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Abstract
Relevance Spliceosome machinery plays important roles in cell biological processes, and its alterations are significantly 
associated with cancer pathophysiological processes and contribute to the entire healthcare process in the framework of 
predictive, preventive, and personalized medicine (PPPM/3P medicine).
Purpose To understand the expression and mutant status of spliceosome genes (SGs) in common malignant tumors and 
their relationship with clinical characteristics, a pan-cancer analysis of these SGs was performed across 27 cancer types in 
9070 patients to discover biomarkers for cancer early diagnosis and prognostic assessment, effectively stratify patients, and 
improve the survival and prognosis of patients in 3P medical practice.
Methods A total of 150 SGs were collected from the KEGG database. The Python and R language were combined to process 
the transcriptional data of SGs and clinical data of 27 cancer types in The Cancer Genome Atlas (TCGA) database. Muta-
tions of SGs in 27 cancer types were analyzed to identify the most common mutated SGs, as well as survival-related SGs. 
Different SGs were screened out, and SGs with survival significance in different types of tumors were found. Furthermore, 
TCGA and GTEx datasets were used to further confirm the expressions of SGs in different tumors. Western blot assay was 
performed to verify the expression of SNRPB protein in colon cancer and lung adenocarcinoma. Three SGs were screened 
out to establish the Bagging model for tumor diagnosis.
Results Among 150 SGs, THOC2, PRPF8, SNRNP200, and SF3B1 had the highest mutation rate. The survival time of 
mutant THOC2 and SF3B1 was better than that of wild type, respectively. The differential expression analysis of 150 SGs 
between 674 normal tissue samples and 9,163 tumor tissue samples with 27 cancer types of 9070 patients showed that 13 
SGs were highly expressed and 1 was low-expressed. For all cancer types, the prognosis (survival time) of the low-expression 
group of three SGs (SNRPB, LSM7, and HNRNPCL1) was better than the high expression group, respectively (p < 0.05). 
Cox hazards model showed that male, over 60 years old, clinical stages III–IV, and with highly expressed SNRPB and 
HNRNPCL1 had a poor prognosis. GEPIA2 website analysis showed that SNRPB and LSM7 were highly expressed in most 
tumors but not in LAML, showing low expression. Compared with the control group, the expression of SNRPB protein in 
colon cancer was increased by Western blot (p < 0.05). Enrichment analysis showed that the differential SGs were mainly 
enriched in RNA splicing and binding. The average error of 10-fold cross-validation of the Bagging model for diagnosed 
cancer was 0.093, which demonstrates that the Bagging model can effectively diagnose cancer with a small error rate.
Conclusions This study provided the first landscape of spliceosome changes across 27 cancer types in 9070 patients and 
revealed that spliceosome was related to tumor progression. Spliceosome may play important an important role in cancer 
biological processes. These findings are the important scientific data to demonstrate the common and specific changes of 
spliceosome genes across 27 cancer types, which is a valuable biomarker resource to under the common or specific molecu-
lar mechanisms among different cancer types and establish biomarkers and therapeutic targets for the common or specific 
management of different types of cancer patients to benefit the research and practice of 3P medicine in cancers.
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Introduction

Structure and functions of spliceosome

Alternative splicing of RNA is a process in which the 
precursor mRNA (pre-mRNA) is processed into mature 
mRNA. During mRNA maturation, introns are removed 
and exons are joined to form mRNA as a template for 
protein translation. The alterative splicing process is 
completed with the participation of the spliceosomes [1], 
which cut introns from pre-mRNA by a two-step trans-
esterification reaction. Spliceosomes are polyribonucleo-
protein micronucleosomes composed of protein-associ-
ated small nuclear RNAs (snRNAs) that are responsible 
for removing introns from pre-mRNA and producing 
mature mRNA. There are five snRNAs (U1, U2, U4, U5, 
and U6), which bind to a number of proteins to form five 
corresponding small nuclear ribonucleoprotein particles 
(snRNPs; U1, U2, U4, U5, and U6). These snRNPs fur-
ther assemble with many non-snRNPs to form splicesome 
complexes [2], which act like a master transcriptome tailor 
[3, 4]. To date, mass spectrometry has identified more than 
200 co-protein factors that interact with human spliceo-
some complexes [5]. RNA splicing is a basic process of 
gene maturation in eukaryotes, and accurate RNA splicing 
is essential for cell survival [6]. The spliceosome protein 
complex is composed of more than 100 proteins, among 
which the core components are U2 snRNP proteins, U2A0, 
U2B00, and splicing factor 3A and 3B sub-complexes 
(SF3A and SF3B) [7].

