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Abstract

Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true 

progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the 

first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) 

with temozolomide. Accurate differentiation of TP from PsP is essential for making informed 

decisions on appropriate therapeutic intervention as well as for prognostication of these patients. 

Conventional neuroimaging findings are often equivocal in distinguishing between TP and 

PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These 
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challenges have emphasized the need for developing alternative imaging techniques that may 

aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current 

state of knowledge in the clinical applications of commonly used metabolic and physiologic 

magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton 

spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging 

techniques, such as amide proton transfer and amino acid-based positron emission tomography, 

in providing useful information about the treatment response. Additionally, we highlight the role 

of “radiomics”, which is an emerging field of radiology that has the potential to change the way 

in which advanced MR techniques are utilized in assessing treatment response in GBM patients. 

Finally, we present our institutional experiences and discuss future perspectives on the role of 

multiparametric MR imaging in identifying PsP in GBM patients treated with “standard-of-care” 

CCRT as well as novel/targeted therapies.
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1 | INTRODUCTION

Glioblastoma (GBM) is an aggressive brain tumor of astrocytic/neural stem cell origin and 

is the most common primary malignant brain neoplasm, representing 30% of all central 

nervous system tumors in adults.1 The current standard of care for newly diagnosed 

GBM comprises maximal safe tumor resection followed by adjuvant radiation therapy 

with concurrent temozolomide (TMZ) chemotherapy and six maintenance cycles of TMZ.2 

Despite the multimodal first-line treatment, the prognosis of GBM patients is dismal, with 

a 5-year survival rate of about 5% and a median overall survival of only 14–16 months 

following diagnosis.3

In most cases (~80%), increased contrast enhancement and/or worsening surrounding 

T2 fluid-attenuated inversion recovery (T2-FLAIR) signal abnormality at the location of 

the original tumor or resection margins are observed within 3–6 months of completion 

of concurrent chemoradiation therapy (CCRT).4 While these neuroimaging changes may 

represent the true progression (TP) of GBM, it may also reflect predominant treatment 

effects/pseudoprogression (PsP) that is mediated by TMZ-induced enhanced vascular 

permeability and predominant inflammatory response.5,6 PsP, which appears in the absence 

of true tumor growth, is usually transient in nature and subsides or stabilizes naturally 

without requiring a change in therapy. The biology of PsP is not fully understood and several 

hypotheses have been proposed. The alkylating agent, TMZ, inhibits cell replication in the 

G2/M cell cycle phase and increases the number of breaks in DNA. It has been proposed 

that the combination of these effects causes an exaggerated cellular response within the 

tumor beds resulting in damage to the vascular endothelium, blood–brain barrier (BBB) 

disruption, and oligodendroglial cell injury that subsequently results in imaging changes 

consistent with PsP.7 The incidence of PsP ranges from 28% to 66% in GBM patients 
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receiving CCRT8 and PsP is particularly frequent in patients harboring promoter methylation 

of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that plays an 

important role in chemoresistance to alkylating agents such as TMZ.9

Classical radiation necrosis (RN) is a variant of treatment effects representing a local tissue 

reaction to radiation therapy in patients with GBM. It generally occurs 3–12 months after 

radiotherapy but can occur up to several years or decades later, differentiating it from PsP 

in terms of onset time and severity of disease.10 It has also been reported that PsP and RN 

share similar histopathological and molecular features.10

Intriguingly, PsP patients generally show a favorable response to TMZ treatment and tend to 

have improved clinical outcomes over TP patients.11 Therefore, patients with PsP are closely 

monitored with shorter interval follow-up magnetic resonance imaging (MRI) scans, usually 

every 4–6 weeks, and are symptomatically managed with a continuation of adjuvant TMZ. 

