Evidence and molecular characterization of *Bartonella* spp. and hemoplasmas in neotropical bats in Brazil

P. IKEDA¹, M. C. SEKI², A. O. T. CARRASCO², L. V. RUDIAK², J. M. D. MIRANDA², S. M. M. GONÇALVES², E. G. L. HOPPE¹, A. C. A. ALBUQUERQUE³, M. M. G. TEIXEIRA⁴, C. E. PASSOS¹, K. WERTHER¹, R. Z. MACHADO¹ AND M. R. ANDRÉ^{1*}

¹ Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, SP, Brazil

² Universidade Estadual do Centro-Oeste, Campus CEDETEG, Guarapuava, Paraná, Brazil

³ Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (Unesp), Botucatu, SP, Brazil

⁴ Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil

Received 24 January 2017; Final revision 17 March 2017; Accepted 18 April 2017; first published online 15 May 2017

SUMMARY

The order Chiroptera is considered the second largest group of mammals in the world, hosting important zoonotic virus and bacteria. *Bartonella* and hemotropic mycoplasmas are bacteria that parasite different mammals' species, including humans, causing different clinical manifestations. The present work aimed investigating the occurrence and assessing the phylogenetic positioning of *Bartonella* spp. and *Mycoplasma* spp. in neotropical bats sampled from Brazil. Between December 2015 and April 2016, 325 blood and/or tissues samples were collected from 162 bats comprising 19 different species sampled in five states of Brazil. Out of 322 bat samples collected, while 17 (5.28%) were positive to quantitative PCR for *Bartonella* spp. based on *nuoG* gene, 45 samples (13.97%) were positive to cPCR assays for hemoplasmas based on 16S rRNA gene. While seven sequences were obtained for *Bartonella* (*nuoG*) (n = 3), gltA (n = 2), rpoB (n = 1), ftsZ (n = 1), five 16S rRNA sequences were obtained for hemoplasmas. In the phylogenetic analysis, the *Bartonella* sequences clustered with *Bartonella* genotypes detected in bats sampled in Latin America countries. All five hemoplasmas sequences clustered together as a monophyletic group by Maximum Likelihood and Bayesian Inference analyses. The present work showed the first evidence of circulation of *Bartonella* spp. and hemoplasmas among bats in Brazil.

Key words: Bartonellaceae, Chiroptera, hemotrophic mycoplasmas, phylogenetic analyses, South America.

INTRODUCTION

The order Chiroptera is considered the second largest group of mammals in the world, composed by $\sim 20\%$ of mammals with more than 1200 species that are

present in all continents, except Antarctica [1]. These animals are known to be hosts of important zoonotic virus (e.g. lyssavirus and hantavirus) and bacteria (e.g. *Leptospira* spp. and *Pasteurella* spp.) [2].

* Author for correspondence: M. R. André, Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias Júlio de Mesquita Filho (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, CEP: 14884-900, Jaboticabal, São Paulo, Brazil. (Email: marcos_andre@fcav.unesp.br)

The genus *Bartonella* spp., belonging to the order Rhizobiales, comprises Gram-negative facultative intracellular α -proteobacteria that parasite mammals' erythrocytes and endothelial cells [3]. These re-emerging agents have been identified in a wide variety of mammals and incriminated as important cause of diseases in humans and animals, causing different clinical manifestations ranging from self-limiting to potentially fatal syndromes [4–6].

Hemotropic mycoplasmas (hemoplasmas) are Gram-negative bacteria belonging to the order Mycoplasmatales, family Mycoplasmataceae, genus *Mycoplasma* [7]. These pathogens are known to cause manifestations ranging from asymptomatic and chronic disease to severe hemolytic anemia due to the capacity of adhesion to the erythrocyte surface, causing indentation or deformation of the target-cell membrane. Acute infected animals can also present anorexia, fever, icterus, and hypoglycemia, depending on the species involved [8–10]. These agents have also been detected in different mammals' species, including humans [11–13].

Bartonella species can be transmitted by arthropod vectors, scratch, or by direct contact with blood or bodily fluids from animals [14]. Similarly, hemoplasmas are supposed to be transmitted mainly by blood-sucking arthropod transmission or aggressive interactions between animals [8, 9].

Bartonella spp. and *Mycoplasma* spp. have been detected in a variety of wild animals all over the world. In Brazil, these agents have been reported in several wild mammals, such as wild carnivores [15–17], deer [18], peccary [19], non-human primates [20, 21], and rodents [22–26].

The presence of *Bartonella* spp. in Chiroptera has been reported in bats sampled in the UK [27], Kenya [4], Taiwan [28], Peru [29], Nigeria [30], Puerto Rico [31], Finland [32], Madagascar [33], Costa Rica [34], Guatemala [35, 36], French Guiana [37], Gana [38], Algeria [39], and South Africa [40]. On the other hand, *Mycoplasma* spp. have already been molecularly detected in bats in the USA [13] and Spain [14].

The present work aimed to investigate the occurrence and assessing the phylogenetic positioning of *Bartonella* spp. and *Mycoplasma* spp. in bats sampled from Brazil.

MATERIAL AND METHODS

Between December 2015 and April 2016, tissue and/or blood samples were collected from 162 bats, comprising 19 species belonging to four different families, namely Vespertillionidae, Phyllostomidae, Mollossidae, and Natalidae, sampled in five states in Brazil (Mato Grosso, Pará, Paraná, São Paulo, and Tocantins) (Fig. 1).

The bat captures were performed in accordance with the licenses obtained from the Brazilian Government Institute for Wildlife and Natural Resources Care (IBAMA) (license numbers 48306-1 and 10080-2), and were endorsed by the Ethics Committee of FCAV/ UNESP University (Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista 'Júlio de Mesquita Filho', Câmpus Jaboticabal) nº 8189/15. The captures were performed as previously described [41, 42] using mist net (Zootech[™], Curitiba, Paraná, Brazil) with variable sizes $(3 \text{ m} \times 6 \text{ m}, 3 \text{ m} \times 9 \text{ m},$ $3 \text{ m} \times 12 \text{ m}$). The nets were placed before sunset and kept closed until nightfall. Once opened, they were checked every 30 min until reaching sample effort of eight animals or until midnight. The animals were carefully removed from the mist nets with leather gloves, taken to the field laboratory to weight, determine species and gender, and then taken to the university's laboratory for euthanasia, necropsy procedures, and tissue samples collections.

DNA was extracted from 10 mg of spleen tissue and 25 mg of liver and heart tissues using the DNeasy[™] Blood & Tissue Kit (Qiagen[™], Valencia, California, USA), according to the manufacturer's instructions. The DNA quality was evaluated by concentration and 260/280 and 260/230 nm absorbance ratios using a spec-(Nanodrop, Thermo trophotometer Scientific, Wilmington, Delaware, USA), in which the purity for DNA samples is considered when ratios are ~ 1.8 and ~ 2.0 , respectively. Also, a conventional PCR (cPCR) assay, based on a 400 pb fragment of GAPDH gene [43], was performed in order to evaluate the absence of inhibitors in DNA-extracted samples. Positive samples in the above-mentioned cPCR assay were submitted to additional Bartonella spp. and hemoplasmas PCR assays. All the cPCR assays were performed in a T100TM Thermal Cycler (BioRad[™], Hercules, California, USA).

