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Statistical considerations of nonrandom treatment
applications reveal region-wide benefits of
widespread post-fire restoration action
Allison B. Simler-Williamson 1,2✉ & Matthew J. Germino2

Accurate predictions of ecological restoration outcomes are needed across the increasingly

large landscapes requiring treatment following disturbances. However, observational studies

often fail to account for nonrandom treatment application, which can result in invalid infer-

ence. Examining a spatiotemporally extensive management treatment involving post-fire

seeding of declining sagebrush shrubs across semiarid areas of the western USA over two

decades, we quantify drivers and consequences of selection biases in restoration using

remotely sensed data. From following more than 1,500 wildfires, we find treatments were

disproportionately applied in more stressful, degraded ecological conditions. Failure to

incorporate unmeasured drivers of treatment allocation led to the conclusion that costly,

widespread seedings were unsuccessful; however, after considering sources of bias,

restoration positively affected sagebrush recovery. Treatment effects varied with climate,

indicating prioritization criteria for interventions. Our findings revise the perspective that

post-fire sagebrush seedings have been broadly unsuccessful and demonstrate how selection

biases can pose substantive inferential hazards in observational studies of restoration efficacy

and the development of restoration theory.
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Restoration is an essential tool for counteracting losses in
habitat, biodiversity, and other ecological attributes that are
threatened by global change drivers, such as changing

disturbance regimes and species invasions. However, outcomes of
restoration treatments can be highly variable–even across similar
sites and treatments1,2–and this variability in both space and
time3,4 can obscure broad efforts to quantify average restoration
effectiveness. The lack of predictive power resulting from this
variability has inhibited the development of theoretical frame-
works in restoration ecology2. Given escalating local and global
stressors and the limited resources available to do restoration,
there is an urgent need to be able to predict more broadly which
treatments will be successful, as well as understand where and
when restoration results in the greatest ecological gains5.

Randomized, manipulative experiments, in which treatments
are applied and assessed against comparable control plots, are
frequently used to study restoration efficacy. These efforts are
costly and typically do not match the spatiotemporal scope of
actual management efforts, which can occur over 10’s to 1000’s of
hectares or across decades6,7. Recent advances in the remote
sensing of certain plant types have allowed for estimation of
population recovery across broader spatial and temporal extents,
presenting an opportunity to explore restoration outcomes at a
larger scale8–12. However, the inferences from this approach have
a contrasting limitation: conservation actions, including restora-
tion treatments, are rarely randomly distributed, due to variation
in ecological value, conservation need, social willingness, costs,
and institutional resources across heterogenous landscapes13–16.

This nonrandom, often strategic, deployment of restoration
treatments can lead to statistical bias (referred to as “selection
bias”) and spurious inference about the effectiveness of man-
agement actions when classic regression approaches are
used17–20. A key assumption of these statistical approaches is that
no confounding, unobserved factors are correlated both with the
response and the treatment effect of interest20. Thus, as large-
scale remotely sensed products and aggregated datasets become
more readily available, selection biases have the potential to
hinder inference about restoration successes or failures from these
observational datasets. Recent meta-analyses have explored the
efficacy of several of the world’s most common restoration efforts,
including soil recovery following agricultural conversion21, active
forest regeneration following deforestation22, or the control of
invasive plants23. Notably, many assessments of restoration have
failed to observe widespread benefits or full ecosystem recovery
associated with treatments, a pattern potentially attributable to
the inferential hurdles faced by observational analyses14,24.

Statistical approaches can minimize the effects of selection
biases when inferring treatment effects from large, observational
datasets20. Researchers may include additional covariates in
regression analyses to consider possible confounding factors, or
similarly, “propensity score matching” accounts for observed
drivers of selection bias by matching observations with similar
probabilities of treatment and different treatment statuses based
on a set of measured covariates. However, each of these
approaches assume that all factors influencing treatment alloca-
tion have been observed25. When repeated observations from
before and after the treatment are available (such as in Before-
After Control-Impact designs (BACI)), “difference-in-differ-
ences” estimation can leverage repeated observations to account
for time-invariant measured and unmeasured sources of bias26.
Difference-in-differences (DiD) estimation identifies: (a) the
persistent differences between treated and untreated groups
(which may arise from nonrandom deployment of treatments),
(b) the expected changes in these groups over time (under the
assumption that groups would have had parallel trends, in the
absence of treatment), and (c) the treatment effect, identified as

the average observation’s departure from its expected temporal
trajectory when treatment is applied (identified using an inter-
action term between an observation’s group and time period).
Within-estimator panel regression extends the DiD regression
structure to consider additional sources of bias, such as numerous
post-treatment time points, multiple groups, or time-varying
sources of heterogeneity included as covariates. Though these
before-after control-impact designs can be employed in small-
scale assessments of treatment efficacy, repeated measurements
are often costly, impractical, or impossible to collect (i.e. due to
unpredictable locations of ecological impacts)19. Thus, only a
small proportion of ecological impact studies, including assess-
ments of restoration efficacy, typically apply these
approaches27,28.

We examined how statistical approaches that differentially
address selection biases influence our estimation of the efficacy of
one of the most widely deployed restoration treatments
globally––post-fire seeding of fire-intolerant shrubs. Sagebrush-
steppe ecosystems once covered 620,000 km2 of western North
America29 but are now one of the continent’s most threatened
vegetation types. The foundational species of these habitats,
sagebrushes (Artemisia spp., especially big sagebrush, A. tri-
dentata), have been challenged by climate change, conifer
encroachment, and the invasion of an invasive annual grass,
Bromus tectorum or ‘cheatgrass’, which has contributed to more
frequent and larger wildfire occurrence in this region30,31. Altered
fire regimes have locally eradicated fire-sensitive sagebrush, as
most sagebrushes do not resprout, have short seed longevities
(<~2 years), and disperse over short distances (<~2 m)32. This has
led to propagule limitation in increasingly large burned patches
and necessitated widespread investments in restoration seeding
treatments (dispersed both aerially and on the ground) to facil-
itate post-fire regeneration6.

Since 1990, the Bureau of Land Management (BLM), which
manages more than half of the land area within the Great Basin,
has invested more than $100 million in sagebrush seed for
restoration actions, impacting more than 6000 km2 of the Great
Basin over the last century6. Yet, like many other widely deployed
restoration treatments, evidence for the broad “success” of these
treatments is variable from regionwide observational studies33–37

and from investigations targeting specific ecoregions or fires38–42.
Whether these seeding treatments have been broadly successful
and how effectiveness can be quantified has been a long-standing
administrative question43. An analysis based on field observations
of nearly 100 historic post-fire sagebrush seedings and paired
unseeded sites concluded that seeding was ineffective34. A larger-
scale observational field study found that probability of A. tri-
dentata occurrence among treated areas increased with repeated
seeding actions, although the study did not compare impacts in
seeded and unseeded locations35. Other research using region-
wide, plot-based vegetation cover data found positive correlations
between a variety of restoration actions (including post-fire
seeding, as well as other treatments) and Artemisia spp. occur-
rence (but not abundance), although the authors cautioned that
possible differences in the biophysical characteristics of treated
and untreated sites had not been considered in the analysis44.