Conversely, patients with TP often require repeat biopsy/surgical resection, and/or switching 

to alternative therapies such as tumor-treating fields (TTFields) and immunotherapy.12 Thus, 

recognizing patients with PsP is also critical to avoid unnecessary repeat surgery and 

administration of expensive and potentially risky therapies. Exclusion of PsP is also of value 

to reduce the false-positive effects of a novel therapy, particularly in the context of clinical 

trials. For these reasons, it is imperative to differentiate TP from PsP in effectively managing 

the care of these patients. Response assessment in neuro-oncology (RANO) criteria13 based 

on conventional neuroimaging findings are often ambiguous in differentiating TP from 

PsP and hence present a significant diagnostic challenge (Figure 1).14,15 Therefore, there 

is a pressing need to develop quantitative imaging biomarkers for reliably assessing and 

redefining the treatment response in GBM patients.

The aim of the present review is to provide an overview of the more widely available as 

well as emerging novel metabolic and physiologic MRI techniques used in differentiation 

of TP and PsP in GBM patients. We also focus on the potential technical pitfalls of using 

these advanced MRI sequences in the clinical environment and present conceivable solutions 

regarding how to circumvent these challenges. In this era of artificial intelligence (AI), 

machine learning (ML)- and radiomics-based methods are continuously being investigated 

to extract more objective imaging features that may help us in evaluating treatment response 

with higher accuracy. Finally, we briefly discuss the emerging applications of AI in 

distinguishing TP from PsP.

2 | MRI AND PET IMAGING APPROACHES FOR THE DIFFERENTIATION OF 

TP FROM PSP

2.1 | Conventional MRI

Conventional MRI remains the most commonly used imaging modality in assessing 

treatment response to various therapeutic regimens in neuro-oncology. Patterns of contrast 

enhancement on postcontrast T1-weighted images and/or extent of hyperintense signal 

intensity on T2-FLAIR images are standard features that are used to monitor treatment 

response in GBM patients. However, these morphological features reflect only impairment 
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in the BBB and are nonspecific in nature, hence can be seen in both TP and PsP, 

making these entities indistinguishable in most clinical scenarios. Revised criteria for 

assessment of treatment response in high-grade gliomas have been proposed by the RANO 

Working Group.13 These guidelines use two-dimensional biperpendicular measurements 

of enhancing lesions and/T2-hyperintense abnormality as the primary basis of response. 

However, these bidirectional measurements have been shown to overestimate tumor size.16 

Additionally, high discordance rates between readers have been reported, presumably 

because of differences in head angulation and accurate identification of primary (longest) 

and secondary axes, biperpendicular diameters, especially when the enhancing lesion has 

an irregular shape and/or ill-defined boundaries.16 Moreover, the subjective interpretative 

nature and high rates of adjudication render the RANO criteria somewhat controversial in 

assessing treatment response in GBMs. In recent years, various attempts have been made to 

address these issues and to find more reliable distinguishing imaging features.

As such, a novel approach providing high-resolution treatment response assessment maps 

(TRAMs) was proposed to determine treatment outcomes in GBMs.17 This methodology 

is based on acquisition of two high-resolution three-dimensional (3D) T1-weighted 

images (at 3–5 and 60–75 min) after the injection of gadolinium-based contrast agents 

(GBCAs). Subsequently, these images are subtracted and color-coded to represent the spatial 

distribution of contrast accumulation and clearance. Active “viable” tumor regions/TP on 

TRAMs demonstrate effective clearance of contrast agent, whereas treatment effects/PsP 

with necrotic and occluded blood vessels tend to have contrast accumulation. TRAMs are 

relatively simple to acquire, readily interpretable, and are less prone to being confounded by 

susceptibility artifacts. This new technique has been used in determining treatment outcomes 

from high-grade glioma patients treated with CCRT17 (n = 4) and bevacizumab18 (n = 24). 

Although promising, this technique is associated with some limitations. An unavoidable 

limitation of TRAMs is the requirement to wait at least 1 hour after GBCA injection, 

which makes it challenging from a workflow perspective in busy academic medical 

centers. Moreover, the timings of postcontrast acquisitions are particularly important. 

Another significant disadvantage of TRAMs is their inability to depict nonenhancing 

tumor components. We believe that large, prospective, multicentric studies are warranted 

to confirm the clinical utility of TRAMs in the future.