A previously described quantitative PCR (qPCR) protocol based on *nuoG* gene [45] was used aiming to detect and quantify *Bartonella* spp. DNA copies (number of copies/ μ l) in bats' biological samples. The qPCR assays were performed in 10 μ l final volume reaction mixtures, containing 1 μ l of DNA sample, 1·2 μ M of each primer F-Bart (5' – CAATCTTCTTTTGCTTC ACC – 3'), R-Bart (5' – TCAGGGCTTTATGTGAAT AC – 3'), and hydrolysis probe TexasRed-5' – TT YGTCATTTGAACACG-3'(BHQ2a-Q) – 3', Master



Fig. 1. Locations where bats were sampled in the present study. Each state is outlined in the map and the number of sampled animals is represented by a diamond symbol.

Mix 2× buffer (GoTag[™] Probe gPCR Master Mix, Promega Corporation, Madison, Wisconsin, USA) and ultra-pure sterilized water (Nuclease-Free Water, Promega Corporation, Madison, Wisconsin, USA) q. s.p. 10 µl. The amplification conditions were 95 °C for 3 min followed by 40 cycles at 95 °C for 10 s and 52.8 °C for 30 s [44]. PCR amplifications were conducted in low-profile multiplate unskirted PCR plates (BioRadTM, Hercules, California, USA), using a CFX96 Thermal Cycler (BioRad[™], Hercules, California, USA). Standard curves were constructed with serial dilutions of plasmid DNA (pIDTSMART - Integrated DNA Technologies, Coralville, Iowa, USA) $(2.0 \times 10^7 - 2.0 \times 10^9 \text{ copies/}\mu\text{l})$, which encoded an 83 bp Bartonella henselae-nuoG gene fragment. The number of plasmid copies was determined in accordance following the formula:

$$\left(\frac{xg/\mu l \text{ DNA}}{\text{plasmid length in bp } \times 660g/\text{mol}}\right) \times 6.022 \times 10^{23} \text{ copies/mol} = Y \text{ copies/}\mu\text{l}.$$

Each qPCR assay was performed including duplicates of each bat DNA sample and plasmids. All duplicates showing Cq values difference higher than 0.5 were retested in triplicates. Amplification efficiency (*E*) was calculated from the slope of the standard curve in each run using the following formula ($E = 10^{-1/\text{slope}}$). The standard curves generated by 10-fold dilutions were used to determine the amount of DNA that could be detected with 95% of sensitivity [45].

In order to perform the molecular characterization of *Bartonella* spp., DNA samples from positive bats in qPCR reactions were submitted to previously described cPCR assays targeting eight different genes, namely *nuoG* (400 bp) [46], *ribC* (420 bp) [47], *gltA* (750 bp) [48], *rpoB* (800 bp) [49], the intergenic region 16S–23SrRNA ITS (453–717 bp) [50], *groEL* (752 bp) [49, 51], *fstZ* (600 bp) [49], 16SrRNA (400 bp) [49], and *pap-31* (564 bp) [52]. *B. henselae* DNA obtained from a naturally infected cat [45] and sterilized ultrapure water (Nuclease-Free Water, PromegaTM, Madison, Wisconsin, USA) were used as positive and negative controls, respectively.

In order to amplify *Mycoplasma* spp. DNA, two cPCR assays based on 16SrRNA gene were performed, using two sets of primers, namely HemMycop16S-41s (5'-GYATGCMTAAYACATGCAAGTCGARCG-3') and HemMyco16S-938as (5' – CTCCACCACTTGTT CAGGTCCCCGTC – 3') (fragment of ~800 bp), and HemMycop16S-322s (5' – GCCCATATTCCTACGG GAAGCAGCAGT – 3') and HemMycop16S-1420 as (5' – GTTTGACGGGCGGTGTGTGTACAAGACC – 3') (fragment of ~800 bp) [53]. Five microliters of DNA were used as a template in 25 µl reaction mixtures containing 10× PCR buffer, 1·0 mM MgCl₂, 0·8 mM deoxynucleotide triphosphate mixture, 1·5 U Taq Platinum DNA Polymerase (Life TechnologiesTM, Carlsbad, California, USA), and $0.3 \,\mu\text{M}$ of each primer. Mycoplasma haemofelis DNA obtained from a naturally infected cat [54] and ultra-pure sterile water (Nuclease-Free Water, PromegaTM, Madison. Wisconsin, USA) were used as positive and negative controls, respectively. PCR amplifications were performed at 94 °C for 2 min followed by 55 repetitive cycles of 94 °C for 15 s, 68 °C for 15 s, and 72 °C for 18 s, followed by a final extension at 72 °C for 1 min. The 16S rRNA-*Mycoplasma* spp. positive samples were additionally submitted to an RNaseP gene-Mycoplasma sp. (165 bp) cPCR assay using the oligonucleotides HemoMvcoRNaseP30s (5'-GATKGT and HemoMyco RNaseP200as (5' - GMGGRGTTT ACCGCGTTTCAC - 3'). The conditions of amplification were the same as described above, except for the annealing temperature (59 °C) [53].

The products obtained in all the cPCR assays were separated by electrophoresis on a 1% agarose gel stained with ethidium bromide (Life TechnologiesTM, Carlsbad, California, USA) under 100 V/150 mA for 50 min. The gels were imaged under ultraviolet light (ChemiDoc MP Imaging System, Bio RadTM, Hercules, California, USA) using the Image Lab Software version 4.1.

Amplified products were purified using the Silica Bead DNA gel extraction kit (Thermo Fisher ScientificTM, Waltham, Massachusetts, USA) and submitted to sequencing, which was performed using the BigDyeTM Terminator v3·1Cycle Sequencing Kit (Thermo Fisher ScientificTM) and ABI PRISM 310DNA Analyzer (Applied BiosystemsTM, Foster City, California, USA) [55].

The sequences obtained from positive samples were first submitted to a screening test using Phred-Phrap software version 23 [56, 57] to evaluate the electropherogram quality and to obtain consensus sequences from the alignment of the sense and antisense sequences. The BLAST program [58] was used to analyze the sequences of nucleotides (BLASTn), aiming to browse and compare with sequences from an international database (GenBank) [59]. The consensus sequences obtained in the present study and those retrieved from GenBank were aligned using the Clustal/W software [60] via Bioedit version 7.0.5.3 [61]. Phylogenetic inference was based on Bayesian Inference (BI) and Maximum Likelihood (ML) methods. The BI analysis was performed with MrBayes 3.1.2 [62] via CIPRES Science Gateway [63]. Markov Chain Monte Carlo (MCMC) simulations were run for 10^6 generations with a sampling frequency of every 100 generations and a burn-in of 25%. The ML analysis was inferred with the W-IQ-Tree tool available online (http://iqtree.cibiv.univie. ac.at/) [64, 65] using 1000 bootstrapping replicates. The best model of evolution was selected by the program jModelTest2 (version 2.1.6) on XSEDE [66], under the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [67]. All the trees were examined in Treegraph 2.0.56–381 β [68].