Associations of spliceosome and cancers

Core components of the spliceosome affect RNA process-
ing of specific genes to varying degrees [8]. During tumor 
progression, carcinogenic splicing events may occur [9]. 
Abnormal expression of splicing factor can promote the 
occurrence and development of human malignant tumors. 
For example, USP39, a component of the spliceosome, 
is often overexpressed in high-grade serous ovarian can-
cer, and an elevated USP39 level is associated with poor 
prognosis, which is a potential therapeutic target for ovar-
ian cancer [10]. The UNC5B splicing isoform, known as 
UNC5B-Δ8, is abnormally expressed in the colon cancer 
vascular system and is associated with tumor angiogen-
esis and poor patient outcomes [11]. Mutations in the core 
components of the spliceosome are associated with cell- 
or tissue-specific phenotypes and diseases such as cancer 
[12]. Damage to many oncogenes leads to deregulate RNA 
splicing, often resulting in tumor hypersensitivity to tar-
geted therapy of spliceosomes [13]. Abnormal splicing is 

an important source of novel cancer biomarkers, and the 
spliceosomal mechanism is a novel and attractive target 
for drug therapy [14]. SF3B1 is an important splicing fac-
tor, overexpressed in HCC, involved in the progression 
of cancer cells, or can be a therapeutic target for HCC 
[15]. With the use of spliceosome as a therapeutic tar-
get, many small molecule inhibitors have been developed, 
and some of them have entered clinical trials. Antisense 
oligonucleotides have been widely used to successfully 
target mRNA molecules to disrupt splicing and achieve 
the goal of antitumor therapy [16]. Spliceosome-targeting 
therapy has become an effective anticancer strategy for 
cancer patients with splicing defects [12]. Clinical drugs 
targeting KRAS4A splicing can effectively inhibit tumor 
stem cells [17].

Working hypothesis

RNA splicing in gene regulation and alterations in this spli-
ceosome pathway have been implicated in many human can-
cers, which has been evidenced with large-scale genomic 
studies to uncover a spectrum of splicing machinery muta-
tions that contribute to tumorigenesis [5]. It demonstrates 
that spliceosome genes (SGs) play important roles in can-
cers, and SG changes and its regulatory factors can affect 
the occurrence and development of cancer. However, there 
might be common alterations in SGs among different cancer 
types and also specific changes in SGs for a given cancer 
type. We hypothesize that the SG pattern changes among dif-
ferent cancer types to obtain the common and/or specific SG 
alterations, which will be the potential targets to establish 
biomarkers for patient stratification, predictive diagnosis, 
prognostic assessment, and personalized medical services, 
and develop therapeutic drugs for targeted prevention and 
personalized therapy in cancer.

Study design

The transcriptomics data of SGs combined with clinical 
information were collected from 9070 patients with 27 can-
cer types in TCGA database. The expression difference and 
mutation pattern of SGs were analyzed across 27 cancer 
types. The relationships between these SGs and survival 
time, SGs and clinical parameters were also analyzed, and 
also SG-mediated signaling pathways were studied.

Expected impacts in the framework of predictive, 
preventive, and personalized medicine

We expect that the changed SGs and signaling pathways 
are the important targets to construct clinical biomarkers 
for patient stratification, predictive diagnosis, prognostic 
assessment, and personalized medical services and develop 
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therapeutic drugs for targeted prevention and personalized 
therapy to guide management of cancer patients in the con-
text of predictive, preventive, and personalized medicine (3P 
medicine (PPPM)). PPPM is an effective strategy to improve 
treatment outcomes and patient prognosis [18]. PPPM needs 
to use a variety of effective molecular biomarkers, including 
early diagnosis and prognosis biomarkers, which can help 
clinicians identify patients who need early treatment [19]. 
Specifically speaking, we expect to identify important SGs 
and build a mathematical model that can diagnose cancer 
and make a good diagnosis. Therefore, with the reduction of 
sequencing cost, the establishment of artificial intelligence 
model can diagnose tumors and serve for tumor prediction 
and prevention. We also expect to find high-expression SGs 
associated with poor prognosis of cancer and use these 
altered SGs as potential targets for cancer treatment.

Materials and methods

Samples and datasets

Transcriptional, mutation, and clinical data of 27 can-
cer types in 21 anatomical sites from 9070 patients were 
obtained from The Cancer Genome Atlas (TCGA) website 
(Table 1). These cancer types were adrenocortical carcinoma 
(ACC) (cancer: n = 79; control: n = 0) and pheochromocy-
toma and paraganglioma (PCPG) (cancer: n =150; control: n 
= 3) in adrenal gland, bladder urothelial carcinoma (BLCA) 
in bladder (cancer: n = 409; control: n = 19), breast invasive 
carcinoma (BRCA) in breast (cancer: n = 1104; control: n 
= 113), cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) in cervix uteri (cancer: n = 306; 
control: n = 3), colon adenocarcinoma (COAD) in colon 
(cancer: n = 464; control: n = 41), esophageal carcinoma 
(ESCA) in esophagus (cancer: n = 160; control: n = 11), 
glioblastoma multiforme (GBM) (cancer: n = 168; control: n 
= 5) and brain lower-grade glioma (LGG) (cancer: n = 529; 
control: n = 0) in brain, pan-kidney cohort KICH (cancer: 
n = 65; control: n = 24) + KIRC (cancer: n = 535; con-
trol: n = 72) + KIRP (cancer: n = 289; control: n = 32) in 
kidney, acute myeloid leukemia (LAML) in hematopoietic 
system (cancer: n = 150; control: n = 0), laryngo carcinoma 
(HNSC) in larynx (cancer: n = 111; control: n = 12), liver 
hepatocellular carcinoma (LIHC) (cancer: n = 374; con-
trol: n = 50) and cholangiocarcinoma (CHOL) (cancer: n = 
32; control: n = 8) in liver, lung adenocarcinoma (LUAD) 
(cancer: n = 526; control: n = 59) and lung squamous cell 
carcinoma (LUSC) (cancer: n = 501; control: n = 49) in 
lung, ovarian serous cystadenocarcinoma (OV) in ovary 
(cancer: n = 379; control: n = 0), pancreatic adenocarci-
noma (PAAD) in pancreas (cancer: n = 178; control: n = 
4), prostate adenocarcinoma (PRAD) in prostate (cancer: n 

