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Simulating epileptic seizures using 
the bidomain model
Jakob Schreiner1,2* & Kent‑Andre Mardal1,2,3

Epileptic seizures are due to excessive and synchronous neural activity. Extensive modelling of 
seizures has been done on the neuronal level, but it remains a challenge to scale these models up to 
whole brain models. Measurements of the brain’s activity over several spatiotemporal scales follow a 
power-law distribution in terms of frequency. During normal brain activity, the power-law exponent 
is often found to be around 2 for frequencies between a few Hz and up to 150 Hz, but is higher during 
seizures and for higher frequencies. The Bidomain model has been used with success in modelling 
the electrical activity of the heart, but has been explored far less in the context of the brain. This 
study extends previous models of epileptic seizures on the neuronal level to the whole brain using the 
Bidomain model. Our approach is evaluated in terms of power-law distributions. The electric potentials 
were simulated in 7 idealized two-dimensional models and 3 three-dimensional patient-specific 
models derived from magnetic resonance images (MRI). Computed electric potentials were found to 
follow power-law distributions with slopes ranging from 2 to 5 for frequencies greater than 10–30 Hz.

Epilepsy is the fourth largest neurological disorder with a prevalence of 7.1 per thousand in all ages1. The condi-
tion involves seizures of abnormal brain activity, where waves of electrical activity propagate through the brain 
and cause a variety of symptoms, ranging from absent-mindedness to loss of consciousness. An epileptic seizure 
is due to excessive or synchronous neural activity in the brain2,3. Extensive modeling has been performed on the 
neuronal level, but only few works4,5, have to the authors’ knowledge, scaled up the neuronal modelling to brain-
wide simulations. The so-called Bidomain model, widely used for cardiac modeling, allows for this upscaling. 
Here, we investigate the simulation of seizures based on a specific neuronal model by Cressman et al.6,7 developed 
for epileptic seizures which is then combined with the Bidomain model.

To compare the computational model with actual seizures we have here chosen to quantify the simulation 
results in terms of the power-law distribution of the power spectral density measured at specific points, as the 
spectrum can be easily compared with electroencephalograms (EEGs) and the power-law allows for quantifica-
tion across several scales. Specifically, we will consider a power-law distribution of the form p ∼ f −β , where f is 
the frequency. Measurements of brain activity exhibit a f −β-like power spectrum at many spatiotemporal scales, 
see He8 for a review. During normal brain activity, the value of β is often found to be around 29–14 for frequen-
cies in the range 1–150 Hz, while the exponent is higher for higher frequencies15. Values between 0.5 and 3 have 
been explained in a theoretical and computational study16 and has been shown to vary with spatial distribution 
in quasi-static models17. In contrast, the neuronal model for seizures6,7 that is being considered here, displays 
power-law behaviour, with β ≈ 3.5 but only in the range f > 100 Hz. Furthermore, Schreiner et al.18 have recently 
demonstrated that the power-law under ECT induced seizure, as measured with EEG, is in the range 3.4–4.2.

In this paper, we will investigate whether the Bidomain model can be combined with a neuronal model for 
epileptic seizures, together with MRI-based geometries and diffusion parameters of the whole brain, to yield a 
plausible power-law distribution. The Bidomain model19–23, which is widely used in cardiac modeling, addresses 
the interaction of the intra-cellular and extra-cellular compartments by homogenization, such that every point 
in the model represent a volume average of both intra- and extra-cellular compartments. A main difference 
between the brain and the heart is however that the cells of the heart are very structured and that each cell is 
locally connected to only neighbouring cells. This structure is not present in the brain and only the extra-cellular 
compartment of the brain is locally connected. However, under seizures, the extra-cellular compartment play a 
significant role and as such the Bidomain model might be able to capture the complex waves that arise.