RESULTS

A total of 122 liver tissue samples, 107 spleen tissue samples, 56 heart tissue samples, and 40 blood samples collected from 162 bats in different states of Brazil were used in this study. So, out of 325 bats' biological samples, 322 samples were positive in cPCR for GAPDH gene (Table 1). The mean and standard deviation of the values of concentration and absorbance ratios (260/280 and 260/230 nm) are shown in Table 2.

Seventeen (5·28%) out of 322 samples were positive for *Bartonella* spp. in qPCR assays based on the *nuoG* gene, including four samples collected from three bats from the state of Paraná (*Sturnira lilium* (*n* = 3)); six from the state of Pará (*Phyllostomus hastatus* (*n* = 1), *Carollia perspicillata* (*n* = 4), and *Natalus espiritosantensis* (*n* = 1)); and seven from the state of Tocantins (*C. perspicillata* (*n* = 2) and *Glossophaga soricina* (*n* = 5)). The efficiency, R^2 , slope, and *Y*-intercept of reactions ranged from 90·8% to 98·6% (mean = 95·09%), 0·987 to 1 (mean = 0·995), -3·355 to -3·566 (mean = -3·447), and 37·284 to 38·871 (mean = 38·067), respectively. The quantification positive *nuoG Bartonella* spp. ranged from 4·4 × 10³ to 6·95 × 10³ copies/µl (Table 3).

Thirteen (76·47%) out of 17 positive samples in the qPCR were also positive for at least one target gene in cPCR assays for *Bartonella* spp. Four (30·77%) of them were positive for the *ftsZ* gene, three (23·07%) for the *nuoG* gene, three (23·07%) for the *ribC* gene, two (15·38%) for the *groEL* gene, and one (7·69%) was positive for the *rpoB* gene. None of them were positive for *pap-31* and *16SrRNA* genes and for the intergenic region 16S–23S rRNA (ITS). Due to the low intensity of some amplified products, which precluded high-quality sequencing, only seven *Bartonella* spp. sequences were obtained (*nuoG* (*n* = 3), *gltA* (*n* = 2), *rpoB* (*n* = 1), *ftsZ* (*n* = 1)). The sequences obtained were deposited to the GenBank under accession numbers KY356752–KY356758.

State	Species	Number of sampled animals	Tissue sample	Total number of samples	Number of positive samples for <i>Bartonella</i> spp.	Number of positive samples for hemoplasmas
Paraná	Sturnira lilium	24	Liver, spleen and heart	150	04	13
	Molossus molossus	20			-	18
	<i>Eptesicus</i> sp.	05			-	02
	Sturnira tildae	01			-	-
Pará	Carollia perspicillata	26	Liver and spleen	117	04	_
	Artibeus planirostris	08	1		-	03
	M. molossus	07			-	02
	Glossophaga soricina	06			-	_
	Artibeus lituratus	03			-	_
	Molossus rufus	03			-	_
	Eumops glaucinus	02			-	_
	S. lilium	02			-	_
	Artibeus cinereus	01			-	_
	Phyllostomus discolor	01			01	_
	Phyllostomus hastatus	01			-	_
	Myotis nigricans	01			-	01
	Natalus espiritosantensis	01			01	_
	Uroderma bilobatum	01			-	_
	Micronycteris minuta	01			-	_
	Eumops auripendulos	01			-	01
	Mimon crenulatum	01			-	_
Focantins	G. soricina	19	Whole blood	24	05	04
	C. perspicillata	5			02	_
ão Paulo	M. molossus	03	Liver, spleen and heart	18	_	_
	Artibeus sp.	02	· •		_	_
	Myotis sp.	01			-	_
Mato Grosso	M. rufus	15	Whole blood	16	-	01
	G. soricina	01			_	_
			TOTAL	325	17	45

Table 1. Number of bat spe	ecies positive for Bartonella spp	. and hemoplasmas in Brazil	l. according to locality and t	tissue sampled
	r r r r r r r r r r r r r r r r r r r	· ····································	,	real real real real real real real real

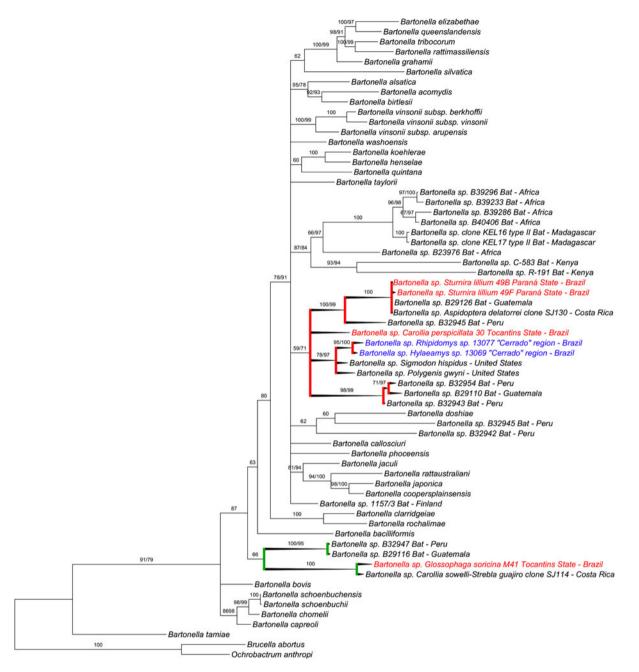
	Whole blood	Liver tissue	Spleen tissue	Heart tissue	
Concentration (ng/µl)	5.03 ± 5.40	211.91 ± 140.35	139.06 ± 168.89	55.09 ± 24.02	
260/280	2.49 ± 2.32	1.91 ± 0.27	1.86 ± 1.10	1.99 ± 0.07	
260/230	0.52 ± 0.25	1.69 ± 0.44	2.30 ± 2.91	1.67 ± 0.39	

Table 2. Mean and standard deviation values of concentration and absorbance ratios (260/280; 260/230 nm) of DNA samples extracted from each type of bats' biological sample

Regarding the occurrence of hemoplasmas among bats, while 45 samples (13.97%) were positive for the first 16S rRNA protocol (using HemMycop16S-41s and HemMyco16S-938 as primers), 14 samples (4.34%) were positive for the second 16S rRNA protocol (using HemMycop16S-322s and HemMycop16S-1420 as primers). Among positive animals, 33 samples were collected from 18 bats in the state of Paraná (Molossus molossus (n = 10), S. lilium (n = 8), *Eptesicus* spp. (n = 1); seven samples were collected from bats in the state of Pará (Artibeus planirostris (n = 3), M. molossus (n = 2), Eumops auripendulos (n = 1), Myotis nigricans (n = 1); four from bats in the state of Tocantins (G. soricina (n = 4)); and one from a bat in the state of Mato Grosso (Molossus rufus). Twelve (26.66%) out of 45 samples positive for hemoplasmas based on 16S rRNA gene were also positive at RNAaseP gene-cPCR assay. A total of five (1.55%) samples were positive for the three performed protocols. Unfortunately, only five 16S rRNA hemoplasmas sequences (Paraná (n = 4), Pará (n = 1)), detected in specimens of M. molossus, were obtained due to the low intensity of some amplified products, which precluded high-quality sequencing. The sequences were deposited to the GenBank data under the accession numbers KY356747-KY356751. Only one bat sampled in Tocantins state belonging to G. soricina species was positive for both Bartonella sp. and Mycoplasma sp.