= 499; control: n = 52), rectum adenocarcinoma (READ) 
in rectum(cancer: n = 95; control: n = 3), skin cutaneous 
melanoma (SKCM) in skin (cancer: n = 471; control: n = 
1), stomach adenocarcinoma (STAD) in stomach (cancer: n 
= 375; control: n = 32), testicular germ cell tumors (TGCT) 
in testis (cancer: n = 156; control: n = 0), thyroid carcinoma 
(THCA) in thyroid gland (cancer: n = 510; control: n = 
58), and uterine corpus endometrial carcinoma (UCEC) in 
corpus uteri (cancer: n = 548; control: n = 23). The json 
file with clinical information was downloaded from TCGA 
database and used the Python language (https:// www. python. 
org/)  and import pandas (https:// pandas. pydata. org/) data 
analysis package to extract important clinical information. 
A total of 150 SGs were collected from the KEGG database 
(https:// www. kegg. jp/ pathw ay/ map03 040). The “cluster-
Profiler” software package of function bitr() was used to 
convert the ENTREZID or Ensembl of the genes into the 
SYMBOL type of the genes (Supplemental Table 1). The 
specific order is: bitr(geneID, fromType=“SYMBOL”, 

Table 1  A total of 9070 patients including 9163 cancer tissues and 
674 control tissues were analyzed

Cancer types Tumors Controls

ACC 79 0
BLCA 409 19
BRCA 1104 113
CESC 306 3
CHOL 32 8
COAD 464 41
ESCA 160 11
GBM 168 5
HNSC 111 12
KICH 65 24
KIRC 535 72
KIRP 289 32
LAML 150 0
LGG 529 0
LIHC 374 50
LUAD 526 59
LUSC 501 49
OV 379 0
PAAD 178 4
PCPG 150 3
PRAD 499 52
READ 95 3
SKCM 471 1
STAD 375 32
TGCT 156 0
THCA 510 58
UCEC 548 23
Total 9163 674
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toType=c(“ENTREZID”,”ENSEMBL”), OrgDb=“org.
Hs.eg.db”, drop = TRUE).

Mutation analysis of SGs

R packet “maftools” (https:// www. bioco nduct or. org/ packa 
ges/ relea se/ bioc/ html/ mafto ols. html) was used to analyze the 
mutations of 150 SGs. The different groups was compared, 
and we found SGs with different mutation rates. The short 
survival group was defined as an eventual survival of less 
than 2 years. The long survival group was defined as ulti-
mate survival greater than 2 years. The mutations of each SG 
were compared between the long- and short-survival groups 
and between the male and female groups. The mutation rates 
of the two groups were compared by the mafcompare() 
function. The forestPlot() function was used for the forest 
analysis diagram and drawing between the two groups. Maf-
SurvGroup() function completed the survival analysis and 
graph drawing of gene or genome mutation. If the mutation 
rate of the gene is greater than 5%, the survival comparison 
between the mutant and the wild types is analyzed.

Correlation analysis of SGs and age

The correlation was analyzed between SGs and age. The 
cor() function calculates the correlation coefficient. The 
correlation coefficient was calculated with the cor.test() 
function with the significance level of p < 0.05. If the cor-
relation coefficient was positive or negative 0.1–0.3, it was 
considered a weak correlation; if the correlation coefficient 
was 0.3–0.5, it was considered a medium correlation; if the 
correlation coefficient was greater than 0.5, it was consid-
ered a strong correlation. Scatter plots of age and SGs were 
constructed with “ggplot2” packets (https:// cran.r- proje ct. 
org/ web/ packa ges/ ggplo t2/ index. html).

Differential expression analysis of SGs

R language was used to load “edger” packets (https:// www. 
bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ edgeR. html) 
for differential gene screening of SGs. An ANOVA-like test 
was done by glmQLFTest() function. The quasi-likelihood 
method was used for differential expression analyses of pan-
cancer RNA-seq data with a stricter error rate control by 
accounting for the uncertainty in dispersion estimation. The 
criterion for screening gene differences was performed in 
SGs compared to the normal group. The up-regulated SG 
was defined with logFC>2/3, FC fold change >1.59 fold, 
and p value <0.05. The downregulated SG was defined with 
LogFC<-2/3, FC fold change <0.63 fold, and p value <0.05.

Standardization and heat map of differentially 
expressed SGs

The heat map of differentially expressed SGs (DESGs) 
was mapped with the “ComplexHeatmap” packet (https:// 
www. bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Compl 
exHea tmap. html) that mapped the genetic big data. First, all 
DESGs were normalized. For each gene expression in each 
sample, the formula X-min/Max-Min was used to standard-
ize the corresponding data. X was for every observation. Min 
represented the minimum count of a gene in all samples. 
Max represented the maximum counts of a gene in all sam-
ples. Through such a transformation, the value of a gene was 
mapped to the (0, 1) interval. After the transformation, all 
samples of a gene data distributed between 0 and 1. There 
were 674 normal controls and 9163 cancers. Heatmap() 
function was used to draw gene heat map.

