (Fig. 3).

DISCUSSION

This analysis demonstrated that four harmonic
oscillations of periods of about 2·4, 3, 5·4, and 10·4
years account for three-fifths of the variation in TBE
fluctuations observed across central Europe and

Fig. 2. Prediction accuracy of the harmonic regression model: each bar represents n pairs of actual and predicted
incidences, dotted lines show thresholds of statistical significance (P= 0·05), and negative and positive values on the time
axis correspond to training data and forecast, respectively. Upper panels: comparison of an (a) unweighted and (b)
weighted model (R= 3·0) with the Czech data as an example; note that weighting improves accuracy around the end of
the training segment including the years +1 to +4. Lower panels: average prediction accuracy across all models expressed
in terms of (c) r, and (d) MSD.
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make possible their projection into the future. To the
author’s knowledge, this is currently the only method
enabling long-term TBE forecasting. Moreover, it is
based solely on routine epidemiological data. There
are limitations, however, in making these forecasts.

First, full-scale TBE dynamics combines temporal
fluctuations with a long-term trend that was removed
from this model. TBE, considered an emerging dis-
ease, is increasing in many European countries; how-
ever, the trend is far from linear and can be
contrasting even in geographically close regions [8].
Implicated drivers range from global warming to
socio-economical changes, which add to the perplexity
of its prediction. Although it is, in principle, possible
to make a statistical forecast using autoregressive
methods [9], uncertainty (i.e., a confidence interval)
of extension of the trend may exceed that of the
fluctuations. Hence, it is pragmatic to keep the trend
isolated and forecast only fluctuations on a scale
over which the trend is more-or-less unvaried (i.e.,

45 years) and update the forecast yearly. This
would provide sufficient time for the health system
to be adequately prepared.

Second, the model explains the greater part but not
all of the variation in TBE fluctuations; when extrapo-
lated beyond the estimation period, more than half of
the variation remains unexplained. Both external (e.g.
climatic) disturbances and imperfections in the (rela-
tively simple) model may be responsible. For example,
the model combines the four cycles additively; how-
ever, in nature, co-abundance of ticks with certain
hosts has a rather synergetic effect on the extent of dis-
ease transmission [10]. This could explain the less suc-
cessful prediction of the height of some prominent
TBE spikes seen in Figure 1. A more elaborate
internal structure and inclusion of some external vari-
able(s) might improve the model’s performance at
least in the short term.

Third, the model relies on the mathematical projec-
tion of four oscillations for which the underlying

Fig. 3. Harmonic regression model fitted to recent TBE data and projected a decade ahead: actual incidence, predicted
means, credible intervals, and the regions are indicated as in Figure 1. Shown is also a naive 95% prediction interval equal
to plus or minus twice the root of MSD (dotted lines), and preliminary epidemiological data from the 2016 season
(asterisk).
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biological mechanisms are not clear. From the lengths
of the cycles, it seems they are connected with cycling
of the background population levels of ticks and key
hosts; a feedback loop between immunity level in a
host population and the amount of circulating virus
(or similar feedback mechanisms) could also be in
play [5]. Any sudden environmental disturbance (in
both abiotic and biotic conditions) might shift or
interrupt these cycles and invalidate the forecast.
Elucidation of the oscillation-generating processes is
thus not only a prerequisite for more robust forecast-
ing, but is also needed for understanding of how much
a role (by contrast with environmental factors) self-
oscillations actually play in the disease dynamics.
This is an area for future research.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at https://doi.org/10.1017/S0950268817001662.
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