Recent restoration planning frameworks provide general
recommendations for the prioritization of treatment sites based
upon their resistance to cheatgrass invasion, their resilience to
wildfire events, and their value as sage-grouse habitat5,45–47.
However, due to the unpredictable nature of wildfire events,
interannual climatic variation, the potentially stochastic avail-
ability of economic and biological resources, and heterogeneity in
regional and local interpretation of frameworks, the extent to
which on-the-ground restoration implementation has historically
aligned with these conceptual guidelines remains unclear.
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In this work, we quantify how observed and unobserved
sources of selection bias (emerging from the nonrandom
deployment of treatments) affect widespread inferences of
restoration “success” by examining post-fire sagebrush seedings
following more than 1500 wildfires occurring over a 20-year
period between 1985 and 2005 across the western U.S. (Fig. 1).
Specifically, we examine the following questions: (1) Which
biophysical characteristics differ between treated and untreated
burned areas?; (2) How does the statistical consideration of the
nonrandom application of restoration influence the size and
direction of identified treatment effects?; (3) Are post-fire seeding
treatments improving sagebrush recovery across a broad spatio-
temporal extent, and do effect sizes vary across the same bio-
physical characteristics determining treatment implementation?

We integrated the Land Treatment Digital Library (LTDL), a
long-term catalog of more than 50,000 management actions on
BLM land across the western U.S.6,48, with estimates of sagebrush
cover in 20,000 treated and untreated burned locations derived
from satellite imagery, using the Rangeland Condition Monitor-
ing Assessment and Projection (RCMAP, formerly known as the
National Land Cover Database’s “Back in Time” Sagebrush
Rangeland Fractional Component8,11). We then examined the
biophysical correlates of treatment deployment and treatment
effect sizes identified by three comparative approaches, relative to
a null “naïve” model in which neither observed nor unobserved
sources of selection bias are considered (Table 1). We compared:
(1) regression models that considered observed sources of selec-
tion bias (such as climate variables and other measured biophy-
sical characteristics of sites that have been commonly integrated
into previous studies in this system), either by conducting pro-
pensity score matching before analysis or by incorporating
environmental covariates directly; (2) DiD estimation, which
leverages pre- and post-treatment measures to account for
unobserved, time-invariant differences between treated and
untreated sites; and (3) within-estimator panel regression, which
generalizes DiD estimation to incorporate unobserved hetero-
geneity associated with multiple time periods or measured time-
varying confounders.

Our results provide evidence that widespread post-fire sage-
brush seeding efforts may have been more successful in increasing
plant cover than previously quantified over broad spatial extents,
and that there is significant variation in treatment efficacy across
climatic gradients relevant to the global change ecology of this
foundational dryland shrub. Invasive annual grasses are expected

to further spread across western North America, and their roles as
wildfire fuels, in addition to changing climatic conditions, will
continue to accelerate fire frequencies and expand the total area
requiring restoration intervention49,50. Remotely sensed data
products and other large-scale observational datasets that moni-
tor plant populations are increasingly accessible. Thus, explicit
consideration of nonrandom application of treatments, including
the ecological, social, and economic factors shaping these deci-
sions, is essential to advancing restoration theory over broad
spatiotemporal extents and prioritizing treatment sites, given
limited management resources and accelerating anthropogenic
threats.

Results
Sources of selection bias in restoration treatments. In the
dataset of randomly selected burned sagebrush habitat locations,
treated and untreated sites systematically differed in their bio-
physical properties, indicating substantial potential for selection
bias in the assessment of restoration treatment effects using
observational datasets, such as RCMAP and LTDL (Fig. 2A, B,
Supplementary Figs. 1, 2). Within ecoregions where restoration
on BLM land commonly occurred, managers tended to conduct
post-fire seedings in areas that had low-to-moderate amounts of
sagebrush before fire (treatment probability maximized at 12.5%
cover; Fig. 3A) and in areas with less surviving, post-fire sage-
brush cover (Fig. 3B). Burned sites with greater than 13.3% sur-
viving sagebrush cover had less than a 50% chance of receiving
treatment. The probability of burned BLM lands receiving seed-
ing was also greatest in areas with relatively dry, warm springs,
compared to the broader climatic range of sagebrush ecosystems
(maximized where mean November-April total precipitation was
459 mm and mean spring temperature was 6.01 °C; Fig. 3C, D,
respectively). Areas with mean spring temperatures less than
0.60 °C were more likely to remain untreated than receive seed-
ing. Probability of receiving treatment also increased at sites with
soils containing a greater proportion of fine clay particles
(Fig. 3F).

The probability of areas receiving seeding also decreased in
larger burned areas (Fig. 2B) and was greatest at intermediate
distances from major roads (Figs. 2B, 3E). Recorded seeding
efforts were not equally distributed among ecoregions, and
instead were more likely to occur in the Snake River Plain, Idaho
Batholith, and Northern Basin, Wyoming Basin, and Central
Basin and Range ecoregions (Fig. 2B).

The matching process, which incorporated covariates included
in past prioritization frameworks and studies of sagebrush
restoration34,35,51,52, resulted in a subset of the data in which
seeded and unseeded locations were similar in terms of these
biophysical characteristics (Fig. 2B). Sites also had similar overall
probabilities of receiving restoration, despite having different
treatment statuses (Fig. 2A), using a caliper size equivalent to 20%
of the standard deviation of the mean propensity score. Following
matching, the effects of each of the included covariates in the
propensity score model did not differ from zero (Fig. 2B), and the
means for each covariate did not statistically differ between
treated and untreated groups (Supplementary Figs. 1, 2). The
matching process eliminated observations in most montane,
foothills, and Great Plains systems containing >0% estimated
sagebrush cover, where post-fire restoration treatments were
relatively rare.

Variation in estimated treatment effects with approach. Esti-
mates of restoration efficacy varied considerably depending on
the statistical approach used and how measured and unmeasured
sources of selection bias and time-invariant and time-varying

Fig. 1 Study area description. Burned areas that received Artemisia seeding
treatments (as recorded by the Land Treatment Digital Library) and or
remained untreated following fires occurring between 1986 and 2001 in the
western United States. Areas that burned twice during this period were
excluded from the analysis (Map data ©2021 Google).
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confounders were integrated (model structures are summarized
in Table 1). The “naïve” null model, which did not account for
sources of selection bias and contained only a variable for treat-
ment status, indicated that treated sites had, on average, −0.8%
less sagebrush cover 10 years following post-fire reseeding efforts,
compared to untreated sites within sagebrush habitat (Fig. 4).