Functional enrichment analysis of DESGs

“ClusterProfiler” packet was used for enrichment analysis 
of DESGs, with the enrichGO function; for example, BP 
<-enrichGO (de, “org.Hs.eg.db”, ont=“BP”, pvalueCut-
off=0.05). The Web-based Gene Set Analysis Toolkit (http:// 
www. webge stalt. org/#) was used for enrichment analysis of 
DESGs as well.

Construction of machine learning models based 
on DESGs

The 14 DESGs screened above were included in the step-
wise regression to further reduce the dimension. SPSS ver-
sion 26 (IBM Corp, Armonk, NY) software was used for 
stepwise regression to screen meaningful DESGs. Stepwise 
regression was performed with a linear regression model. 
Linear regression equation: y = a*DESGs1 + b *DESGs2 
+ c *DESGs3……+ Cx (a, b, and c are parameters, and 
Cx is a constant term. p <0.05 is considered statistically 
significant after test). Finally, the above screened DESGs 
were used to establish machine learning model with Weka 
3.8.5 software (https:// www. cs. waika to. ac. nz/ ml/ weka/) to 
diagnose cancer, and 10-fold cross-validation was adopted to 
evaluate the diagnostic performance of the model. Three dif-
ferent types of machine learning models (Logical regression, 
J48, Bagging) were established based on DESGs to diagnose 
cancer. Through 10-fold cross-validation, the model with 
good diagnostic performance was selected. The average 
absolute error was calculated; the smaller the error, the bet-
ter the model performance. If the mean absolute error was 
less than 0.2, the diagnostic performance of the model was 
considered to be good. If the mean absolute error was less 
than 0.1, the model was considered to be very superior. If the 
mean absolute error was less than 0.01, then the model was 
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quite excellent and should even be considered for clinical 
application as it was comparable to the superior pathologist. 
The average accuracy of the prediction was also calculated 
[prediction = true positive / (true positive + false positive)].

Survival analysis of DESGs

The transcriptomic data of DESGs were divided into high-
expression group (H group) and low-expression group (L 
group) based on the median. Each DESG was used for 
survival analysis between the H and L groups. The jointly 
screened three DESGs and the clinical information of 
patients were used for Cox multivariate survival analysis. 
The “survminer” packet (https:// cran.r- proje ct. org/ web/ 
packa ges/ survm iner/ index. html) was used to perform uni-
variate and multivariate survival analyses.

Verification of three selected DESGs with different 
datasets

The software GraphPad Prism 8 was applied to analyze and 
draw the bar graph of the three selected DESGs. To more 
accurately compare the expression differences of the three 
DESGs between cancer and control groups, 655 paired data 
were used to compare. The differences between the two 
groups were compared by a t-test of paired data. The three 
DESGs were further verified on the GEPIA2 website (http:// 
gepia2. cancer- pku. cn/# analy sis). The Cancer Group in the 
GEPIA2 site was from TCGA database; the control group 
consisted of normal samples from TCGA database and the 
Genotype Tissue Expression (GTEx) database (https:// 
commo nfund. nih. gov/ GTex).

Western blot

A Western blot assay was used to verify the screened 
gene. There were eight pairs of specimens of colon cancer 
and adjacent control tissues, and 5 pairs of specimens of 
lung adenocarcinoma and adjacent control tissues, which 
were collected from Tai’an Central Hospital. The proteins 
extracted from eight colon cancer tissues were equally mixed 
as a colon cancer protein sample. The proteins extracted 
from eight control colon tissues were equally mixed as a 
control protein sample. The proteins extracted from five 
lung adenocarcinomas were equally mixed as lung adeno-
carcinoma protein sample. The proteins extracted from five 
control lung tissues were equally mixed as the control lung 
protein sample. Protein concentration was determined with 
bicinchoninic acid (BCA) method. SDS polyacrylamide gel 
electrophoresis was used to isolate proteins with a protein 
loading amount (30 μg) per lane. The separated proteins 
were transferred to a PVDF membrane and incubated with 
the primary antibodies (rabbit anti-human SNRPB antibody 

and rabbit anti-human actin antibody), followed by incuba-
tion with the second antibody from Proteintech (goat anti-
rabbit antibody).

Results

Overall situation of tissue samples

In TCGA database, the cancer sequencing data from 9,084 
patients across 27 cancer types in 21 anatomical sites were 
included in this study. Of them, 674 normal tissues and 
9163 cancer tissues were taken from these 9070 patients 
and analyzed with RNA sequencing (Supplemental Table 2). 
Of them, 8,859 patients had detailed clinical parameters 
(Fig. 1a). The drawing of the alluval diagram is completed 
by online software rawgraphs (https:// app. rawgr aphs. io/). 
The ratio of female to male patients was 4681:4178. The 
ratio of patients ≤ 60 years old to patients > 60 years old 
was 4510:4349. Twelve of the BRCA patients were male, 
accounting for 1.12% of the total BRCA. There were 23 
female patients with ESCA, accounting for 14.6% of the 
total ESCA. There were 20 female patients with larynx can-
cer, accounting for 18.0% of the total larynx cancer. It can be 
found that there is a sex bias in the three cancers mentioned 
above. Among patients with TGCT tumor, 98.5% were ≤ 
60 years of age. Among CESC patients, 81.4% were ≤ 60 
years old. Among the lung cancer patients, 71.9% patients 
were over 60 years old. It can be seen that in the 3 tumors 
mentioned above, the onset has an age tendency. Moreover, 
a percentage (88.5%) of patients with larynx cancer is in 
the III+VI stages, and a percentage (96.0%) of pancreatic 
cancer patients is in the I+II stages. Therefore, laryngeal 
and pancreatic cancers tend to have specific clinical stages.