Based on BLAST analysis, the found *Bartonella nuoG* sequences (n = 3) showed 89–90% identity to *B. taylorii* (GenBank accession number EF659943) and 92% to B. koehlerae (GenBank accession number EF659942). Two Bartonella gltA sequences showed 98-100% identity to Bartonella sp. from bats sampled in Costa Rica (GenBank accession numbers KJ816674 and KJ816690). One Bartonella rpoB sequence showed 89% identity to Bartonella sp. Khabarovsk from Asian mammals (GenBank accession number AB779537). Finally, one Bartonella ftsZ sequence showed 98% identity to *Bartonella* sp. Honshu from deer sampled in Japan (GenBank accession number AB703117). The query coverage ranged from 96% to 100% in all

BLAST analyses run for *Bartonella* sequences. In the phylogenetic inferences based on ML and BI methods (Figs 2–5), the *Bartonella* sequences obtained in the present study were mainly closely related to other *Bartonella* sequences obtained from New World bats. When present, *Bartonella* sequences obtained from Old World bats clustered separately with high branch support.


The concatenated phylogenetic assessment of positive sequences for both nuoG (400 pb) and gltA(750 pb) genes showed a very similar topology in BI and ML methods, forming two different clusters. The sequences from bats detected in a specimen of S. lilium sampled in the state of Paraná was closely related to Bartonella sequences detected in a Hippoboscidae bat fly (Aspidoptera delatorrei) from Costa Rica and in a specimen of C. perspicillata from Guatemala with 100/100% of branch support. A *Bartonella* genotype detected in a specimen of C. perspicillata sampled in Tocantins was positioned in the same cluster (with 59% and 71% of support in BI and ML analyses, respectively) than genotypes detected in bats from Peru and Guatemala, rodents from Brazil and the USA, and from an ectoparasite (Polygenis gwyni) collected from rodents also in the USA. Moreover, a Bartonella sequence obtained in a specimen of G. soricina sampled in Tocantins state was positioned in a more basal clade and closely related to Bartonella genotypes detected in specimens of Carollia sowelli and its Streblidae dipteran Strebla guajiro from Costa Rica (with branch support of 100%) and genotypes detected in bats from Peru and Guatemala with 66% in both analyses (ML and BI) (Fig. 2).

The *Bartonella rpoB* sequence obtained in a specimen of *S. lilium* sampled in the state of Paraná was positioned alone in a branch, but closely related to two *Bartonella* genotypes detected in wild rodents from Asia (AB779537; AB290276) and *B. taylorii* (AF165995), with a branch support of 85% in ML and 94% of probability in BI analyses (Fig. 3).

The *Bartonella ftsZ* sequence obtained in a specimen of *C. perspicillata* sampled in the state of Pará was positioned alone in a branch, but closely related

Sample	Species	Biological sample	Locality	Cq (mean)	Number of copies/µl	Efficiency (%)	R^2	Slope	Y-int
38019 B	Phyllostomus hastatus	Spleen	Viseu, Pará	34.23	$8 \cdot 208 \times 10^{\circ}$	98.1	0.998	-3.368	37.252
38197 B	Carollia perspicillata	Spleen	Castanhal, Pará	33.05	1.8035×10^{1}	98.1	0.998	-3.368	37.252
38295 B	C. perspicillata	Spleen	Belém-Mosqueiro, Pará	33.9	9.33×10^{0}	98·1	0.998	-3.368	37.252
38296 F	C. perspicillata	Liver	Belém-Mosqueiro, Pará	28.97	4.3945×10^{2}	93.7	1.000	-3.482	38.482
38706 F	C. perspicillata	Liver	Cachoeira do Piriá, Pará	32.69	2.2575×10^{1}	98·1	0.998	-3.368	37.252
37987 F	Natalus espiritosantensis	Liver	Belém-Outeiro, Pará	33.51	1.292×10^{1}	98·1	0.998	-3.368	37.252
45 B	Sturnira lilium	Spleen	Parque das Araucárias, Guarapuava, Paraná	32.69	2.22615×10^{1}	98·1	0.998	-3.368	37.252
48 B	S. lilium	Spleen	Parque das Araucárias, Guarapuava, Paraná	34.02	1.876×10^{2}	93.6	0.997	-3.486	38.444
49 B	S. lilium	Spleen	Parque das Araucárias, Guarapuava, Paraná	31.21	1.1875×10^{2}	93.6	0.997	-3.486	38.444
49 F		Liver		34.30	7.623×10^{0}	98·1	0.998	-3.368	37.252
#30	C. perspicillata	Blood	Arapoema, Tocantins	24.31	6.9575×10^{3}	98.1	0.998	-3.368	37.252
# 42	C. perspicillata	Blood	Arapoema, Tocantins	30.67	2.1435×10^{2}	92.5	0.997	-3.515	38.871
M5	Glossophaga soricina	Blood	Aguiarnopolis, Tocantins	36.65	4.4065×10^{0}	92.5	0.997	-3.515	38.871
M16	G. soricina	Blood	Aguiarnopolis, Tocantins	33.07	1.9385×10^{1}	98.6	0.988	-3.555	37.389
M21	G. soricina	Blood	Aguiarnopolis, Tocantins	32.66	2.6425×10^{1}	98.6	0.988	-3.555	37.389
M23	G. soricina	Blood	Aguiarnopolis, Tocantins	33.40	1.3905×10^{1}	98.1	0.998	-3.368	37.252
M41	G. soricina	Blood	Aguiarnopolis, Tocantins	35.12	$4.7855 \times 10^{\circ}$	98.6	0.988	-3.555	37.389