The Bidomain model has previously been used to simulate neuronal resting-state potentials during tran-
scranial direct current stimulation5 and an ischemic region in a post-stroke patient24,25. The Bidomain model 
includes the extracellular and the transmembrane potential, and couples naturally with dynamical models for the 
transmembrane potential. Bai et al.26 simulated the electric field following direct current stimulation, representing 
the head as a passive volume conductor, but incorporating a Hodgkin-Huxley27 type model in the cortical tissue. 
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Their model captures neuronal activation, but not neuronal communication. There are other well-established 
models based on Poisson’s equation describing electric currents in the different tissues in the brain, see e.g. Næss 
et al.28 or Lee et al.29. However, these models do not capture the temporal evolution of the electric field. Alterna-
tive data-driven models have been developed for seizure dynamics, such as by Jirsa et al.30, and extended to the 
whole brain using network models based on brain functional imaging31.

Our task in this paper is to investigate whether macroscopic physics-based models, formulated as partial 
differential equations, such as the Bidomain model, combined with neuronal models for epileptic seizures give 
rise to plausible power spectra. Using the Bidomain model, we simulate the electric potential in the brain in an 
idealised two-dimensional (2D) geometry and an MRI-based three-dimensional (3D) geometry. Specifically, 
we utilize the neuronal model by Cressman et al.6,7 in which the excitability of the neurons is parametrized in 
terms of extracellular potassium in order to differentiate between seizures and normal activity. We remark that 
the Cressman model targets individual neurons. As such, one aim of this paper is to investigate to what extent 
the Bidomain equations together with a neural seizure model such Cressman’s give rise to frequencies in electric 
potential as measured by EEG on the outside of the skull.

We will consider the importance of the geometry, the cell-model, and the white matter (WM) anisotropy. 
To assess our approach we compare the power spectrum of the computed electric potential with the power-law 
behaviour of the EEG power spectrum.

Methods
Cell models.  We considered two different types of geometries: (1) an idealised 2D geometry Fig. 1a, and (2), 
a patient-specific 3D geometry, Fig. 1b,c based on T1-weighted and diffusion weighted MR images, with mean 
diffusivity illustrated in Fig.  1d. On these geometries the Bidomain model is coupled with neuronal models 
which are parametrized to either a seizure-like (unstable) or normal state (stable). An overview of the different 
models is provided in Table 1. Both model A and B are neuronal cell models introduced in Cressman et al.6,7, but 
Model B has high steady state extracellular potassium (K+) concentration, ko,∞ = 8 mM, compared to 4 mM in 
Model A. As such, Model B is in a seizure-like state, and alternates between periods of spike trains (bursts) and 
quiescence, seen in Fig. 2. We remark that there is a significant discrepancy in frequency content between the 
EEG, i.e. Fig. 2a–c and Cressman model for individual neurons, see Fig. 2d–f. We compared models by counting 
the number of spikes, as also done in Erhardt et al.4, as well as computing the power-spectra.

Two‑dimensional models.  Models C and D represent idealized 2D geometries, as shown in Fig. 1a. The 
geometry is an idealisation of a cortical slice and measures 60 mm × 40 mm. The grey matter (GM), cerebro-
spinal fluid (CSF), skull, and scalp each measures 4 mm across. We used this idealisation to study the effect of 
the tissue surrounding the brain, as well as the effect of an anisotropic conductivity tensor on the interaction 
between the Cressman model and the Bidomain model. The GM (dark grey) was modelled by the stable Cress-
mann model, Model A, except for the central red square in Fig. 1a, which was modelled by the unstable Cress-
mann model, Model B. The WM (light grey) had an anisotropic conductivity tensor while the conductivity in 
the GM, CSF, skull and scalp was isotropic. We considered two variations of this model, one with no cell model 
in the WM, termed Model C, and one with Model A in the WM, termed Model D. In the 2D models, the GM 
and WM was further distinguished by the isotropic conductivity in the GM and anisotropic conductivity in the 
WM. The anisotropic conductivity tensor in the WM of the 2D models was

where σl = 10σt and σt = 0.1 , that is, the principal component of the conductivity tensor was oriented vertically. 
In the right part of the WM, σl and σt in Eq. (1) are swapped, i.e., the conductivity tensor is oriented horizontally.