2.2 | Physiologic and metabolic MRI

In contrast to conventional anatomic MRI sequences, advanced MRI techniques are more 

sensitive to different biophysical processes in tissues and provide more comprehensive 

information about the tumor microenvironment, including cellular proliferation, tumor 

hemodynamics, vascular permeability, and tumor metabolism. The metabolic and 

physiologic MRI techniques include diffusion and perfusion MRI, proton MR spectroscopy 

(1H MRS), and amide proton transfer (APT). Readers are referred to excellent review 

articles for a detailed overview related to the clinical utilities of these MRI methods in 

the diagnosis, characterizing molecular profiles, describing infiltrative patterns, determining 

prognosis and assessing treatment response to established and novel therapies in high-grade 

gliomas.19–21
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The general trends in structural, metabolic, and physiologic MRI-derived parameters in 

distinguishing TP from PsP in GBMs are shown as a block diagram in Figure 2. Currently, 

some of these are being routinely included in standard MRI acquisition protocols at many 

institutions. However, full implementation has been hindered by the lack of standardized 

data acquisition and postprocessing modules. There are considerable efforts currently in 

progress to implement these advanced imaging modalities into regular clinical workflows for 

improvised diagnostics.

2.3 | Diffusion-weighted imaging

The biophysical mechanism of diffusion-weighted imaging (DWI) is based on random, 

microscopic, thermally induced translational motion of water molecules in biological 

tissues. Diffusion of water molecules follows the principles of Brownian motion that is 

caused by intermolecular collisions. The magnitude of this random movement is described 

by its apparent diffusion coefficient (ADC) measured in units of mm2/s. Several factors 

such as cellular packing, the presence of intracellular organelles, cell membranes, and 

macromolecules determine the ADC values. Moreover, alterations and redistributions of 

water molecules between intracellular and extracellular tissue compartments are also known 

to influence ADC values.22,23

In gliomas, cellular density and tumor grade are directly related to the degree of water 

restriction on DWI, resulting in an inverse relationship between ADC values and tumor 

grades. High-grade neoplasms harboring densely packed cancerous cells and diminished 

extracellular space demonstrate low ADC values.24 On DWI, changes in the diffusivity 

pattern of a tumor might be used to monitor tumor response to a therapeutic intervention. 

It is expected that successful CCRT, leading to necrosis or cellular lysis, would reduce 

tumor cellularity and therefore lead to increased ADC in GBMs representing predominantly 

treatment-related changes. On the other hand, the diffusivity of water molecules should be 

expected to decrease in TP with high cellularity and reduced extracellular space. Several 

studies25–27 have documented that PsP exhibits higher ADC from the enhancing regions of 

neoplasms than TP, partly because of lower cellular density and/or the presence of necrotic 

regions in PsP. In a study by Chu et al.,28 multiple parameters of ADC histograms, such as 

mean, minimum, skewness, and fifth percentile of cumulative ADC histograms, were used 

to distinguish TP from PsP. Among all these parameters, the fifth percentile of cumulative 

ADC histogram was found to be the best parameter for the differentiation of TP (n = 15) 

from PsP (n = 15).

Despite these promising results, some other groups28,29 have reported no significant 

differences in mean ADC values between the two groups of patients, probably because 

of the small number of patients (n = 30 and 17) in those studies. Additionally, a major 

limitation of those studies was the use of a region of interest (ROI)-based approach for 

data analysis. This subjective method does not reflect the heterogeneous nature of GBMs, 

with components that include varying degrees of cellular and nuclear pleomorphism, mitotic 

activity, vascular proliferation, necrosis, and microhemorrhages. This tissue heterogeneity 

tends to increase further in the post-treatment settings. Interobserver variations in ROI 

placement can also potentially alter quantitative findings. To overcome these limitations, 
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novel voxel-wise approaches for image analysis such as parametric response maps (PRMs)30 

and functional diffusion maps (FDMs)31 have been used to differentiate TP from PsP in 

proof-of-concept studies. However, these maps may not be appropriate for those GBMs 

that result in considerable changes in mass effect and brain shift between scans acquired 

at different time points. The diagnostic performances of DWI-derived parameters are 

summarized in Table 1.