In turn, approaches that incorporated only observed environ-
mental sources of selection bias suggested that post-treatment
sagebrush cover did not clearly differ between treated and
untreated sites (Fig. 4). An analysis of the subset of the
observations that remained following the propensity score
matching process (which balanced the systematic differences
between sites for several biophysical variables; Fig. 2B, Supple-
mentary Figs. 1, 2) resulted in a neutral treatment effect (75.7%
probability that the treatment effect ≥0). A regression approach
that incorporated a series of environmental covariates that have
been accounted for in past studies of sagebrush recovery (as well
as a varying intercept for the identity of the fire that impacted
each site) estimated a weakly positive mean effect of treatment
(+0.26% sagebrush cover, with 95% credible intervals
containing zero).

However, using DiD and within-estimator panel regression, we
detected positive impacts of seeding efforts on restoration
outcomes across the spatiotemporal extent examined in this
study (Fig. 4). Based on DiD estimation, which may account for
time-invariant, unobserved differences between treatment groups,
sagebrush cover increased by an average of 5.7% by 10 years post-
treatment on BLM lands where seeding occurred, compared to
the expected levels of recovery if these locations had not received

restoration. The within-estimator panel regression, which addi-
tionally considered unobserved heterogeneity specific to multiple
post-treatment time points, predicted an increase in sagebrush
cover at treated sites of 4.1% by 10 years post-treatment. The
within-estimator panel model also included time-varying weather
variables for February-April total precipitation and mean
temperature, which had small positive effects on sagebrush
growth (Supplementary Fig. 6); though, correlation with lagged
effects of past years’ precipitation and temperature variables could
bias direct interpretation of the weather covariates included in
this model26. Within-sample mean absolute error for DiD and
within-estimator panel regressions were 2.85 and 2.50,
respectively.

Pre-fire estimates of sagebrush cover for treated and untreated
pixels exhibited parallel trends (Supplementary Fig. 3), a key
assumption for conducting DiD estimation. Many analyses
conduct propensity score matching, based on time-invariant site
characteristics, prior to DiD estimation to ensure groups will
fulfill the assumption of parallel trends, but we did not find this
substantially altered the effect size associated with the treatment
parameter in our DiD model (Supplementary Information
Fig. 12). Cluster-robust standard errors are commonly used as a
post-estimation approach to account for grouping structures
among observations in econometrics analyses53. Instead, we
included varying intercepts in the DiD and within-estimator
regression models to account for clustering of observations by
location and fire identity within the model’s structure54. The
conclusions drawn from the multilevel models’ credible intervals
did not strongly differ from inference from frequentist confidence

Table 1 Summary of model structures used in comparative analysis of treatment effectiveness.

Sources of bias considered Modeling approach Model Structure Sample size

None 1. “Naïve” model
(Difference in means)

yi � Negative binomialðμi; θÞ (1a) n= 20,000
observations of
sagebrush cover 10
years post-fire, in
1539 fires

logðμiÞ ¼ αþ βðgroupiÞ þ εi (1b)

Selection bias associated
with measured, time-
invariant site characteristics

2. Regression following
propensity score
matching

yi � Negative binomialðμi; θÞ (2a) n= 11,012 “matched”
observations of
sagebrush cover 10
years post-fire, in
940 fires

logðμiÞ ¼ αþ βðgroupiÞ þ εi (2b)

3. Regression with
environmental
covariates (with
varying intercept for
fire identity)

yik � Negative binomialðμik; θÞ (3a) n= 20,000
observations of
sagebrush cover 10
years post-fire, in
1539 fires

log μik
� � ¼ αk þ βðgroupiÞ þ ω Xð Þ þ εikð3bÞ

αk � Normal α; σð Þ (3c)

Selection bias associated
with unmeasured time-
invariant group
characteristics

4. Difference-in-
differences regression
model (with varying
intercepts for location
and fire identity)

yijk � Negative binomialðμijk; θÞ (4a) n= 40,000
observations pre-
treatment (year 0
post-fire) and 10 years
following treatment, in
1539 fires

logðμijkÞ ¼ αjk þ τ timeijk
� �þ γ groupijk

� �þ βðtimeijk � groupijkÞ þ εijk (4b)
αjk � Normalðαk; σ jÞ (4c)
αk � Normalðα; σkÞ (4d)

Selection bias associated
with: 1) unobserved
characteristics of
timepoints and groups; and
2) measured time-varying
and group-varying factors
(e.g. weather).

5. Within-estimator
panel regression model
(with varying
intercepts for location
and fire identity)

yijk � Negative binomialðμijk; θÞ (5a) n= 220,000
observations from
year 0 (pre-
treatment) to year 10
following treatment, in
1539 fires

logðμijkÞ ¼ αjk þ τ time since treatmentijk
� �þ γ groupijk

� �

þβðtreatment indicatorijkÞ
+ ωðWÞ þ εijk (5b)
αjk � Normalðαk; σ jÞ (5c)
αk � Normalðα; σkÞ (5d)

y represents individual observations (i) of sagebrush percent cover, which are nested within locations (j, where repeated measures are used) and fires (k). μ represents the expectation for y, α represents
global intercepts (with varying intercept components αj and αk for location and fire identity, which are normally distributed with standard deviations (σ) associated with each). Group is a categorical
variable indicating whether an observation was in treated or untreated groups. Time indicates whether the observation is pre-treatment (year 0 postfire) or post-treatment application (year 10 postfire) in
DiD models. In the within-estimator panel regression model, time since treatment is a categorical variable for the observed timepoint (0–10 years post-treatment) and treatment indicator represents
whether the treatment has occurred at a site by the observed timepoint. X and W represent matrices of either time-invariant biophysical covariates or time-varying weather variables (described in the
text) with an associated vector of parameters ω. Time-invariant biophysical characteristics were selected based on their inclusion in frameworks for prioritization of sagebrush restoration sites or in past
studies of sagebrush recovery as “control” variables. In all models, the parameter associated with treatment application is indicated by β.
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intervals calculated using cluster-robust standard errors (Supple-
mentary Fig. 11, Supplementary Tables 2, 3). Standard deviations
for varying intercepts in each model are included in the
supplementary information (Supplementary Table 1).