Patient‑specific three‑dimensional models.  The three patient-specific 3D models (Models E, F, G) 
were based on surfaces of the pia, WM, and ventricles. The surfaces were reconstructed from a MRI of a human 
head using FreeSurfer32,33. We represented the subarachnoid space (SAS) by the convex hull of the pia expanded 
3mm along the outward facing normal vector. The skull and scalp were similarly defined as the expanded convex 
hull of the SAS and skull respectively. The resulting mesh is shown in Fig. 1b, and has 72 million cells. Volume 
meshes were created with SVMTK34, which is based on CGAL35. As in the 2D models, the GM is modelled by 
Model A, except for the right hippocampus, which is modelled by model B. Model E has isotropic WM con-
ductivity and no WM cell model. Model F has an anisotropic conductivity tensor in the WM, and no WM cell 
model. The conductivity tensor was assumed proportional to the water diffusion tensor36,37, which was con-
structed from the diffusion tensor imaging (DTI) using FreeSurfer. That is, we have followed Tuch et  al. in 
quantitatively estimating the anisotropic conductivity tensor from water diffusion in the brain36, an approach 
validated in the study by Bangera et al.37. The approach used by Bangera et al. assumes that the scaling between 
the diffusion tensor and the conductivity tensor is the same throughout the brain. The mean diffusivity of the 
conductivity tensor is shown in Fig. 1d. Model G has isotropic WM conductivity and Model A as a WM cell 
model. Experiments with model G were also run with a Morris-Lecar model38 in the WM, rather than Model A. 
The small black circles in Fig. 1a,c show locations where time traces of the potential were sampled. The power 
spectral density (PSD) of the electric potential were estimated using Welch’s method39 implemented in scipy 
version 1.6.140.

The approval for MRI-observations was retrieved by the Regional Committee for Medical and Health Research 
Ethics (REK) of Health Region South-East, Norway (2018/1093). The study participants were included after 

(1)
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written and oral informed consent. All methods were performed in accordance with the relevant guidelines 
and regulations.

The Bidomain model.  Following23, the Bidomain model reads

with the boundary conditions

(2)
∇ · (Mi∇v)+∇ · (Mi∇ue) = χCm

∂v

∂t
+ χIion

∇ · (Mi∇v)+∇ · ((Mi +Me)∇ue) = 0,

Figure 1.   Computational geometries (a) An idealised two-dimensional model of a slice of the head with, from 
the top, scalp (orange), skull (yellow/pale green), cerebrospinal fluid (blue), grey matter (dark grey and red), 
and white matter (two shades of light grey). The central grey matter (red) is modelled by an unstable neuronal 
model, Model B, while the rest of the grey matter (dark grey) is modelled by a stable neuronal model, model 
A. The conductivity is isotropic, except in the white matter. The anisotropic conductivity tensor in the white 
matter is oriented vertically in the left part and horizontally in the right part. The simulated electric potential is 
measured at locations marked by black dots (b) The three-dimensional patient specific head model. The colours 
are the same as in (a), however, the ventricles are marked dark blue, and the right hippocampus is marked in 
red. Note that the ventricles are modelled the same way as the cerebrospinal fluid. As in (a), the grey matter is 
modelled by Model A, while the right hippocampus is modelled by Model B. (c) A slice of the head model in (b). 
The simulated electric potential is measured at locations marked by the black dots. (d) The mean diffusivity is 
highest in the ventricles and the cerebrospinal fluid, both showing up in red. The mean diffusivity is 1/3 Tr(M) , 
where M is the conductivity tensor. The conductivities are measured in mS/cm.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10065  | https://doi.org/10.1038/s41598-022-12101-y

www.nature.com/scientificreports/

Here, v and ue are the transmembrane and extracellular potential respectively, and Mi and Me are the intracel-
lular and extracellular conductivity respectively. Furthermore, Cm is the cell membrane capacitance and χ is the 
membrane surface area per unit volume. The ionic current across the cell membrane, Iion , is modelled by the 
Cressmann model. In the CSF, skull and scalp Mi is 4 orders of magnitude less than Me in the GM and WM. The 
ventricles are modelled the same way as the CSF. Table 2 provides an overview of physical parameters used in 
this study. Values for Cm , χ , and GM and GM conductivities are taken from Dougherty et al.5, while CSF, skull 
and scalp conductivities are taken from Vorwerk et al.41.