Genetic mutations of SGs associated with poor 
survival

The first four SGs with the highest mutation rate were 
THOC2, PRPF8, SF3B1, and SNRNP200 (Fig. 1b; Sup-
plemental Table 3). Among them, the mutation rate of the 
THOC2 gene was the highest, reaching 6.69%. The most 
common type of mutation was a missense mutation. The 
most common type of base mutation was C > T. Three 
mutant SGs were involved in the RTK-RAS pathway (Sup-
plementary Figure 1).

Compared to the short survival group (Supplemental 
Table 4), the SGs with different mutation rates were basi-
cally distributed in the long survival group (Supplemental 
Table 5). For example, the mutation rate of SGs THOC2, 
PRPF8, SF3B1, etc. in the long survival group was signifi-
cantly higher than in the short survival group (Fig. 2, p < 
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0.05). However, no difference in the mutated SGs was found 
between male and female groups.

Survival analysis showed that the survival time of mutant 
THOC2, PRPF8, and SF3B1 were better than that of wild 
type, respectively (Supplementary Figure 1).

Correlation between SGs and age

Correlation analysis found that 32 SGs had a weak nega-
tive correlation with age (Supplemental Table 6). No SGs 
were found to be positively correlated with age. Two SGs 
that were best associated with age were HNRNPA1L2 and 
HSPA1L, with correlation coefficients −0.204 and −0.245, 
respectively (Fig. 3).

DESG profile

Among the 150 SGs, 14 statistically significant DESGs 
were identified between cancer and normal control groups, 
including 1 significantly downregulated SG (HSPA2), and 
13 significantly upregulated SGs (RNU5A-1, RNVU1-18, 
RNU4-2, RNU4-1, RBMXL3, RNU1-3, RNVU1-7, RNU1-
4, RBMXL2, RNU1-2, HNRNPCL1, SNRPB, and LSM7) 
in cancer group (Fig. 4; Supplemental Table 7).

Functional characteristics of DESGs

A total of 14 DESGs were used for GO enrichment anal-
ysis. For biological processes (BP), the main pathways 
involved in 14 DESGs were the RNA and mRNA splicing 

Fig. 1  a Alluvial diagram of 
clinical parameters of 8859 
cancer patients. b Waterfall map 
of SG mutations
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(Supplementary Figure 2). For cellular components (CC), 
the DESGs are mainly enriched in spliceosomal snRNP 
complex, small nuclear ribonucleoprotein complex, and Sm-
like protein family complex (Supplementary Figure 2). For 
molecular function (MF), the DESGs were mainly enriched 
in pre-mRNA 5′-splice binding, snRNA binding, and pre-
mRNA binding (Supplementary Figure 2).

GO Slim summary showed that BPs were mainly enriched 
in metabolic processes, CCs were mainly concentrated in 
the nucleus and protein-containing complex, and MFs were 
mainly concentrated in nucleic acid binding and protein 
binding functions (Supplementary Figure 3).

TRIM25 and EFTUD2 genes interacted with the most 
DESGs and were at the center of the network. This study 

Fig. 2  The difference in muta-
tion rates between the long- and 
short-lived groups.

Fig. 3  Heatmap of correlation 
coefficient between age and SGs
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found a direct interaction between SNRPB and TRIM25, 
SNRPB, and EFTUD2, respectively (Supplementary 
Figure 4).

Machine learning models of cancer diagnosis

A total of 14 DESGs were used for the stepwise regres-
sion. As a result, 3 DESGs (SNRPB, LSM7, and HSPA2) 
had significant characteristics. (i) For the Bagging model 
established with the three characteristic DESGs, 10-fold 
cross-validation showed that the mean absolute error was 
0.094, the area under the ROC curve was 0.885, and the 
prediction accuracy was 0.923. (ii) For J48 (decision tree 
C4.5 algorithm) model (Supplementary Figure 4), 10-fold 
cross-validation showed that the average absolute error was 
0.106, the area under the ROC curve was 0.790, and the 
prediction accuracy was 0.917. (iii) For the logical regres-
sion model, 10-fold cross-validation showed that the mean 
absolute error was 0.110, the area under the ROC curve was 
0.821, and the prediction accuracy was 0.924.

Factors of poor prognosis

Excluding the samples with unknown follow-up time or 
zero follow-up time, a total of 8859 patients had complete 
sequencing data, follow-up time, and survival status (Sup-
plemental Table 8).

Univariate survival analyses of these 14 DESGs in 8859 
samples showed that the survival time of the H group of 
three DESGs (SNRPB, LSM7, and HNRNPCL1) was 

significantly different from that of the L group, and the 
survival time of the L group of these three DESGs was 
better than that of the H group (p < 0.05, Supplementary 
Figure 5). When specific to each cancer type, the results of 
survival analysis were inconsistent. The survival analysis 
of different cancer types showed that (i) for SNRPB, the 
survival of the L group of SNRPB was better than the H 
group in ACC, LIHC, KIRC, PIRP, and UCEC (Fig. 5); 
(ii) for LSM7, more cancer types had survival signifi-
cance, and the survival of the L group of LSM7 was bet-
ter than the H group in ACC, BLCA, CESC, KIRC, LIHC, 
PAAD, and STAD (Supplementary Figure 6a); and (iii) for 
HNRNPCL1, survival analysis of only KIRP had statistical 
significance between the L and H groups of HNRNPCL1 
(Supplementary Figure 6b).