Variation in treatment effects along climatic gradients. Gains
in sagebrush recovery associated with restoration seeding varied
substantially along biophysical gradients, indicated by interaction
terms between the treatment effect and environmental variables
(Fig. 5; Supplementary Fig. 7). Treatment effect size, using DiD
estimation, was maximized at intermediate precipitation and
cooler temperature values. For instance, sites within the Central
Basin and Range ecosystem with an average of 726 mm of
November–April precipitation were predicted to have 11.9%
more sagebrush cover following post-fire reseeding, compared to
gains of 2.4% at the driest locations (Fig. 5B). Seeding was

predicted to increase sagebrush cover by 8.3% at locations with
mean February-April temperatures of −5.6 °C but only increased
cover by 2.7% at the warmest sites (Fig. 5D). Gains associated
with seeding were also maximized at intermediate soil clay pro-
portions (Supplementary Fig. 7). While restoration was com-
monly applied in sites expected to experience large gains in
sagebrush cover from seeding, significant efforts were also allo-
cated to the hottest and driest sites, where treatment effects were
predicted to be smallest (Fig. 5B, D).

Discussion
Changing fire frequencies, nonnative species invasions, and cli-
mate change have caused the decline of myriad foundational
plant species globally, including sagebrush species in the genus
Artemisia30, prompting a need for improved predictive models of
restoration success across large landscapes. Based upon statistical

Fig. 2 Differences in treated and untreated site characteristics before and after propensity score matching. a The distribution of propensity scores (the
probability of receiving seeding treatment) in treated and untreated locations before (n= 20,000 locations) and after the matching process (n= 11,012
locations); (b) Posterior parameter estimates for the effects of environmental covariates in unmatched and matched datasets on the probability of
receiving seeding treatments (n= 20,000 locations). Symbols represent median parameter estimates and lines represent the 95% credible intervals (CIs)
for the parameter estimate, with triangles and dots indicating where 95% CIs included 0 or did not include 0, respectively. In the matched dataset, the
effects for some ecoregions are not shown, in cases where the matching algorithm eliminated observations from these ecoregions entirely (i.e. no
sufficiently similar pairs of treated and untreated pixels were contained within these ecoregion categories).
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approaches that account for sources of observed and unobserved
bias, our results indicate that widespread investment in post-fire
sagebrush seeding efforts may be more effective over larger areas
or timeframes than previous regionwide studies have suggested
(Fig. 4)33,34,37. Further, nonrandom treatment locations may have
substantially affected past inference for sagebrush seeding treat-
ment effects. Estimates of post-fire restoration treatment effects
shifted from negative to neutral to positive with the incremental

consideration of observed and unobserved biases in treatment
locations and across time (incorporated into analyses through
propensity score matching and environmental covariates, DiD
estimation, and within-estimator panel regression, respectively),
with significant variation in efficacy across climatic gradients
(Figs. 4, 5).

Our results also explicitly quantify the environmental corre-
lates of restoration implementation in a widespread dryland
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Fig. 3 Correlates of post-fire seeding treatment application. Marginal effects of covariates correlated with the occurrence of restoration treatments,
illustrating observed sources of selection bias (n= 20,000 observations). The distribution of observed values for these covariates in treated and untreated
sites is shown above each marginal effect panel. Panels illustrate predicted effects of pre-fire sagebrush cover (a), surviving, unburned sagebrush cover
estimated immediately following the fire (b), November-April total precipitation (c), February-April mean temperature (d), distance from a road (e), and
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ecoregion (Snake River Plain). Solid lines represent median posterior predictions (based on model parameters shown in Fig. 2), with shaded bands
indicating 50% and 95% credible intervals around these predictions.
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ecosystem. Though several frameworks outline recommendations
for prioritization of restoration sites in sagebrush steppe5,45–47,
actual treatment implementation may diverge from these con-
ceptual guidelines. Treatment deployment is determined by a
complex set of interactions between national-scale (i.e., Depart-
ment of Interior) allocation of funding, regional-level (i.e., BLM
districts) coordination of emergency stabilization and restoration
resources, and local implementation (i.e., BLM field offices),

influenced by individual practitioners’ interpretations of prior-
itization guidelines. Further, wildfires occur unpredictably in
space and time. Thus, the implementation of restoration may be
further shaped by other stochastic or opportunistic factors,
including interannual variation in seed availability, contractor
availability, timing of funding availability relative to sagebrush
phenology, suitability of weather conditions, and social factors
that vary across the range of sagebrush steppe. Thus, it is critical
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Fig. 4 Variation in estimated treatment effects among statistical approaches. a The predicted treatment effects (for treated sites) of post-fire sagebrush
seeding on sagebrush cover, identified by five statistical approaches: (1) a naïve model examining only the difference in means between treated and
untreated sites; regression analyses that incorporate either (2) propensity score matching or (3) environmental covariates, which considered measured
sources of bias; (4) DiD estimation, which considered time-invariant unmeasured sources of bias; and (5) within-estimator panel regression, which
additionally considered time-varying unmeasured factors. Dots represent median estimates, lines represent the 95% credible intervals (CIs), and grey
density plots indicate full posterior. Red, grey, and purple intervals indicate negative, neutral, and positive estimated effects of restoration treatments on
sagebrush recovery, respectively. b The expected (E[]) trajectories of sagebrush recovery if treated sites were to receive or not receive seeding treatments,
over the 10 years following treatment. Dots indicate median estimates with 95% credible interval bars. Prediction intervals are constructed from posterior
draws of the linear predictor for the within-estimator panel model, while holding weather covariates at their means.
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to document possible gaps between where restoration is recom-
mended and where treatments are actually completed, and then
identify whether the locations receiving management represent an
efficient use of limited financial, sociopolitical, and biological
resources.

Nonrandom application of restoration treatments. The shift in
treatment effects across our analyses may be best explained by the
biophysical and anthropogenic factors that were associated with the
probability of a burned location receiving restoration, as identified

in the propensity score model. Over several decades, treatments on
BLM land recorded in the LTDL database have been systematically
applied in areas characterized by more stressful climatic conditions
and smaller pre- and post-fire surviving sagebrush populations,
compared to the broader range of conditions in sagebrush steppe
ecosystems (Figs. 2, 3). Selection for relatively degraded, dry, and
warm sites may also correlate with greater occurrence of fire and
more severe annual grass invasion, historically5.