The Bidomain model coupled with the Cressman model was solved with a second order splitting scheme in 
time, see23 for a derivation, and a time step of 0.025 ms. The ordinary differential equations were solved only in 
the GM unless specified otherwise, using the forward Euler method. In space, Equation 2 was discretised with 
the finite element method using first order continuous Lagrange elements. The linear system was solved using 
the generalised minimal residual method (GMRES) preconditioned with an algebraic multigrid method with 
relative tolerance set to 10−5 and absolute tolerance set to 10−50 . The software used to solve the equations is based 
on cbcbeat42 built around the FEniCS project version 2019.1.043,44.

Results
Cell models.  The stable Cressman model, Model A, spiked 5 times, then remained quiet, and did not exhibit 
any bursts. In contrast, during the 10 s simulation the unstable Cressman model, Model B, spiked 241 times in 
5.7s, then entered a period of quiescence, see Fig. 2e. It continues to alternate between bursts and periods of 
quiescence. This is similar to what was observed in the study by Erhardt et al.4.

Two‑dimensional models.  In the idealized 2D, waves originate in the central unstable region and spread 
along the GM in both the model with and without a WM cell model, Model C and Model D, respectively, see 
Fig. 3a,c. To count the spikes, the potential was measured in the locations indicated in Fig. 1a and adjusted 
accordingly as the thickness of the CSF, skull, and scalp was changed. There were 135 identifiable spikes in the 
initial burst in the Model C lasting 3.1 s, as such the burst duration is shorter in Model C, but the number of 
spikes per second is roughly similar to Model B. Model D spiked continuously during the 10 s simulation, with 
no identifiable bursts, counting 1873 spikes. Furthermore, the magnitude of the spikes were approximately dou-

(3)
(Mi∇v +Mi∇ue) · n = 0

(Me∇ue) · n = 0.

Table 1.   A short summary of the models considered in this study. Models A and B are systems of ordinary 
differential equations (ODEs) describing cell membrane dynamics, and are coupled with the Bidomain 
model, a partial differential equations (PDE) in the two-dimensional models, C and D, as well as the three-
dimensional models, E, F, and G.

Model Spatial dimension Mesh White matter cell model Anisotropy

Ordinary differential equations

Model A 0 – Cressman (stable) –

Model B 0 – Cressman (unstable) –

Ordinary and partial differential equations

Model C 2 Square – Yes

Model D 2 Square Cressman (stable) Yes

Model E 3 Head – No

Model F 3 Head – Yes

Model G 3 Head Cressman (stable) No

Table 2.   Physical parameters.

Value Units

Membrane capacitance ( Cm) 1 μF

Cell membrane surface per unit volume ( χ) 1.26× 103 1/cm

Tissue type
Conductivity
Intracellular

mS/cm
Extracellular

Grey matter 1 2.78

White matter 1 1.26

Cerebrospinal fluid 10−4 17

Skull 10−4 0.1

Skin 10−4 4.3
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bled and the spike frequency was increased by a factor 4.3 compared to Model C. As such, it appears that the 
coupling represented by the Bidomain model may both accelerate and decelerate the neuronal firing, depending 
on the WM model. That is, in Fig. 3b there is a significant different in the slope of the grey mater and white mat-
ter and the other regions appear to mirror the white matter. In the case of a WM Cressman model, Fig. 3d, the 
slope appears similar in all regions. Finally, the Bidomain model enable spreading from an unstable domain to 
the complete domain, even though the bulk of the domain is initialized by stable parameters of the Cressman 
model, i.e. extracellular potassium of 4 mM.

Spatial resolution.  The effect of the mesh resolution was investigated in detail in 2D. The number of spikes dur-
ing the 10 s simulation of Model C is listed in Table 3 and demonstrate that a mesh with 1738 cells adequately 
resolves the travelling waves, see Fig. 3a. For coarser meshes the waves failed to propagate. The 1738 mesh mesh 
had 5 cells across the GM. The resolution was higher in the GM than in the CSF. In the simulations with a cell 
model in the WM, the resolution in the GM and WM was the same.