In 8859 samples, survival analysis was performed between 
the sexes regardless of the location of the cancer. It was found 
that, on the whole, the survival prognosis of women was bet-
ter than that of men (Supplementary Figure 7a). If male and 
female sex-specific cancers were ruled out, such as prostate 
cancer, seminoma, breast cancer, and uterine cancer, survival 
analysis was carried out again. It was found that the prognosis 
time of female patients was still better than male patients 
(Supplementary Figure 7b).

A survival analysis was performed among different stages 
of cancer in 8859 samples. It was found that the survival time 
of cancer patients in stage I+II was significantly better than 
in stage III+IV (Supplementary Figure 7c) for most cancer 
types except for CHOL, PAAD, and TGCT. It means that the 
prognosis of advanced cancer was worse than that of early 

Fig. 4.  Heatmap of expression levels of 14 DESGs after normalization. The red color indicates high expression, and the blue color indicates low 
expression
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cancer for most cancer types except for CHOL, PAAD, and 
TGCT (Supplementary Figure 6c).

In 8859 samples, survival analysis was performed between 
patient ages (under 60 years old and over 60 years old). It was 
found that the survival of those under 60 years old was bet-
ter than those over 60 years old (Supplementary Figure 7d).

Moreover, Cox proportional hazards model analysis found 
that being male, over 60 years old, clinical stages III–IV, 
and H group of SNRPB and HNRNPCL1 were the factors 
to indicate a poor prognosis of survival (Fig. 6, p < 0.05).

Verification of three selected DESGs with different 
datasets

A total of 655 patients were compared who had sequencing 
data for both the cancer and normal groups. The expression 
levels of 3 DESGs (HNRNPCL1, LSM7, and SNRPB) in the 
cancer group were higher than those in the normal control 
group (p < 0.05) (Fig. 7), but HNRNPCL1 had a very low 
expression level. The GEPIA2 software was used to further 
verify these three DESGs, which divided cancer samples into 
six categories: digestive system, respiratory system, urinary 

system, gender-specific system, endocrine system, and other 
systems. Because the expression level of HNRNPCL1 was 
very low, no differences were found in each of the six systemic 
cancers. LSM7 gene expression was significantly higher in 
cancer types COAD, LIHC, PAAD, READ, STAD, LUSC, 
BLCA, TGCT, UCEC, ACC, LGG, and GBM compared to 
normal controls (Supplementary Figures 8–10). The SNRPB 
gene was highly expressed in most cancer types, including 
COAD, ESCA, LIHC, PAAD, READ, STAD, LUSC, BLCA, 
OV, TGCT, UCEC, ACC, LGG, and GBM (Supplementary 
Figures 8–10). However, surprisingly LSM7 and SNRPB were 
significantly lower expressed in LAML compared to controls.

Validation of DESGs at the protein level

The Western blot assay showed that SNRPB protein was highly 
expressed in colon cancers compared to controls, which was 
consistent with the transcriptome analysis (p < 0.05, Fig. 8a). 
However, there was no statistical difference in the expression 
of SNRPB proteins between lung adenocarcinomas and con-
trols, which was also consistent with transcriptome analysis 
(Fig. 8b).

Fig. 5  Survival analysis of SNRPB in different types of tumors in groups L and H. The genetic data of all the tumors were put together and 
divided into two groups according to the median value; the low value was group L, and the high value was group H
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Fig. 6  Multivariate survival 
analysis showed that male, over 
60 years old, clinical stages 
III–IV, and high expression of 
SNRPB and HNRNPCL1, were 
risk factors for poor prognosis

Fig. 7  Three DESGs (HNRNPCL1, LSM7, and SNRPB) were compared with paired data in 655 patients. The expression levels of 3 DESGs in 
cancer group were higher than that in the normal control group with t-test, respectively (p < 0.05).
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Discussion

Roles of spliceosome in cancers

Abnormal splicing events have been observed in many 
types of cancer [12]. Elevated splicing factor expression is 
a strong predictor of poor clinical outcome in neuroblas-
toma [20]. Spliceosomal protein Eftud2 regulates inflamma-
tory responses in macrophages and promotes tumorigenesis 
[21]. The core splicing factor SF3A3 translation leads to 
metabolic reprogramming and stem-like characteristics that 
promote tumorigenesis of MYC in vivo [22]. Alternative 
splicing mechanisms are prevalent in various cancers and 
drive the production and maintenance of various cancer 
characteristics such as proliferation enhancement, apoptosis 
inhibition, invasion, and metastasis [23]. Abnormal splicing 
plays an important role in the evolution of myeloproliferative 

tumors and might be a target for specific therapeutic strate-
gies [24]. Most eukaryotes have two different pre-mRNA 
splicing mechanisms: one is the main spliceosome, which 
removes 99% of introns; the other is the small spliceosome, 
which removes the rare, evolutionarily conserved introns. 
Mutations in noncoding genes in small introns can disrupt 
splices and are potential cancer drivers [25].