2.4 | Advanced diffusion imaging techniques

To better understand the diffusion phenomenon in a complex biological tissue, a 

mathematical modeling of diffusion in a 3D space is usually employed. In diffusion tensor 

imaging (DTI), a tensor model of diffusion consists of a 3 × 3 matrix derived from 

diffusivity measurements in at least six noncollinear/nonplanar directions. However, the 

utilization of greater than six diffusion sensitizing directions increases the accuracy of 

tensor measurement for any arbitrary orientation. The diffusion tensor can be described 

by a diffusion ellipsoid whose main axis is parallel to the principal diffusion direction 

within a voxel. Because of the presence of natural barriers such as intracellular organelles, 

cellular membranes, and white matter fibers/tracts inside the brain, water molecules are 

unable to diffuse freely (anisotropic diffusion). Therefore, DTI benefits from this anisotropic 

movement of water molecules to estimate the axonal direction within a living system.48

The complete data modeling of DTI offers an estimation of several scalar parameters such as 

mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity 

(RD), coefficient of linear (CL), planar (CP), and spherical (CS) anisotropies describing 

the shape of a diffusion ellipsoid. However, the most commonly used DTI indices in 

neuro-oncology are MD and FA. The parameters MD and ADC are comparable and provide 

similar physiological information.49 FA signifies the degree of diffusion asymmetry present 

within a voxel and its value ranges from 0 (isotropic) to 1 (maximally anisotropic). Higher 

FA values indicate greater directionality of white matter fibers in the brain.50 The geometric 

indices (CL, CP, and CS) along with parameters (MD and FA) have been employed to 

distinguish GBMs from solitary metastases and brain lymphomas,51,52 necrotic GBMs from 

brain infections,53 and to assess response to immunotherapy in GBM patients,54 implying 

that directional organization of tissue microstructures may provide valuable information 

about tissue characterization.

Some studies32,55 have also used DTI to differentiate TP and PsP. In one such study,55 

DTI metrics from four segmented regions of neoplasms (contrast enhancing, central core, 

immediate and peritumoral regions) were not helpful in distinguishing between TP (n = 17) 

and PsP (n = 7), probably because of the small sample size (n = 24). However, Wang et al.32 

reported some encouraging findings from a study. The investigators classified all GBMs (n 

= 41) into three categories: TP (n = 21), mixed response (n = 12), and PsP (n = 8). The 

strength of this study was the availability of tumor specimens from all the cases following 

repeat surgery and, as such, histopathological features were used to determine the final 

diagnosis of TP (more than 75% neoplastic features), mixed tumors (25%–75% neoplastic 

features), or PsP (less than 25% neoplastic features). When the investigators analyzed the 

DTI data from contrast-enhancing regions (CERs), significant elevations in FA, CL, and CP, 
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along with a decrease in CS, were observed in TP compared with PsP. Using ROC analyses 

in differentiating two groups of patients (TP [n = 21] and mixed tumors + PsP [n = 20]), 

the investigators observed an accuracy of 84% for CP and 78% for FA. To estimate the 

accuracy of their findings, the investigators also performed leave-one-out cross-validation 

tests. Collectively, these results indicate that DTI may be helpful in evaluating treatment 

response to “standard-of-care” CCRT in GBM patients. The diagnostic performances of 

DTI-derived parameters are summarized in Table 1.