The effect of anisotropy in two‑ and three‑dimensional models.  The effect of the anisotropic conductivity tensor 
in Model C was evident in the magnitude of the extracellular potential. That is, the passing waves in the GM 
propagate further into the WM see Fig. 3a. In detail, in the left part, where the conductivity tensor is oriented 
vertically, the extracellular potential is affected along the complete WM column of 24 mm. In the right part, 
where the conductivity tensor is oriented horizontally, the corresponding propagation is only 2-3 mm. In Model 
D, the 2D model with a WM cell model, the effect of the anisotropic conductivity tensor is evident in the deflec-
tion of the waves in the WM, as seen in Fig. 3c. In both Model C and D, the orientation of the conductivity 

Figure 2.   EEG and cell model The top row show an electroencephalogram (EEG) from a patient experiencing a 
seizure. (a) Shows 1 s of the EEG, (b) shows 10 s, and (c) the power spectrum computed from the 10 s segment 
in (b). The bottom row shows the simulated transmembrane potential from model B. (d) Shows 0.2 s, (e) 10 s 
with an initial period of spikes, a burst, followed by a period of quiescence, (f) the power spectrum computed 
from the burst in (e). The straight lines illustrate power-laws of f with slopes − 2 to − 4.

Table 3.   The number of spikes and the number of cells in two-dimensional simulations in the domain in 
Fig. 1a. The spikes were counted throughout the grey matter. Only in the coarsest case did any waves fail to 
propagate from the unstable region. In that case, only the first three (i parenthesis) spread to the stable parts of 
the grey matter. The total number of spikes were counted over a 10 s interval.

# Cells # Spikes

6120 135

1738 135

514 132 (3)
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tensor affects the magnitude of the extracellular potential, and as such, the magnitude of the PSD, but not the 
power-law exponent.

The effect of cerebrospinal fluid skull and scalp.  To investigate the sensitivity of the thickness of the CSF, skull, 
and scalp on Model C, we performed two new simulations increasing and decreasing the thickness of the CSF, 
skull, and scalp by a factor of 1/3. Similarly, investigating the sensitivity to the anisotropic conductivity tensor, we 
ran four new experiments independently increasing and decreasing σl and σt by a factor of 1/3. As such, the vari-
ation in CSF, skull, and scalp thickness and anisotropy accounts for 7 different simulations. The variations to the 
thickness of the CSF, skull, and scalp as well as the individual components of the conductivity tensor resulted in 
minor variations in the magnitude of the PSD, seen in Fig. 3b. Here, notice that for each colour there are 7 lines 
representing the different simulations. We also remark that the changes in the potential due to these variations 
are smaller than the differences in the potential between the compartment (WM, CSF, skull, scalp). The PSD in 
the GM was unaffected by these perturbations.

Patient specific models.  The geometry of the 3D model is shown in Fig. 1b and the measurement loca-
tions are shown in Fig. 1c. The mesh contained 72 million finite element cells and the resolution was similar to 
the idealized, resolved 2D geometry in the sense that there were 5 cells across the GM. The individual cells can 
be seen in the slices. In 3D, waves spread from the destabilised hippocampus, and through the surrounding GM 
in the model with an isotropic conductivity tensor, Model E, and the model with an anisotropic conductivity 
tensor, as seen in Fig. 4 after 100 ms. In the hippocampus, the extracellular voltage traces were similar to Model 
B. There were between 10 and 13 spikes in the hippocampus during the 100 ms of the simulation of model E and 
F, see Fig. 5a, depending on the exact measurement location. That is, the number of spikes per second is between 
100 and 130, which is more than twice as high as in the idealized 2D model without WM model, Model C. The 
anisotropic conductivity tensor in Model F did not affect the frequencies in the WM or the GM, but the mag-
nitude of the extracellular potential was greater throughout the brain, as seen in Fig. 5b. In Model G, the model 
with a stable Cressman model in WM, there were no spiking in the hippocampus. With a Morris-Lecar model38, 
the number of spikes were the same as models E and F.