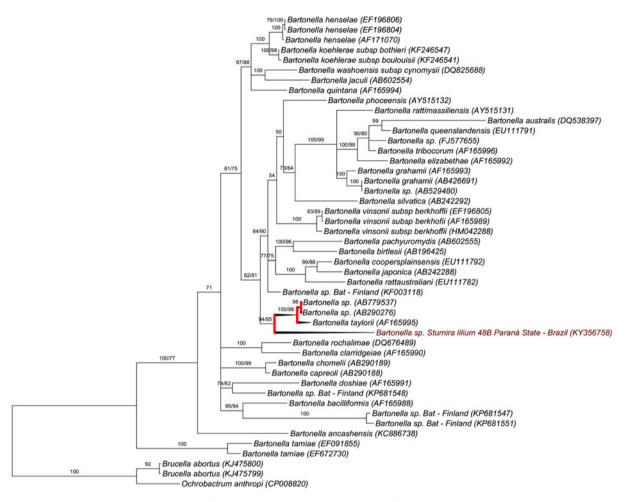
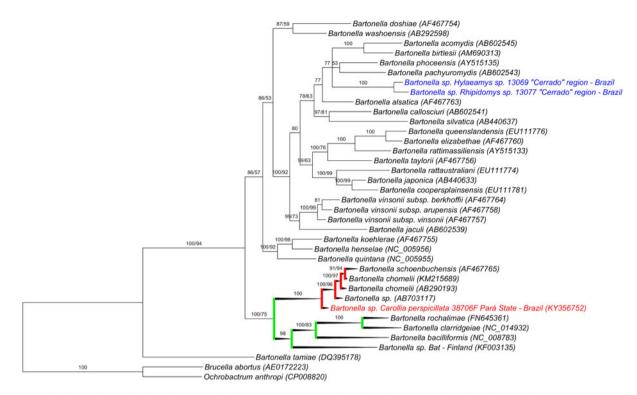

Table 3. Positive samples for Bartonella sp. in qPCR assays based on nuoG gene with the reactions parameters

Fig. 2. Concatenated phylogenetic analysis of *Bartonella nuoG* and *gltA* sequences (3370 bp after alignment) based on the topology generate on the BI method. The values of support of posterior probability/bootstrap higher than 50% are shown in each branch. The sequences of the present work were highlighted in red composing two different clusters. One comprising three sequences of the present study (red branches) clustering with sequences obtained from bats from Guatemala and Peru and from rodents sampled in Brazil (sequences highlighted in blue) and in the USA with a 59/71% of probability. The other cluster (green branches) comprises one sequence obtained in the present study with sequences obtained from bats sampled in Costa Rica, Peru, and Guatemala, with 66% of probability. *Brucella abortus* and *Ochrobactrum anthropi* were used as outgroups.

(100% of branch support) to a *Bartonella* genotype detected in a deer in Japan (AB703117), *Bartonella chomelii* (KM215689/AB290193) and *Bartonella schoenbuchensis* (AF467765) (Fig. 4).

All five 16S rRNA hemoplasmas sequences detected in specimens of *M. molossus* sampled in the states of Paraná and Pará shared identity (93–96%) with *Mycoplasma coccoides* (AY171918), with query

Fig. 3. Phylogenetic analysis of *Bartonella rpoB* sequences (1500 bp after alignment) based on the topology generate on the BI method. The values of support of posterior probability/bootstrap higher than 50% are shown in each branch. The sequence of the present work is highlighted in red. The sequence was positioned alone in one branch and clustered with *Bartonella* sp. from wild mammals from Asia with 94/85% of probability (red branches). *Brucella abortus* and *Ochrobactrum anthropi* were used as outgroups.


coverage ranging from 87% to 100%. Additionally, the found hemoplasma sequences showed 92–96% identity with an uncultured *Mycoplasma* sp. detected in an *Akodon* rodent from Brazil (KT215636), with query coverage ranging from 87% to 99%. All the hemoplasmas sequences obtained in the present study clustered together as a monophyletic group with branch support of 95/100% by ML and BI analyses. This group of sequences was positioned between *M. coccoides* (AY171918) and hemoplasma genotypes detected in rodents from Brazil (KM203857; KT215636). The hemoplasmas sequences detected in bats in the present study were positioned in the *Haemofelis* group (Figure 5).

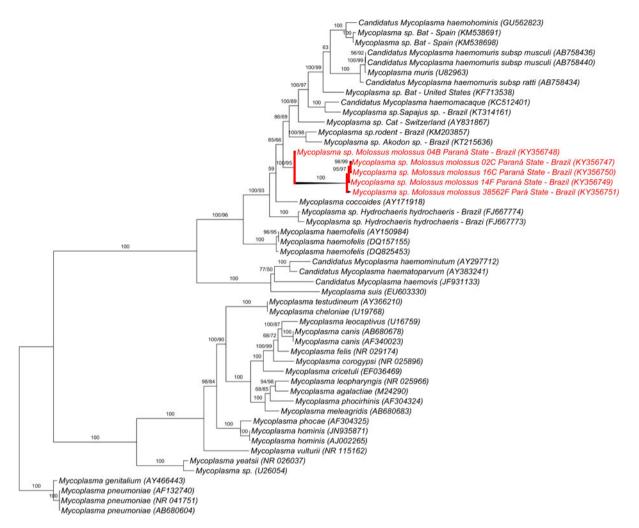
DISCUSSION

The present work reported the occurrence and molecular characterization of *Bartonella* spp. and

Mycoplasma spp. among bat's population sampled in five different states of Brazil. This group of mammals has been incriminated as potential reservoirs for several pathogens due to their high mobility, worldwide distribution, and social behavior [35].

The *Bartonella* occurrence found in the present study (5·28%) was similar to that found in bats (3·38% (13/384)) sampled in Swaziland and South Africa, Africa [40]. Overall there is a relatively higher occurrence of *Bartonella* in bats sampled in the Old World, such as in Algeria (60% (6/10) by qPCR) [39], Nigeria (51·35% (76/148) by qPCR and 15·54% (23/148) by culture) [30], Kenya (32·02% (106/331) by culture) [4], and Madagascar (44·68% (21/47) by PCR) [33]. In neotropical species, *Bartonella* species have been already detected by solid culture followed by cPCR or only by PCR in bats sampled from Guatemala, Peru, and Costa Rica, whose

Fig. 4. Phylogenetic analysis of *Bartonella ftsZ* sequences (790 bp after alignment) based on the topology generate on the BI method. The values of support of posterior probability/bootstrap higher than 50% are shown in each branch. The *Bartonella* sequence of the present work was highlighted in red. The *Bartonella* sequences highlighted in blue were previously detected in rodents from the same research group. The *Bartonella* sequence detected in a specimen of *Carollia perspicillata* was positioned alone in one branch and clustered with *Bartonella* sp. detected in a deer from Asia and other *Bartonella* spp. with 100% of probability (red branches). A *Bartonella* genotype detected in a bat sampled in Finland was closely positioned with the sequence of the present study, with 100/75% of probability (green branches). *Brucella abortus* and *Ochrobactrum anthropi* were used as outgroups.


overall prevalence ranged from $24 \cdot 1\%$ to $33 \cdot 3\%$ [29, 34, 35].

Although a low occurrence of *Bartonella* in *S. lilium* and *G. soricina* bat specimens is reported [35], these animals together with *C. perspicillata* were the main Chiroptera species that showed positivity for *Bartonella* in the present study. Despite the high number of *Molossus* spp. individuals (29.01% (47/162)) sampled in the present study, none of them was positive for *Bartonella* sp., as previously reported [29] as well. *Bartonella* genotypes have already been described previously in the bat species sampled in the present work [29, 35], except for *N. espiritosantensis*.