The associations of spliceosome alterations 
with cancers

Spliceosomal mutations or misalignment of RNA splicing in 
cancer genes are increasingly recognized as markers of can-
cer [26]. During development, their relative levels vary by an 
order of magnitude in different tissues and in different cancer 
samples [27]. The expressions of relevant spliceosomal com-
ponents and spliceosomal factors are severely misregulated 

Fig. 8  Western blot analysis of 
SNRPB in colon cancers and 
lung adenocarcinomas. a The 
expression of SNRPB protein 
was significantly higher in colon 
cancers compared to controls 
(p < 0.05). b No significant 
difference in SNRPB protein 
was found in lung adenocarci-
nomas compared to controls (p 
> 0.05).

345EPMA Journal (2022) 13:335–350



1 3

(at mRNA and protein levels) in the characteristic cohort of 
human high-grade astrocytomas compared to healthy brain 
control samples, and SRSF3, RBM22, PTBP1, and RBM3 
perfectly differentiate the tumors from the control samples 
[9]. SRSF3 is associated with patient survival and related 
tumor markers, and its silencing in vivo significantly reduces 
tumor development and progression, possibly through PDG-
FRB and related oncogenic signaling pathway PI3K-Akt/
ERK [9]. SM08502 inhibits the phosphorylation of serine- 
and arginine-rich splicing factor (SRSF) and disrupts spli-
ceosomal activity, which is involved in the inhibition of the 
expression of genes and proteins associated with the Wnt 
pathway, thereby inhibiting cancers [28]. Targeting spli-
ceosome therapy leads to the formation of double-stranded 
RNA (dsRNAs) from intron transcripts, which activates 
mechanisms of tumor antiviral signaling and downstream 
adaptive immunity [29].

Targets associated with poor prognosis

In total, 150 SGs from the KEGG database were included in 
this study, with a few genes missing due to the limitations 
of the KEGG database. After screening of DESGs, a total 
of 14 statistically significant DESGs were identified. After 
survival analysis, 3 DESGs (SNRPB, LSM7, and HNRN-
PCL1) were found to be significantly associated with sur-
vival. However, since the HNRNPCL1 gene sequencing 
value was very low, the results might be unstable or even 
false positive. The expression of LSM7 and SNRPB genes 
was abundant, and the prognosis of its low-expression group 
was better than its high-expression group. It suggested that 
these two DESGs were involved in cancer progression. A 
novel post-transcriptional pathway such as PAT1-LSM 
(LSM1 to LSM7) mRNA-binding complex regulated 
autophagy [30]. The study also found that increased splic-
ing factor expression was a strong predictor of poor clini-
cal prognosis [20]. The LSM gene could regulate circadian 
rhythms in plants and mammals [8]. The study has shown 
that LSM family members play a key role in the progression 
of several malignant tumors [31]. SNRPB is the core part 
of the spliceosome and plays a key role in the pre-splicing 
of mRNA [32]. SNRPB was significantly upregulated in 
HCC. Elevated SNRPB expression was positively corre-
lated with invasion of adjacent organs, tumor size, serum 
AFP level, and poor survival in HCC patients [33]. SNRPB 
could promote NSCLC tumorigenesis by regulating RAB26 
expression [34]. Furthermore, TCGA matching data were 
used, including 655 normal subjects and 655 cancer sub-
jects, which also found that 3 DESGs (SNRPB, LSM7, and 
HNRNPCL1) were highly expressed in the cancer group. 
The different datasets from the GEPIA2 database were used 
for further verification, which found that LSM7 and SNRPB 
were highly overexpressed in most cancer types. However, 

LSM7 and SNRPB were underexpressed in the blood tumor 
LAML cancer group. The specific reasons need to be further 
clarified why LSM7 and SNRPB have different expressions 
between solid tumors and blood tumors.

A study found that spliceosome mutations promoted 
tumorigenesis in coordination with gene mutations [35]. 
Mutations in the SG PPIL1 and PRP17 lead to neurode-
generative Pons cerebellar hypoplasia with microcephaly 
[36]. Mutation/loss of SG ZRSR2 in human myeloid cells 
resulted in impaired splicing of U12 introns. ZRSR2 muta-
tions cause loss of its function, usually in the myelodysplas-
tic syndrome [37]. Mutations of core splicosomal proteins 
(SRSF2, SF3B1, and U2AF1) occur frequently in many 
human cancers, especially in subtypes of leukemia [38]. 
Mutations of spliceosomal proteins or dysregulated expres-
sion of RNA-binding protein (RBP) splice factors lead to the 
emergence of abnormal splice mRNA transcriptomes that 
suppor cancer growth [5]. Mutation analysis showed that the 
most common type of SG mutation was missense mutations 
that lead to changes in translated amino acids. The most 
common base change was C>T, followed by C>A, which 
indicated that base C was very unstable, and especially the 
amino group of cytosine was easily oxidized. This study 
found that the SGs with different mutation rates almost all 
appeared in the long-term survival group. For example, the 
prognosis of SF3B1 and THOC2 mutation group was better 
than wild type. The possible reason was that the mutations 
of SGs lead to a decrease in carcinogenic ability. SF3B1, 
one of the spliceosome components, could bind and stabilize 
snRNA U2. The binding of U2 to branch points was very 
important for the recognition of splicing sites. Mutations 
of THOC2, PRPF8, SNRNP200, and SF3B1 can also lead 
to other diseases. Missense THOC2 variants, which affect 
evolutionarily conserved amino acid residues and reduce 
protein stability, can lead to human neurodevelopmental 
disorders [39]. PRPF8 and SNRNP200 mutation can also 
occur in autosomal dominant retinitis pigmentosa [40, 41]. 
The mutation of SF3B1 has been reported in more cases, 
such as myelodysplastic syndromes and uveal melanoma 
[42–45]. The incidence of SG genetic mutations was dif-
ferent between men and women [46]. However, no genetic 
differences in genetic mutation of SGs were found between 
the sexes.