Power‑laws in two dimensions.  The β-parameter of the power-law of the power spectrum of Model B, 
see Fig. 2f, was between 2 and 3 for f  between 100 and 5000 Hz. The PSD of the extracellular potential of Model 
C followed a power-law with β ≈ 2 for f  between 40 Hz and 5000 Hz in the WM, and β ≈ 3 for f  between 300 
Hz and 5000 Hz in the GM, see Fig. 3b. The PSD of the extracellular potential in Model D followed a power-law 

Figure 3.   Two-dimensional simulations and power spectra (a) A snapshot of the simulated extracellular 
potential in Model C. The waves spread through the grey matter from the central unstable region. The unstable 
region is marked in Fig. 1a. (b) The extracellular potential in the central (unstable) grey matter. Variations 
to the thickness of the cerebrospinal fluid (CSF), skull and scalp as well as the individual components of the 
conductivity tensor by a factor of 1/3 affect the magnitude of the power spectral density (PSD) in the white 
matter, CSF, skull and scalp but not the grey matter. Each variation is represented by a thin line. (c) A snapshot 
of the simulated extracellular potential in Model D. Waves spread from the GM from the unstable central 
region, and also into the white matter. (d) The PSD of the extracellular potential in the different tissues with no 
cell model in the WM.
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with an exponent close to 5 in the “passive” tissue, the skull, scalp, and CSF, and 4 in the “active” tissue, the GM 
and WM. Both power-laws are for f  between 150 Hz and 5000 Hz, see Fig. 3d.

Power‑laws in three dimensions.  The power-spectra of Model E and Model F were identical in the hip-
pocampus, and is shown in Fig. 5c. The peak of the PSD was at 300 Hz. The two black lines show a power-law 
corresponding to β = 2 and β = 3 for f  between 100 and 5000 Hz. The power-law in the WM in the model with 
an isotropic conductivity tensor, Model E, and anisotropic conductivity tensor, Model F, is shown in Fig. 5d, with 
a peak located at 10 Hz. The two black lines illustrate power-laws with slopes β = 3 and β = 2 for f  between 10 
and 5000 Hz. In general, we see that the Bidomain model when combined with Cressman yields a power-spectra 
mode similar to that of EEG both in 2D, Fig. 3b,d and 3D, Fig. 5d,c than the stand-alone Cressman model, Fig 2f.

Figure 4.   Three-dimensional simulations Two visualisations of the extracellular potential in the head and on 
the brain surface after 100 ms. The colormap is scaled to highlight the waves, and does not cover the range of 
the extracellular potential. (a) The extracellular potential throughout the brain and the surrounding tissue in 
a corner of the head. The surrounding tissue is shown in colors similar to Fig. 1b, while the magnitude of the 
extracelular potential shown is shown in the grey matter and white matter. The horizontal slice also shown the 
magnitude of the extracelular potential in the cerebrospinal fluid, skull and scalp. (b) The extracelular potential 
on the surface of the brain.

Figure 5.   Three-dimensional spikes and power spectra (a) The simulated extracellular potential in the right 
hippocampus in Model E. (b) The extracellular potential in the white matter in the left hemisphere from Model 
E and Model F. (c) The power spectrum of the potential in (a). (c) The power spectrum of the potential in (b).
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Discussion
In this paper we simulated the electrical potential in a human brain during a seizure using the Bidomain model 
with a Cressman6,7 excitation model in 10 geometries (7 idealized 2D models and 3 MR based three-dimensional 
models). The Bidomain-Cressman model resulted in electrical waves propagating through the brain from unsta-
ble to stable regions as also observed in Erhardt et al.4. The PSD of these waves follow a power-law distribution 
similar to what is found in EEGs. That is, the power-law slopes during a seizure have values from 2 to 5, depend-
ing on the model. In detail, for all models that did not have an active model in WM the slope was found to be 
between 2 and 3, while for the idealized model with a stable Cressman model in the WM a slope of between 4 
and 5 was observed. The values are in agreement with previous studies9–15,45–47, where values between 2 and 4 are 
reported, although none of these studies investigate seizures in humans. Observed power-law slope in EEG was 
recently reported to be between 3.4 and 4.218 during ECT-induced seizures. We remark that it is interesting to 
observe that the Bidomain model extended the slope of the power-law in the Cressman model from 100 to 5000 
Hz down to around 30 Hz. In EEGs, frequencies from a few Hz to a few hundred Hz are commonly observed, 
and as such the Bidomain model brings the Cressman models into the regime of interesting frequencies.