Even though it is suggested that the spleen is the sample of choice to detect *Bartonella* spp. [69], no difference was observed among the tissues collected in the present study, since seven were from blood, six from splenic tissue, and four from liver tissue.

Bartonella host transitions are supposed to occur with bats within the same family, but transitions between bats belonging to different families, superfamilies and suborders seem to occur infrequently [70]. It had already been hypothesized that a different pressure on the coevolutionary relationships between Old and New World bats host species, since Old World species seem to be more rustic and show a longer evolutionary time for the establishment of this sort of relationship [71]. This hypothesis could explain the different positioning of Bartonella genotypes detected in neotropical bats, including those sampled in the present study, when compared with those from Africa (Megachiroptera/Yangpteroptera). However, it is noteworthy to observe that Bartonella genotypes detected in bats from the present study were closely related to those detected in wild mammals, such as rodents and deer from Asia, based on ftsZ and rpoBphylogenetic analyses. Regarding to these findings, intra- and inter-specific Bartonella transmission has been already suggested, since different Bartonella species/genotypes can be found in only one individual [35].

Interestingly, *Bartonella* genotypes detected in Brazilian rodents were positioned in the same clade

Fig. 5. Phylogenetic analysis of hemoplasmas 16SrRNA sequences (1770 bp after alignment) based on the topology generate on the BI method. The values of support of posterior probability/bootstrap higher than 50% are shown in each branch. The sequences of the present work were highlighted in red and placed together in a same branch with 100/95% of probability (red branches). *Mycoplasma pneumoniae* was used as outgroup.

with the sequences obtained from bats sampled in the present study with a 59/71% of node support based on the concatenated *nuoG* and *gltA* analysis. However, a Bartonella genotype detected in a specimen of G. soricina sampled in the state of Tocantins was positioned distant from the other Bartonella genotype detected in the state of Paraná, clustering with a Bartonella genotype detected in specimens of C. sowelli and its Streblidae dipteran, namely S. guajiro from Costa Rica, based in gltAlnuoG concatenated analysis. These findings suggest the occurrence of different Bartonella genotypes among bats in Brazil. On the other hand, Bartonella genotypes amplified from different tissue samples (spleen and liver) belonging to a specimen of S. lilium sampled in Paraná state clustered together, probably representing the same *Bartonella* genotype.

Regarding the occurrence of hemoplasmas among bats, *Mycoplasma* spp. has been poorly reported in this group of mammals. Despite the *Molossus* spp. was the main group of bats positive for hemoplasmas in the present study, to the best authors' knowledge, this is the first molecular detection of hemoplasmas in eight bat species, namely *A. planirostris, Eptesicus* sp., *Eumops auripendulus, G. soricina, M. molossus, M. rufus, M. nigricans* and *S. lilium.*

High prevalence rates for hemoplasmas have been found in small populations of bats sampled in the USA (47% (32/68)) [12] and Spain (41.93% (13/31)) [13]. Interestingly, hemoplasmas genotypes detected in bats from both studies were similar to each other, but different for *Mycoplasma* genotypes detected in bats sampled in Brazil. The hemoplasmas sequences detected in bats sampled in the USA and Spain clustered with '*Candidatus* Mycoplasma haemohominis' that was detected in a human patient in England [72], and with *Mycoplasma haemomuris*, which has been detected in domestic, laboratory, and wild rodents [8]. Based on the phylogenetic positioning, hemoplasmas genotypes detected in bats in the present study seem to be different from those previously detected in bats sampled in the USA and Spain, since comprised a monophyletic group with high node support and closely related to *M. coccoides*.

Despite the higher positivity to hemoplasmas than to *Bartonella* spp., only one animal was co-positive for both studied pathogens. The pathogenic potential of both group of pathogens in bats have not been investigated.

Finally, it is important to highlight that *Bartonella* and *Mycoplasma* genotypes detected in bats from the present study were closely related to previously reported genotypes detected in rodents. From an evolutionary point of view, bats and rodents are large groups belonging to ancient orders of mammals [71], which have shown a high adaptation as hosts for different groups of pathogens.

To the best of authors' knowledge, the present work presented the first molecular evidence of circulation of *Bartonella* and hemoplasmas among bats in Brazil. Future studies aiming at assessing the role of bats as reservoirs for *Bartonella* and *Mycoplasma* species showing zoonotic potential are much needed.

ACKNOWLEDGEMENTS

The authors are thankful to all the staff and trainees of the Infectious and Parasitic Diseases Laboratory, Mammals Biodiversity of Southern Brazil Laboratory and Wildlife Service (SAAS) of Universidade Estadual do Centro-Oeste (UNICENTRO) for the support given during the animal's captures in the state of Paraná.

This work was supported by 'Fundação de Amparo à Pesquisa do Estado de São Paulo' (FAPESP) for the financial support (#2015/14896–1) and P. Ikeda Msc. scholarship (#2015/04773–0).

DECLARATION OF INTEREST

None.

ETHICAL STANDARDS

The authors assert that all procedures contributing to this work comply with the ethical standards according to the Ethical Principles in Animal Research adopted by the Brazilian College of Animal Experimentation, and to the 2000 Report of the AVMA Panel on Euthanasia (American Veterinary Medical Association, 2001).

REFERENCES

- Schipper J, et al. The status of the world's land and marine mammals: diversity, threat, and knowledge. *Science* 2008; 322: 255–230. doi: 10.1126/science.1165115.
- Mühldorfer K. Bats and bacterial pathogens: a review. Zoonoses and Public Health 2013; 60: 93–103. doi: 10.1111/j.1863-2378.2012.01536.x.
- Morse SF, et al. Global distribution and genetic diversity of *Bartonella* in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). *Infection, Genetics and Evolution* 2012; 12: 1717–1723. doi: 10.1016/j. meegid.2012.06.009.
- Kosoy M, et al. Bartonella spp. in bats, Kenya. Emerging Infectious Diseases 2010; 16: 1875–1881. doi: 10.3201/eid1612.100601.
- Pitassi LH, et al. Bartonella spp. Bacteremia in Blood Donors from Campinas, Brazil. PLoS Neglected Tropical Diseases 2015; 9(1).
- Vieira-Damiani G, et al. Bartonella clarridgeiae bacteremia detected in an asymptomatic blood donor. Journal of Clinical Microbiology 2015; 53: 352–356. doi: 10.1128/JCM.00934-14.
- Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet (list of prokaryotic names with standing in nomenclature. http:// www.bacterio.net). *International Journal of Systematic Bacteriology* 1997; 47: 590–592. doi: 10.1099/ 00207713-47-2-590.
- Neimark H, et al. Proposal to transfer some members of the genera Haemobartonella and Eperythozoon to the genus Mycoplasma with descriptions of 'Candidatus Mycoplasma haemofelis', 'Candidatus Mycoplasma haemomuris', 'Candidatus Mycoplasma haemosuis' and 'Candidatus Mycoplasma wenyonii'. International Journal of Systematic and Evolutionary Microbiology 2001; 51: 891–899. doi: 10.1099/00207713-51-3-891.
- Biondo AW, et al. A review of the occurrence of hemoplasmas (hemotrophic mycoplasmas) in Brazil. *Revista Brasileira de Parasitologia Veterinária (Online)* [Online] 2009; 18: 1–7 doi: 10.4322/rbpv.01803001.
- Tasker S. Clinical review: haemotropic mycoplasmas what's their real significance in cats? *Journal of Feline Medicine and Surgery* 2010; 12: 369–381. doi: 10.1016/ j.jfms.2010.03.011.
- dos Santos AP, et al. Hemoplasma infection in HIV-positive patient, Brazil. *Emerging Infectious Diseases* 2008; 14: 1922–1924. doi: 10.3201/eid1412.080964.
- Mascarelli P, et al. Hemotropic mycoplasmas in little brown bats (*Myotis lucifugus*). Parasites & Vectors 2014; 7:117. doi: 10.1186/1756-3305-7-117.
- Millán J, et al. Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma

closely related to "*Candidatus* Mycoplasma hemohominis". *Comparative Immunology, Microbiology and Infectious Diseases* 2015; **39**: 9–12. doi: 10.1016/j. cimid.2015.01.002.

- Breitschwerdt EB, et al. Bartonellosis: an emerging infectious disease of zoonotic importance to animals and human beings. *Journal of Veterinary Emergency* and Critical Care 2010; 20: 8–30. doi: 10.1111/ j.1476-4431.2009.00496.x.
- Guimarães AM, et al. Detection of Bartonella spp. in neotropical felids and evaluation of risk factors and hematological abnormalities associated with infection. *Veterinary Microbiology* 2010; 142: 346–351. doi: 10.1016/j.vetmic.2009.10.002.
- André MR, et al. Hemoplasmas in wild canids and felids in Brazil. Journal of Zoo and Wildlife Medicine 2011; 42: 342–347. doi:10.1638/2010-0198.1.
- Fleischman DA, et al. Bartonella clarridgeiae and Bartonella vinsonii subsp. berkhoffii exposure in captive wild canids in Brazil. Epidemiology & Infection 2014; 143: 573–577. doi: 10.1017/S0950268814001277.
- Grazziotin AL, et al. Prevalence and molecular characterization of *Mycoplasma ovis* in selected free-ranging Brazilian deer populations. *Journal of Wildlife Diseases* 2011; 47: 1005–1011. doi: 10.7589/0090-3558-47.4.1005.
- Castro AMMG, et al. Swine infectious agents in Tayassu pecari and Pecari tajacu tissue samples from Brazil. Journal of Wildlife Diseases 2014; 50: 205–209. doi: 10.7589/2013-01-021.
- Santos LC, et al. Hemotropic mycoplasma in a freeranging black howler monkey (*Alouatta caraya*) in Brazil. *Journal of Wildlife Diseases* 2013; 49: 728–731. doi: 10.7589/2012-06-159.
- Bonato L, et al. Occurrence and molecular characterization of *Bartonella* spp. and hemoplasmas in neotropical primates from Brazilian Amazon. *Comparative Immun*ology, *Microbiology and Infectious Diseases* 2015; 42: 15–20. doi: 10.1016/j.cimid.2015.09.001.
- Vieira RF, et al. Detection of a novel hemoplasma based on 16S rRNA gene DNA in captive and free-ranging capybaras (*Hydrochaeris hydrochaeris*). Veterinary Microbiology 2009; 139: 410–413. doi: 10.1016/j. vetmic.2009.06.018.
- Conrado FO, et al. Occurrence and identification of hemotropic mycoplasmas (Hemoplasmas) in free ranging and laboratory rats (*Rattus norvegicus*) from two Brazilian zoos. *BMC Veterinary Research* 2015; 11:286. doi: 10.1186/s12917-015-0601-8.
- Favacho AR, et al. Zoonotic Bartonella species in wild rodents in the state of Mato Grosso do Sul, Brazil. Microbes and Infection 2015; 17: 889–892. doi: 10.1016/j.micinf.2015.08.014.
- Gonçalves LR, et al. Diversity and molecular characterization of novel hemoplasmas infecting wild rodents from different Brazilian biomes. Comparative Immunology, Microbiology and Infectious Diseases 2015; 43: 50–56. doi: 10.1016/j.cimid.2015.10.006.
- Gonçalves LR, et al. Association of Bartonella species with wild and synanthropic rodents in different Brazilian biomes. Applied and Environmental

Microbiology 2016; **82**: 7154–7164. doi: 10.1128/ AEM.02447-16.

- Concannon R, *et al.* Molecular characterization of haemoparasites infecting bats (Microchiroptera) in Cornwall, UK. *Parasitology* 2005; 131: 489–496. doi: 10.1017/S0031182005008097.
- Lin JW, et al. Identification of novel Bartonella spp. in bats and evidence of Asian gray shrew as a new potential reservoir of Bartonella. Veterinary Microbiology 2012; 156: 119–126. doi: 10.1016/j.vetmic.2011.09.031.
- Bai Y, et al. Prevalence and diversity of Bartonella spp. in bats in Peru. American Journal of Tropical Medicine and Hygiene 2012; 87: 518–523. doi: 10.4269/ ajtmh.2012.12-0097.
- Kamani J, et al. Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa. Vector-Borne and Zoonotic Diseases 2014; 14: 625–32. doi: 10.1089/vbz.2013.1541.
- Olival KJ, et al. Bartonella spp. in a Puerto Rican bat community. Journal of Wildlife Diseases 2015; 51: 274–278. doi: 10.7589/2014-04-113.
- Lilley TM, Veikkolainen V, Pulliainen AT. Molecular detection of 'Candidatus Bartonella hemsundetiensis' in bats. Vector-Borne and Zoonotic Disease 2015; 15: 706–708. doi: 10.1089/vbz.2015.1783.
- Brook CE, et al. Bartonella spp. in Fruit Bats and Blood-Feeding Ectoparasites in Madagascar. PLOS Neglected Tropical Diseases 2015; 10(2). doi: 10.1371/ journal.pntd.0003532.
- Judson SD, Frank HK, Hadly EA. Bartonellae are prevalent and diverse in Costa Rican bats and bat flies. *Zoonoses Public Health* 2015; 62: 609–617. doi: 10.1111/zph.12188.
- Bai Y, et al. Bartonella spp. in bats, Guatemala. Emerging Infectious Diseases 2011; 17: 1269–1272. doi: 10.3201/eid1707.101867.
- Wray AK, et al. Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala. EcoHealth 2016; 13:761–774. doi: 10.1007/ s10393-016-1183-z.
- Davoust B, et al. Evidence of Bartonella spp. in blood and ticks (Ornithodoros hasei) of Bats, in French Guiana. Vector-Borne and Zoonotic Diseases 2016; 16: 516–519. doi: 10.1089/vbz.2015.
- Mannerings AO, et al. Exposure to bat-associated Bartonella spp. among humans and other animals, Ghana. Emerging Infectious Diseases 2016; 22: 922–924. doi: 10.3201/eid2205.151908.
- Leulmi H, et al. Detection of Bartonella tamiae, Coxiella burnetii and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasites & Vectors 2016; 9:27. doi: 10.1186/ s13071-016-1316-9.
- Dietrich M, et al. Diversity of Bartonella and Rickettsia spp. in bats and their blood-feeding ectoparasites from South Africa and Swaziland. PLoS ONE 2016; 11(3). doi: 10.1371/journal.pone.0152077.
- Kunz TH, Kurta A. Capture methods and holding devices. In: Kunz TH, ed. *Ecological and Behavioural Methods for the Study of Bats*. Washington/London: Smithsonian Institution Press, 1988, pp. 1–29.