We hypothesize that these correlates of restoration occurrence
may reflect a combination of the perceived environmental
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Fig. 5 Variation in the effects of seeding treatments across climatic gradients. Panels show sagebrush percent cover (%) 10 years following fire (shown
for the Central Basin and Range Ecoregion), along gradients of (a, b) November-April total precipitation (30-year average) and (c, d) February-April mean
temperature (30-year average). Panels on the left (a, c) illustrate the expected (“E”) of sagebrush cover for sites in the treated group, if they were to either
receive or not receive treatment (median expectations, shown with 50% credible intervals). Panels on the right (b, d) illustrate the difference in sagebrush
recovery observed when treatment is applied (median expectations, shown with 50% credible intervals). Positive values (above the solid line at 0) indicate
gains associated with reseeding; line color indicates whether restoration is likely (>50% probability of occurrence) or unlikely (<50%) to occur at given
precipitation (b) or temperature (d) conditions, based on the model of treatment probability (see Figs. 2, 3). Posterior parameter estimates for all
covariates included in the associated model (n=20,000 locations) can be found in Supplementary Fig. 5.
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requirements for sagebrush recovery, the narrower range of
conditions that may exist on BLM lands, and the cost-benefit
relationships faced by practitioners. For instance, restoration
practitioners may be less likely to apply treatments in the wettest
or coolest sites35,51 or in areas with the largest pre-fire or
surviving post-fire populations (which may exhibit more stable
population dynamics4), where sagebrush may be perceived more
capable of recovering without interventions. Simultaneously,
practitioners may be marginally less likely to apply treatments
in areas with smaller pre-fire populations, if these areas are
perceived to be suboptimal sagebrush habitat. Currently, similar
temperature and moisture regime characteristics estimated by the
US National Resource Conservation Service soil survey provide
guidance for prioritization of restoration treatments5,45,46. These
regimes have been demonstrated as indicators of post-fire
resilience in sagebrush steppe ecosystems, with warmer, more
xeric soil regimes resulting in decreased plant community
resilience to disturbance and decreased resistance to post-fire
cheatgrass invasion5.

Selection against sites with large pre-fire sagebrush populations
may also relate to practitioner perceptions of wildlife attributes or
other ecological values in these stands. Critical habitat for listed
or candidate threatened and endangered species is a key selection
criteria outlined by the BLM Emergency Stabilization and
Rehabilitation program, which plans and implements the post-
fire seedings we evaluated47. Greater sage-grouse (Centrocercus
urophasianus), a sagebrush-dependent species that has experi-
enced large declines or local eradication across the western U.S.
due to loss of the sagebrush-steppe habitat, may preferentially
occupy areas of moderate sagebrush cover55. Extremely dense
sagebrush stands can result from overgrazing and depletion of
perennial grasses; when these dense stands with depauperate
understories burn, lack of native resprouting perennials can result
in increased invasion by exotic annual grasses3,5,56. Thus,
selection toward sagebrush stands with moderate density before
fire may also reflect practitioners’ prioritization of seeding
investments into known wildlife habitat. Additional surveys,
which specifically investigate the preferences, resources, institu-
tional constraints, and ecological criteria that shape decisions
made by restoration practitioners and organizations, are required
to confirm whether these mechanisms drive biophysical differ-
ences in treated and untreated areas.

Impacts of selection bias on inference of treatment effects. The
shift in treatment effect across statistical approaches examined in
this analysis may explain why past evidence for treatment efficacy
has been equivocal, especially in large-scale observational studies
of seeded post-fire sagebrush habitat3,33,34,36–39. The dispropor-
tionate allocation of treatments toward sites that are more cli-
matically stressful, more degraded by fire, or generally more
ecologically “difficult” to restore (Figs. 2, 3) generated a negative
correlation between restoration and post-treatment sagebrush
cover in the “naïve” null model (Fig. 4), which did not account for
differential biophysical characteristics of treated and
untreated sites.

Yet, analyses that considered observed environmental sources
of selection bias (via propensity matching or multiple regression)
also did not detect clearly positive treatment effects, even after the
inclusion of a set of biophysical characteristics that have been
frequently integrated into past observational studies of restoration
efficacy in sagebrush steppe ecosystems34–36,44,51,52. Regression
including environmental covariates or following propensity score
matching most closely reflect commonly applied approaches in
large-scale assessments of sagebrush recovery. However, positive
effects of restoration were detected only after applying DiD and

within-estimator panel regression methods, which considered
either time-invariant or time-varying unobserved sources of
heterogeneity. This suggests that quasi-experimental designs that
match sites based on similarity in observed characteristics (e.g.
refs. 34,36) may underestimate effects of restoration if additional,
unobserved characteristics differ between treated and
untreated sites.

Ecologically relevant but unobserved sources of bias in our
analyses may include finer scale environmental factors, such as
soil microsite conditions, or biotic interactions influencing
treatment allocation. Mean temperatures, precipitation, soil
texture and water retention (i.e. soil percent clay), and late-
winter snowpack retention have all been correlated with survival
and growth of sagebrush in past field studies, suggesting that soil-
water availability in the early stages of sagebrush development,
when seedlings are most susceptible to drought, may play a key
role in restoration efficacy35,51,52,57. While the spring tempera-
ture, spring precipitation, and soil variables that we included in
our analyses may influence the phenology of spring snowmelt,
soil moisture, and recharge, they may not correlate perfectly with
fine-scale soil-water potential. Another ecologically relevant, but
omitted factor was systematic differences in cheatgrass invasion
and biotic interactions at treated and untreated sites; for instance,
competition with invasive cheatgrass determine trajectories of
sagebrush recovery and further alter soil water availability58.
Similarly, pre- and post-fire livestock grazing, which varies in
pressure across BLM lands, may correlate with treatment
application and sagebrush recovery59. However, to our knowl-
edge, no existing datasets accurately summarize grazing history
across this broad spatiotemporal extent.

DiD estimation, which considered both observed and unob-
served time-invariant sources of bias associated with systematic
differences between treated and untreated groups, suggested that
post-fire seeding treatments generated small (5.7%) improve-
ments in sagebrush cover in treated areas (Fig. 4). The estimated
effect of reseeding on sagebrush recovery in treated sites slightly
decreased using within-estimator panel regression approaches
(4.1%), likely due to the consideration of time-varying covariates,
such as spring weather conditions. Weather (i.e. interannual
variation in climate) and other “year effects” are commonly
discussed potential drivers of variable outcomes in
restoration2,60–64, including in sagebrush systems52,65,66. Time-
invariant mean climatic variables imperfectly capture the specific
weather conditions that occurred in the years following restora-
tion. Further, the extent of interannual climatic variation may
differ between hotter, drier and cooler, moister sites, suggesting
that the strength of weather fluctuations may also correlate with
treatment assignment.

We propose that the within-estimator panel regression
estimate, which incorporates time-varying and time-invariant
sources of heterogeneity, represents the least biased estimate of
the effect of post-fire seeding in sagebrush steppe ecosystems.
However, the validity of each approach and associated estimated
treatment effect rests on important assumptions and limitations.
Regression following propensity score matching assumes that,
after matching based on measured covariates, treatment assign-
ment will be effectively randomized; given the comparative shift
in treatment effect in matched, DiD, and within-estimator panel
regression approaches, this assumption is likely poorly founded,
based on the set of biophysical covariates incorporated
here34–36,44,51,52. In contrast, DiD and within-estimator panel
regression methods are limited by the assumptions that in the
absence of treatment, the differences between treated and
untreated groups are constant, that the predictors are exogenous,
and that treatment effects are static over time26,67,68. In
particular, we expect treatment effects to be heterogenous across
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the range of sagebrush steppe and explored this variation in a
subsequent form of our DiD model (Fig. 5).