The introduction of magnetic field gradients with high slew-rate and high-performance 

computing systems has transformed diffusion imaging to a new level that has greatly 

improved its diagnostic capability in the arena of neuro-oncology. The emergence of 

multiband imaging has enabled us to acquire diffusion sequences using multiple b-values, 

as well as permitting the implementation of relatively new techniques such as diffusion 

kurtosis imaging (DKI) within a reasonable acquisition time.56 DKI provides additional 

microstructural information by extending the DTI model to incorporate fourth-order 

gradient field terms in the diffusion signal. The kurtosis describes the degree of deviation 

from Gaussian distribution of spin displacement along an axis. When averaged over all 

directions, the mean kurtosis (MK) can be computed.57 GBMs are characterized by complex 

architectural integrity resulting from the presence of high cellular density, cell membranes, 

organelles, and vascular structures within the tumor beds, thus impeding the movement 

of water molecules. This in turn leads to higher non-Gaussianity and increased MK.58 

Some studies have reported better diagnostic performance of DKI than DTI in classifying 

different grades of gliomas.59,60 Similarly, Wu et al.33 have shown higher accuracy for 

DKI-derived metrics than DTI metrics in differentiating TP (n = 24) from PsP (n = 16) in 

high-grade gliomas (Table 1). Another valuable technique known as intravoxel incoherent 

motion (IVIM) has also shown encouraging findings in the identification of PsP in GBM 

patients.61 IVIM allows simultaneous assessment of diffusion- and perfusion-related effects 

in tissues with a single diffusion-based imaging sequence.62

Although promising, we believe that the diagnostic performances of DKI and IVIM warrant 

further investigations before these techniques can be incorporated into the routine clinical 

workflow for neuro-oncological applications.

2.5 | Perfusion MRI

Tumor neovascularization is characterized by the presence of a vast network of fragile and 

poorly organized blood vessels. Newly formed vessels are often large, abnormal, tortuous, 

permeable, and unequal in size, leading to increased tumor vascularity and perfusion.63 

The most commonly used perfusion-weighted imaging (PWI) techniques in the settings of 

clinical neuro-oncology include dynamic susceptibility contrast (DSC)-PWI and dynamic 

contrast-enhanced (DCE)-MRI.

2.6 | Dynamic susceptibility contrast-PWI

The DSC-PWI method involves the injection of a bolus of GBCA intravenously, followed by 

a series of rapidly scanned gradient-echo images over an organ of interest. DSC-PWI uses 

the T2* effect of paramagnetic contrast agent that causes a transient drop in signal intensity 
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during the initial pass through vasculature by producing a local magnetic field distortion 

around the blood vessels. Several perfusion parameters such as blood volume, blood flow, 

and mean transit time can be obtained by measuring signal intensity as a function of time 

and fitting it to a mathematical model.64

The pathologic characteristics of tumor vasculature have been used to discriminate between 

TP and PsP. Multiple studies34–39 have shown the potential of DSC-PWI in distinguishing 

TP from PsP in GBM patients. In TP there is a marked increase in neoangiogenesis, which 

leads to an increase in lesion to white matter relative cerebral blood volume (rCBV) from 

contrast enhancing and peritumor regions of neoplasms. By contrast, PsP is characterized by 

an increased inflammatory response, local accumulation of edema, and abnormal vascular 

permeability leading to decreased rCBV.

In one study, Kong et al.36 achieved a significant difference in mean rCBV between patients 

classified as TP (n = 33) and PsP (n = 26) in a population of 59 patients treated with 

CCRT. With a threshold rCBV of 1.47, the investigators achieved a sensitivity of 81.5% and 

a specificity of 77.8% in distinguishing TP from PsP. In a related study (n = 68), Prager 

et al.37 found a sensitivity of 91.9%, and a specificity of 66.7% using a threshold rCBV 

of 1.74. In a prospective study,65 excellent correlations between high rCBV values and the 

presence of recurrent tumors (n = 24) were reported in which image-guided stereotactic 

biopsy specimens were obtained from patients who underwent repeat surgery after CCRT.

In a longitudinal study (n = 19), Mangla et al.35 compared rCBV at baseline (prior 

to treatment) and at 1-month postradiotherapy/TMZ treatment period. PsP patients (n = 

7) exhibited a 41% decline in rCBV, while TP patients (n = 12) demonstrated a 12% 

elevation in rCBV post-treatment relative to baseline, leading to a sensitivity of 77% and 

a specificity of 86% in differentiating these two groups of patients. In another longitudinal 

study, Boxerman et al.38 found substantial overlap of mean rCBV at initial enhancement 

between TP (n = 9) and PsP (n = 10) lesions. However, changes in rCBV at first subsequent 

follow-up differed significantly between TP and PsP, suggesting that temporal variations in 

rCBV may be more helpful in distinguishing these two groups of patients.