The anisotropic conductivity tensor did not have a significant effect on the distribution of power in the PSD 
in any of the models, as compared with the isotropic conductivity. However, the anisotropy has a significant 
effect on the magnitude of the extracellular potential. In this study we have used physiologically realistic values 
from the literature5, although the context was here isotropic. Previous studies have found that tissue anisotropy 
affects electric field magnitudes29,37, but we are unaware of studies investigating the effect on frequency content.

We have investigated the effect of a WM cell model in both 2D and three-dimensional simulations. While 
using the stable Cressman model in the WM had a significant effect on burst duration, power-law slope and 
frequency range in 2D, the corresponding simulation in three-dimensional demonstrated that the unstable hip-
pocampus was prevented by the WM from spiking. A further experiment with a Morris-Lecar model38 in the 
WM in a three-dimensional simulation had negligible effect in the simulated potentials when compared with 
no WM cell model. A previous study of the coupling of the Cressman and Bidomain models showed that there 
is a balance between the conductivity and the size of the unstable region, i.e., the right hippocampus4. If the 
conductivity is too high, or the unstable region too small, the stable regions of the model dominates and spik-
ing stops. This issue has not been addressed in the three-dimensional models due to the computational costs. 
Compared to the  100 billion neurons and equal number of glia in the brain48, our realistic head models consist 
of 70 million cells. The three-dimensional simulations of 100 ms of the brain activity took 200 h with 16 cores 
using 16 GB of memory each.

Limitations.  The Bidomain model is widely used for cardiac applications, and its application to the brain is 
uncertain. In particular, the intra-cellular compartment is much more complex in the brain. In seizures, how-
ever, the extra-cellular compartment plays a major role and as such the Bidomain model may be a promising 
candidate model. Further, the Bidomain model assumes a purely resistive medium23, and the possibly frequency 
dependent properties of the extracellular medium may limit the applicability of the Bidomain model. According 
to Nunez and Srinivasan, typical EEG frequencies less than 100 Hz are not affected by capacitative effects of the 
extracellular medium49. Furthermore, the resistive properties of the extracellular medium have been reported 
to be independent of the frequency50 or weakly frequency dependent51. More recent studies, however, suggest 
that there may be important frequency dependencies of the extracellular medium. Gomes et al. found a strong 
frequency dependence in the extracellular conductivity52, linking the frequency dependence to ionic diffusion. 
A possible explanation of the discrepancies lies in the measurement technique, and the findings are controver-
sial, see the discussion53,54 following the study by Gomes et al.52. Assuming ionic diffusion is the origin of the 
frequency dependence in the extracellular conductivity, Bédard and Destexhe show that this could explain the 
origin of the power-law scaling in the local field potential55. In the Bidomain model in the current study, a quasi-
static assumption is used to derive the equations solely in terms of the electric potential of the intra and extracel-
lular electric fields, but this assumption can only be made if the medium is frequency independent.

The neuronal model by Cressman et al.6,7 is developed to model the activity of one neuron. The model has 
been further developed in Wei et al.56 to incorporate chloride ion and oxygen concentrations. This extended 
model exhibit a broader range of neuronal activities such as seizures caused by hypoxia or cortical spreading 
depression. In contrast, an EEG is measured with electrodes placed on the scalp and represents an average of 
electrical activity within the brain. As such, the electric potential at a specific location of the skull is generated by 
the activity of neurons numbering in the tens of millions49. Our results here indicate that the Bidomain model 
has the potential to bridge the gap between these two scales in certain applications.

Conclusion
This study shows that the Bidomain model gives rise to plausible power-spectra in the extracellular potential in 
idealised and realistic models of the brain. Neither an anisotropic conductivity tensor, nor varying the thick-
ness of the CSF, skull, or scalp had any discernible effect on power-law distribution in the PSDs in any of the 
models. The WM cell model has a profound effect on the power spectra in the 2D models, but not in the three-
dimensional models, in the current study.

Data availability
Meshes used on this study are available from the corresponding author upon request.
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