Enrichment analysis of SGs showed that the main path-
way involved in BP was RNA and mRNA splicing. A sec-
ondary enriched pathway was involved in the assembly of 
ribonucleoprotein complexes. These pathways were related 
to the formation and function of ribonucleoprotein complex. 
Protein interaction network analysis found that TRIM25 was 
the center of the network involved in DESGs, which suggests 
that TRIM25 is the hub molecule with important biological 
roles, and TRIM25 might be directly or indirectly involved 
in RNA splicing.
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In addition, this study analyzed the changes of SGs 
between sexes, between cancer stages, and between ages. 
It found that when a large enough tumor sample size was 
included, women had better survival than men. Except 
for CHOL, PAAD, and TGCT tumors, the survival of the 
remaining tumors at stages III–IV was worse than that at 
stages I–II. It might be because the overall prognosis of 
CHOL, PAAD, and TGCT was poor due to the high degree 
of malignancy. The survival of cancer patients with <60 
years of age was better than that of cancer patients with 
>60 years of age. RNA-seq analysis confirmed the selec-
tive splicing changes of SGs with age [47]. In this present 
study, 32 SGs were found to have a weak negative correla-
tion with age, and no SGs were found to have a positive 
correlation with age. The expression level of some relevant 
SGs decreased gradually with the increase of age.

Predictive and preventive medicine: machine 
learning models for cancer diagnosis

Three DESGs (SNRPB, LSM7, and HSPA2) were screened 
out from 14 DESGs with the stepwise regression method. 
These three DESGs were used to build a machine learning 
model to diagnose cancer, no matter what type of cancer it 
was. The 10-fold cross-validation resulted in a very small 
mean error. The mean absolute error of the Bagging model 
was 0.094, which showed that the Bagging model was able 
to effectively diagnose cancer with a small error. With the 
continuous progress of artificial intelligence (AI) technol-
ogy, machine learning methods have also been added to the 
diagnosis of diseases. Our genetic screening process of SGs 
provided useful insights into the future of AI in diagnos-
ing disease. It can be seen that this machine learning model 
constructed with the selected DESGs can well predict the 
tumor, which can act as the prerequisite work for the preven-
tion of tumor.

Personalized medicine: promising as a therapeutic 
target

Splicing isomers influenced the response of chemothera-
peutic agents to anticancer therapy [48]. Understanding the 
molecular mechanisms that drive tumor formation and the 
underlying insights into cancer phenotypes required ones 
to go beyond DNA to investigate the effects of pre-mRNA 
treatment on cancer development and drug resistance. Small 
molecules of targeted spliceosome SF3B complex were 
effective inhibitors of cancer cell growth, which affected 
the assembly of spliceosome at an early stage [49]. It was 
believed that SGs were a promising therapeutic target for 
personalized treatment in the framework of PPPM.

Conclusion and expert recommendation 
in the context of 3P medicine

The pan-cancer analysis revealed the alteration landscape 
of spliceosome genes across 27 cancer types in 9070 
patients, which demonstrated the common and specific 
changes of spliceosome genes among different cancer 
types. THOC2, PRPF8, SNRNP200, and SF3B1 were 
the high-mutation-rate SGs. Among them, the prognosis 
of mutant THOC2, PRPF8, and SF3B1 was better than 
wild type. Furthermore, this study found that SNRPB and 
LSM7 were highly expressed in multiple cancer types. In 
multisite cancers, high expression of SNRPB and LSM7 
were associated with a poor prognosis. The Western blot 
assay confirmed that SNRPB protein was highly expressed 
in colon cancer compared with the control group (p < 
0.05). Enrichment analysis showed that DESGs were 
mainly enriched in RNA and mRNA splicing pathways 
and were involved in RNA binding. HNRNPA1L2 and 
HSPA1L were negatively correlated with age. The Bagging 
model established with three DESGs (SNRPB, LSM7, and 
HSPA2) was able to effectively diagnose cancer.

We recommend focusing the study on spliceosome 
alterations in different cancer types. Spliceosome com-
position could affect RNA processing of specific genes, 
which could affect protein translation. This study found 
that SNRPB and LSM7 were highly expressed in many 
common tumors. It is worthy of further revealing how they 
participate in the occurrence and development of tumors. 
The present data demonstrate that spliceosomes play 
important roles in cancer pathogenesis. Integrative omics 
analysis of SGs will find the common and specific changes 
of SGs across different cancer types, which are resources 
to discover effective therapeutic targets to benefit per-
sonalized medical services and effective biomarkers for 
patient stratification, predictive diagnosis, and prognostic 
assessment in the research and practice of 3P medicine in 
cancers.
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