Variation in restoration efficacy across heterogeneous land-
scapes. Recent discussions of restoration efficacy in sagebrush
steppe ecosystems have called for flexible management, such as
planning that can integrate near-term weather forecasts to capi-
talize on years with particularly favorable conditions for
establishment65. Several past studies have identified factors
associated with the probability of sagebrush establishment in
burned areas that were seeded, finding that sagebrush occupancy
was more likely at higher elevation and in areas with moister,
cooler spring soil conditions35,51. However, these analyses have
typically focused on variation in sagebrush recovery exclusively
within treated areas, rather than the extent to which gains
achieved by restoration (compared to untreated areas) vary across
these biophysical characteristics of sites (though see refs. 6,34,38).

DiD estimation suggested that post-fire seeding treatments
increased sagebrush cover by an average 5.7% in treated areas
across this study’s extent. However, in a DiD model that
incorporated interactions between treatment occurrence and site
characteristics, the gains in sagebrush cover achieved by
restoration varied substantially across climatic gradients (for
instance, ranging from 2–12% increases in sagebrush cover for
the Central Basin and Range ecoregion), as illustrated by the
interaction terms between the DiD estimates and biophysical
variables in subsequent analysis (Fig. 5, Supplementary Fig. 7).
Similarly, a field study of seeding efficacy following prescribed
burning in Oregon western juniper-big sagebrush stands within
the xeric-frigid temperature-moisture regime found that climate
(as affected by aspect) significantly altered the strength of
treatment effects38. We propose that flexible management plans
may use similar analysis of observational datasets to predict
where treatment effects will be greatest (in contrast to where plant
population recovery is most likely) to expend limited restoration
resources most efficiently, given intensifying species invasions,
rapidly changing climates, and accelerating fire cycles5,30,49,50.
Over the historical range examined in this study, restoration was
applied in many areas that were predicted to experience large
gains in sagebrush cover; however, treatments were also likely to
occur in areas where treatment effect sizes were minimal (Fig. 5b,
d).

This variation in treatment effect sizes along gradients of
precipitation and temperature (Fig. 5, Supplementary Fig. 7) may
further explain why past evidence for the efficacy of post-fire
seeding efforts has been mixed. The extent to which past studies
have detected strong, weak, or neutral improvements in
sagebrush cover associated with restoration can depend upon
the range of climate characteristics observed in a particular
dataset. Further, the overall pattern of selection bias observed in
this study–in which restoration was more likely to occur at more
stressful sites (Figs. 2, 3), thereby reducing the perceived effects of
restoration (Fig. 4) -- may be common across a wide variety of
focal systems in restoration ecology (e.g. deforested areas of the
tropics14), given limitations associated with land ownership or the
obvious need for practitioners to make strategic decisions about
the allocation of limited management resources.

Quantifying restoration treatment effects. Massive restoration
efforts, such as post-fire seeding of dryland shrubs, span regions
and encompass environmental variability at a scale that is difficult
to capture in traditional smaller control–impact studies. Quasi-
experimental approaches are not intended to be a replacement for
planned, randomized field experiments. However, long-term
observational datasets, including those derived from satellite

imagery, are increasingly accessible to researchers and may
represent powerful tools for both improving management and
advancing restoration theory, while capturing broad spatio-
temporal extents2,12. As we have demonstrated, if sources of bias
(including those introduced by humans’ perceptions of or pre-
ferences for restoration sites) are not statistically incorporated
when working with non-experimental datasets, correlations
between treatment application and the characteristics of sites may
cloud inference of restoration efficacy under both changing cli-
matic conditions and anthropogenic pressures.

Each of the inferential approaches in this analysis has
comparative limitations, and we caution against the application
of any single treatment effect or singular adoption of any
statistical model. However, this analysis of remotely sensed data
clearly illustrates that selection bias may be a key hurdle to
understanding and predicting treatment effects across a broad
spatial and temporal extent and suggests that post-fire seeding
may be more broadly beneficial than previously documented.
Quasi-experimental approaches are regularly applied in studies
examining the ecological or socioeconomic impacts of other
public environmental programs (such as wildland firefighting
efforts69, information campaigns to reduce water consumption70,
and payments or land protections to prevent deforestation18);
however, they have been noticeably absent from large observa-
tional studies of restoration outcomes14, suggesting a need for
interdisciplinary research that examines social and ecological
motivations that underlie the nonrandom application of restora-
tion treatments.

Analytical approaches that consider selection biases may be
essential tools for both adaptive management and identifying
drivers of restoration efficacy across these large landscapes and
timeframes. We propose that the results summarized here
illustrate key considerations for examining the breadth of
environmental heterogeneity that face landscape-scale land
management experiments in restoration ecology.

Methods
We compared the estimated efficacy of sagebrush reseeding efforts identified by
four statistical approaches: (1) a naïve “null model” comparing the mean sagebrush
cover at treated and untreated sites, in which neither observed or unobserved
sources of selection bias are considered; (2) analyses that incorporated observed
sources of selection bias, using one of two approaches (propensity score matching
and a regression containing environmental “control” covariates); and (3) using
Difference-in-Differences (DiD) estimation to consider time-invariant sources of
unobserved and observed bias; and (4) using within-estimator panel regression to
consider unobserved time-invariant and timepoint-specific heterogeneities, along
with measured time-varying covariates. We then identified apparent environmental
drivers of where restoration treatments are implemented and compared the gains
in estimates of sagebrush cover achieved by post-fire seeding efforts along gradients
of several biophysical characteristics of sites that shape selection of post-fire
treatment locations.