- Peracchi AL, Nogueira MR. Lista anotada dos morcegos do Estado do Rio de Janeiro, sudeste do Brasil. *Chiroptera Neotropical* 2010; 16: 508–519.
- 43. Birkenheuer AJ, Levy MG, Breitschwerdt EB. Development and evaluation of a seminested PCR for detection and differentiation of *Babesia gibsoni* (Asian genotype) and *B. canis* DNA in canine blood samples. *Journal of Clinical Microbiology* 2003; **41**: 4172–4177. doi: 10.1128/JCM.41.9.4172-4177.2003.
- André MR, et al. Assessment of a quantitative 5' nuclease real-time polymerase chain reaction using the nicotinamide adenine dinucleotide dehydrogenase gamma subunit (*nuoG*) for *Bartonella* species in domiciled and stray cats in Brazil. *Journal of Feline Medicine and Surgery* 2015; 18: 783–790. doi: 10.1177/ 1098612X15593787.
- Bustin SA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *American Association of Clinical Chemists* 2009; 55: 611–622. doi: 10.1373/ clinchem.2008.112797.
- 46. Colborn JM, et al. Improved detection of Bartonella DNA in mammalian hosts and arthropod vectors by real-time PCR using the NADH dehydrogenase gamma subunit (nuoG). American Society for Microbiology 2010; 48: 4630–4633. doi: 10.1128/JCM.00470-10.
- Johnson G, et al. Detection and identification of Bartonella species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (*ribC*). Journal of Clinical Microbiology 2003; 41: 1069–1072. doi: 10.1128/JCM.41.3.1069-1072.2003.
- Norman AF, et al. Differentiation of Bartonella-like isolates at the species level by PCR restriction fragment length polymorphism in the citrate synthase gene. Journal of Clinical Microbiology 1995; 33: 1797–1803.
- Paziewska A, et al. Recombination within and between species of the alpha proteobacterium Bartonella infecting rodents. International Society for Microbial Ecology 2011; 61: 134–145. doi: 10.1007/s00248-010-9735-1.
- Maggi RG, Breitschwerdt EB. Potential limitations of the 16S-23S rRNA intergenic region for molecular detection of *Bartonella* species. *Journal of Clinical Microbiology* 2005; 43: 1171–1176. doi: 10.1128/ JCM.43.3.1171-1176.2005.
- Zeaiter Z, et al. Phylogenetic classification of Bartonella species by comparing groEL sequences. International Journal of Systematic and Evolutionary Microbiology 2002; 52: 165–171. doi: 10.1099/00207713-52-1-165.
- 52. Maggi RG, Breitschwerdt EB. Isolation of bacteriophages from *Bartonella vinsonii* subsp. *berkhoffii* and the characterization of pap-31 gene sequences from bacterial and phage DNA. *Journal of Molecular Microbiol*ogy and Biotechnology 2005; 9: 44–51. doi: 10.1159/ 000088145.
- Maggi RG, et al. Novel hemotropic Mycoplasma species in white-tailed deer (Odocoileus virginianus). Comparative Immunology, Microbiology and Infectious Diseases 2013; 36: 607–611. doi: 10.1016/j.cimid.2013.08.001.

- Miceli NG, et al. Molecular detection of feline arthropod-borne pathogens in cats in Cuiabá, state of Mato Grosso, central-western region of Brazil. *Revista* Brasileira de Parasitologia Veterinária 2013; 23: 385– 390. doi: 10.1590/S1984-29612013000300011.
- 55. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 1977; 74(12): 5463–5467.
- Ewing GB, Green P. Base calling of automated sequencer traces using phred. II. Error probabilities. *Genome Research* 1998; 8: 186–194. doi: 10.1101/gr.8.3.186.
- Ewing B, et al. Base calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Research* 1998; 8: 175–185. doi: 10.1101/gr.8.3.175.
- Altschul SF, et al. Basic local alignment search tool. Journal of Molecular Biology 1990; 215: 403–410. doi: 10.1016/S0022-2836(05)80360-2.
- Benson DA, et al. GenBank. Nucleic Acids Research 2013; 41:D37-D42. doi: 10.1093/nar/gks1070.
- 60. Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. *Nucleic Acids Research* 1994; 22: 1673–4680.
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT. Nucleic Acids Symposium Series 1999; 41: 95–98.
- Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 2003; 19: 1572–1574. doi: 10.1093/bioinformatics/btg180.
- Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees In *Proceedings of the Gateway Computing Environments Workshop (GCE)*, 2010, pp. 01–08.
- Trifinopoulos J, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research* 2016; 44:W232–W235. doi: 10.1093/ nar/gkw256.
- Nguyen LT, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. *Molecular Biology and Evolution*, 2015; 32: 268–274. doi: 10.1093/molbev/msu300.
- Darriba D, et al. ModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* 2012; 9: 772. doi: 10.1038/nmeth.2109.
- Posada D, Buckley TR. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. *Systematic Biology* 2004; 53: 793–808. doi: 10.1080/10635150490522304.
- Stover BC, Muller KF. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. *BMC Bioinformatics* 2010; 11: 01–09. doi: 10.1186/1471-2105-11-7.
- Gutiérrez R, et al. Guidelines for the isolation, molecular detection, and characterization of *Bartonella* species. *Vector Borne Zoonotic Diseases* 2017; 17: 42–50. doi: 10.1089/vbz.2016.1956.

- Mckee CD, et al. Phylogenetic and geographic patterns of *Bartonella* host shifts among bat species. *Infection, Genetics and Evolution* 2016; 44: 382–394. doi: 10.1016/j.meegid.2016.07.033.
- 71. Lei BR, Olival KJ. Contrasting Patterns in Mammal-Bacteria Coevolution: *Bartonella* and *Leptospira* in

Bats and Rodents. *PLoS Neglected Tropical Diseases* 2014; **8**(3). doi: 10.1371/journal.pntd.0002738.

 Steer JA, et al. A novel hemotropic Mycoplasma (hemoplasma) in a patient with hemolytic anemia and pyrexia. Clinical Infectious Diseases 2011; 53: 147–151. doi: 10.1093/cid/cir666.