Study system. The sagebrush steppe ecosystem is defined by presence of one or
multiple taxa within the big sagebrush complex (Artemisia tridentata), with lesser
occurrences of three-tip sagebrush (Artemisia tripartita), low sagebrush (Artemisia
arbuscula), or other Artemisia species. Herbs, perennial bunchgrasses, or annual
grasses can dominate in these ecosystems as a result of historic fire, some types of
grazing, or management actions such as herbicides and seeding56. Fire severity can
be highly variable, ranging from complete removal of aboveground biomass over
large areas, to mosaics of unburned patches within more severely burned areas.
Post-fire restoration seedings of sagebrush typically occur either in the fall or early
spring following a wildfire via ground broadcast seeding or aerial broadcast from
aircraft. Sagebrush seeds germinate in early spring, during the transition from low
temperature to water limitation71. Many studies have sought to understand the
environmental drivers of sagebrush’s post-fire establishment and population
recovery, primarily focusing on climate and weather effects during this critical
spring period. In this arid ecosystem, site elevation, temperature and
precipitation10,52,72, spring soil water potential (as mediated by antecedent snow-
pack, spring temperatures, and spring precipitation;35,51,57), and the occurrence of
spring freezing events73 have all been associated with sagebrush establishment,
survival, or growth.
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Data sources. We compared post-fire sagebrush recovery for treated and
untreated locations across the Great Basin, identified using historical fire peri-
meters, the National Land Cover Databases’ historical sagebrush cover product,
and the Land Treatment Digital Library, a catalog of management actions on BLM
lands across the western U.S. (LTDL;48). Using the LTDL, we extracted 10,000
randomized locations, in which at least one (and up to four) Artemisia species or
subspecies was seeded (via aerial or ground methods) in the fall or spring following
the fire. These burned, treated areas were identified by the overlap between treated
and fire perimeter polygons from 1985 to 2005 (Monitoring Trends in Burn
Severity;74). Areas that burned more than once during the focal time period were
excluded from the analysis, and burned locations were randomly selected using the
spsample() function in the sp package in R75. We then randomly extracted a series
of 10,000 burned, untreated locations using the same fire perimeter polygons. The
randomly selected set of treated and untreated datapoints were located within the
perimeters of 1539 fires occurring between 1986 and 2001.

Sagebrush cover before and after fire was extracted at 30-m pixel resolution
from the Rangeland Condition Monitoring Assessment and Projection dataset
(RCMAP, formerly known as the National Land Cover Database’s Back-in-time
Sagebrush Rangeland Fractional Component), which is based on Landsat,
Quickbird, and AWiFS imagery for each year from 1984-2018 across the Great
Basin8,11. Using these spatial locations and temporal information about the year in
which treatments occurred, we extracted the estimated sagebrush cover for each
location for: (1) the year preceding wildfire to establish the site’s pre-fire sagebrush
population size; (2) one year post-fire to establish the “pre-seeding-treatment”
population size (i.e. sagebrush cover surviving wildfire, as sagebrush do not
recovery rapidly enough to generate a signal to satellites within the first post-fire
year), and (3) each of the 10 years following treatment to quantify the “success” of
reseeding treatments. We selected a 10 year timepoint to ensure that the stand was
beyond the point at which the remotely sensed signal for cover was likely to
fluctuate strongly (previously identified as ~6 years after fire)76. The results of our
analysis did not qualitatively differ if we examined longer (15-year) or shorter (8-
year) timepoints (Supplementary Figs. 13, 14). Based on field and satellite-based
validation studies, the shrub and sagebrush components of RCMAP have an out-
of-sample R2 of ~0.6077. To ensure the analysis was specific to sagebrush habitat,
all extracted locations were within the spatial extent of the RCMAP sagebrush
cover product and contained at least 1% estimated sagebrush cover in at least one
year during the five years preceding the recorded wildfire. See Supplementary
Note 5 for additional information about RCMAP validation, performance, and
limitations.

We identified biophysical characteristics that we thought may influence
treatment location or restoration success, based on covariates that appear in recent
frameworks for the prioritization of sagebrush restoration sites or variables that
have been commonly included as “control” variables in previously-published
studies of post-fire recovery of sagebrush34,35,51,52. For each location, using the
raster package in R78, we extracted or calculated elevation79, soil percent clay and
sand (using a product aggregating the USDA-NCSS SSURGO and STATSGO
datasets)80, heatload81, the U.S. Environmental Protection Agency’s Level III
ecoregion, fire size, and distance to a major road from the U.S. Census Bureau’s
TIGER database. We calculated November-January (winter) and February-April
(spring) mean temperatures and mean total precipitation for the period for
between 1984 and 2014 for each location, using the gridMet modeled
meteorological dataset82. GridMet contains daily, high-spatial resolution (4-km)
climate estimates for the contiguous U.S. from 1979 to present.

Propensity score matching. Propensity score matching (PSM) attempts to esti-
mate an accurate treatment effect by accounting for included measured covariates
that may influence the probability of an observation receiving the treatment, as
these covariates can generate bias if they also influence the response variable.
Propensity score matching uses logistic regression to estimate each observation’s
probability of receiving treatment based on the suite of observed covariates, and
then pairs treated and untreated observations with similar treatment probabilities,
including only matched sets below a given threshold for similarity, defined by the
investigator. This approach relies upon the assumption that matching simulates
randomization of treatment assignment20,83,84. Further, because PSM relies on
narrowing observations to a region of common support between groups, the
treatment effect estimated from this model may focus upon a narrower range of
possible conditions, relative to the “unmatched” dataset.

We matched treated and untreated observations based on their propensity for
receiving treatment, using the MatchIt R package’s nearest neighbor method85 (See
Supplementary Note 1 for additional information about the matching algorithm).
In the propensity score model, we included the following biophysical variables:
sagebrush cover 1-year pre-fire, surviving (post-fire) sagebrush cover, total
November-April precipitation, February-April mean temperature, fire size, soil
percent clay, soil percent sand, elevation, distance from road, and ecoregion
identity. We selected these variables to reflect, as closely as possible, the biophysical
factors that are commonly included in past frameworks for restoration
prioritization or studies of post-fire sagebrush recovery34–36,44,51,52, as means of
controlling for systematic differences between treated and untreated sites or
variation within treated areas. Quadratic effects were included for the temperature,
precipitation, elevation, heatload, distance from road, and pre-fire sagebrush cover

variables as we hypothesized that intermediate levels of these variables may be
preferentially selected by managers. For instance, restoration treatments may be
disproportionately applied to sites with intermediate precipitation levels if
restoration efforts are likely to be unsuccessful at low precipitation sites and if high
precipitation sites are perceived to be more capable of recovering without
intervention5. To ensure that the matching protocol would sufficiently limit
observed sources of bias, we limited the distance between pairs’ propensity scores,
using a “caliper width” criteria (which determines the maximum allowable
difference between paired sites) equivalent to a fifth of the standard deviation of the
mean propensity score86. The matching protocol resulted in 11,012 paired treated
and untreated pixels in the reduced dataset, within 940 fires.

To infer relationships between sites’ biophysical characteristics and treatment
probabilities, we also constructed a Bayesian Bernoulli glmm (with a logit link)
containing treatment occurrence as the response variable and each of the covariates
included in the matching procedure as independent variables, with a varying
intercept for ecoregion. The full list of variables included in this model is displayed
in Fig. 2b.

Comparison of treatment effects estimated by differing statistical approa-
ches. To compare how inferences on restoration efficacy may vary depending on
how selection biases are considered, we developed five Bayesian negative binomial
generalized linear models and mixed models with sagebrush cover 10 years fol-
lowing fire as the response variable (summarized in Table 1). We adopted negative
binomial errors because the sagebrush cover from RCMAP are positively con-
strained integers. Although our response variable is also bounded at 100, graphical
posterior-predictive checks (Supplementary Fig. 4) indicated that the predictions
generated from the model reproduced the overall pattern in the raw data and did
not result in predictions exceeding 100.

The first analysis modeled the full, “unmatched” dataset as a function of a single
fixed independent variable for whether an individual location received treatment
(see Table 1). Though simplistic, this “naive” model was designed to quantify the
difference in means between treated and untreated groups without accounting for
sources of bias, as a conceptual null model.

The second and third models accounted for measured sources of bias, either
analyzing the subset of locations remaining following the propensity score (referred
to as the “matched” dataset) or analyzing the full, unmatched dataset, using a
regression that contained environmental variables that represented factors that
have been commonly incorporated as “control” covariates in past studies of
sagebrush recovery34–36,44,51,52. These environmental factors included heatload,
elevation, soil percent clay, soil percent sand, November-April total precipitation,
February-April mean temperature, ecoregion, and fire identity (structured as a
varying intercept, to account for spatial and temporal variation between
sites)34–36,44,51,52.

A key limitation of using “control” variables or propensity score matching is
that it only addresses observed sources of bias in treatment location, which the
researcher is both aware of and has measured covariates for. Difference-in-
differences and within-estimator panel regression approaches may overcome this
limitation by comparing observations from before and after a treatment was
applied to remove omitted sources of time-invariant and time-varying bias,
respectively. DiD uses a binary variable for whether a treatment was applied to a
given individual or location to account for persistent differences between treated
and untreated groups (group), and a binary variable for whether an observation
describes the status of an individual or location before or after treatment (time).
The effect of the treatment is identified using the parameter estimate associated
with the interaction between group and time variables. Within-estimator panel
regression extends this structure to incorporate multiple post-treatment
observations, with time-varying indicator variables that capture unobserved
heterogeneity that is distinct to each observation timepoint.

To assess how accounting for unobserved sources of bias may influence
inference of restoration success, we developed multilevel DiD and within-estimator
panel regression models, which examined sagebrush cover (Models 4 and 5 in
Table 1). For the DiD model, the response was a single observation of sagebrush
cover 10 years following treated, while the within-estimator panel regression
modeled annual cover observations across this same 10 year period. Each model
contained: (1) an indicator variable for whether the observation was in treated or
untreated groups; (2) whether the treatment had occurred by the observed
timepoint; (3) and a variable for timepoint. In the DiD model, time was a binary
indicator, while the panel regression model included “time since treatment” (with
year 0 representing the observation before treatment occurred, and post-treatment
observations from year 1 to 10) to represent unobserved heterogeneity specific to
each year’s observed sagebrush cover. Structuring time as an indicator for time-
since-treatment allowed us to avoid comparing recently-treated sites with
trajectories in previously-treated sites, given that seedings were deployed across the
two decades in our study67. Both models contained a varying intercept for location
identity (to account for unmeasured differences between sites and autocorrelation
between repeated measures) and a varying intercept for the identity of the fire
impacting the site (to account for possible impacts of spatiotemporal
autocorrelation on estimation of the treatment effect). The panel regression also
contained a time-varying covariate for each observation year’s spring mean
temperature and total precipitation to assess the extent to which these annual
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deviations from time-invariant mean climatic conditions further impacted
sagebrush recovery.

In nonlinear DiD and panel models, the indicator variable for treatment
occurrence in a particular timepoint identifies the “incremental” treatment effect,
which shares a sign with the treatment effect, but which must be interpreted
differently than the interaction term in a linear DiD model87. Thus, we calculated
the treatment effect as:

¼ exp ðgroup þ time þ group � timeÞ � exp ðgroup þ timeÞ ð6Þ
A key assumption of DiD regression is that the treated and untreated groups

exhibit parallel trends before the treatment is applied. To confirm the assumption
of parallel trends, we visually compared the population trajectories of treated and
untreated locations for the 10 years preceding wildfire (Supplementary Fig. 1). In
addition to incorporating a varying intercept for fire identity to account for spatial
and temporal aggregation of observations in the dataset, we diagnosed models for
evidence of additional spatial autocorrelation in their residuals using a Moran’s I
correlogram and visual inspection of a spatial variogram (Supplementary
Figs. 8–10).

Variation in treatment effect size across biophysical gradients. We developed
an additional DiD model to assess how treatment efficacy varied across biophysical
conditions that may be of interest to restoration practitioners across the Great
Basin. The model contained interaction terms between the DiD interaction term
(time*group) and three biophysical characteristics of sites, including February-
April mean temperature, November-April total precipitation, and soil percent clay,
to identify how gains in sagebrush cover achieved by post-fire seeding varied under
different conditions. Though other variables may influence treatment success, we
selected these covariates based on their relevance in the propensity score analysis
and to the climate mechanisms highlighted in past studies of sagebrush
recovery10,35,51,52,72,88.

In all models, continuous variables were centered and scaled by 1 standard
deviation. Models were estimated using the language Stan and the brms, rstan, and
cmdstanr packages in R (Version 4.1.1), using weakly informative priors and a
Markov Chain Monte Carlo sampler with four chains, each with 2000 iterations
and 1000 warmup iterations89,90. We assessed effective sample size and model
convergence, indicated by Gelman-Rubin statistics close to 1 and stable-well mixed
chains89. Parameter estimates with 95% credible intervals that did not contain zero
were considered to have “non-zero” effects on the response variable89. Model fit
was assessed by calculating the mean absolute error and using graphical posterior
predictive checks, which compare the observed data to draws from the posterior
predictive distribution generated by the model (Supplementary Fig. 4). Posterior
predictions from models and visualizations of model uncertainty were generated
using the tidybayes and bayesplot packages91–94.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This analysis was developed using the Land Treatment Digital Library (https://ltdl.wr.
usgs.gov/), the Monitoring Trends in Burn Severity historical fire perimeters (https://
www.mtbs.gov/), GridMet surface meteorological data (https://www.climatologylab.org/
gridmet.html), the U.S. Environmental Protection Agency’s Level III ecoregion
categorizations (https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-
continental-united-states), and the University of California Davis’ Soil Resource Lab’s
Soil Properties application (https://casoilresource.lawr.ucdavis.edu/soil-properties/). The
processed set of treated and untreated pixels (from which our locations were randomly
selected) and source data for figures are provided via Dryad: https://doi.org/10.25338/
B8W63R93.

Code availability
All code used to develop the analyses presented in this manuscript can be found at
https://doi.org/10.5281/zenodo.656507494.
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