Because GBMs are markedly heterogeneous in nature, ROI-based analysis of mean rCBV 

value may not be a robust measure for differentiating TP from PsP. To overcome these 

limitations, histogram and PRM methods have been used. In one study, Kim et al.34 used 

histogram analysis of CBV to calculate the volume fraction between high-grade recurrent 

tumors and post-treatment changes. Thirty-nine patients with recurrent tumors (tumor 

fraction ≥ 50%, n = 14), mixed tumors (tumor fraction ≥ 20% and < 50%, n = 10), and 

tumors showing predominant treatment-related changes (tumor fraction < 20%, n = 15) were 

evaluated in that study. The parameters that were analyzed from CER of neoplasms included 

histogram width, peak height position (PHP), and maximum value (MV). The parameters 

PHP and MV were significantly different between recurrent tumors and tumors, showing 

mixed response plus post-treatment changes. Moreover, PHP with an optimal threshold of 

1.7 had a sensitivity of 90.2% and a specificity of 91.1% in differentiating two groups. 

Additionally, MV also had a high sensitivity of 96.5% and a specificity of 93.1% with an 

optimum threshold of 2.6 in distinguishing treatment change group from tumor recurrence 
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and mixed groups. This study shows that histogram may be an appealing method of CBV 

analysis that can capture tumor heterogeneity more effectively. Using histogram-based 

analysis, serial DSC-PWI scans have also been performed to identify patients with PsP. 

In one such longitudinal study, Baek et al.39 analyzed DSC-PWI data within 4 weeks after 

the completion of CCRT and at a follow-up period (4–8 weeks of baseline study) from 

a cohort of patients with high-grade gliomas (n = 79). The investigators proposed that 

percentage changes in histogram-derived parameters, such as skewness and kurtosis, can be 

potentially useful imaging parameters to identify PsP (n = 37) or early TP (n = 42). In a 

novel thresholding method, Hu et al.40 subtracted precontrast voxel values from postcontrast 

to create a mask of enhancing voxels, which was then used to define the ROI for analyzing 

DSC-PWI data in distinguishing TP from PsP.

Alternatively, a PRM method has been proposed to address the issue of tumor heterogeneity. 

PRM analysis is a sensitive voxel-wise analytic method to compute regional changes 

in perfusion following therapy. PRMrCBV is derived for each voxel within the tumor, 

and regions of increasing or decreasing rCBV values are quantified individually. On the 

other hand, mean variations in rCBV values averaged all over the tumor (increasing and 

decreasing regions cancel out) will lack sufficient sensitivity in evaluating outcomes in 

GBM. Using this method, Tsien et al.66 concluded that PRMrCBV at week 3 during CCRT 

might represent an early imaging biomarker to distinguish TP from PsP in high-grade 

glioma patients. Another novel parameter known as fractional tumor burden (FTB) is 

defined as the volume fraction of tumor voxels exceeding a specified rCBV threshold. 

FTB providing per-voxel measurements rather than computing a single value to represent 

the entire contrast-enhancing volume of a tumor may be a robust method for overcoming 

the issue of tissue heterogeneity within the tumor. FTB has been shown to correlate with 

histologic tumor volume fraction in treated GBM better than rCBV.67 In a study by Iv et al. 

(n = 47),41 FTB was used to differentiate treatment effect (n = 17) from recurrent GBMs (n 

= 30) with high diagnostic performance. The investigators used rCBV threshold values of 

1.0 and 1.75 to define three FTB classes: FTBlow (percentage of contrast-enhancing voxels 

with rCBV of ≤ 1.0); FTBmid (percentage of voxels with rCBV between 1.0 and 1.75); and 

FTBhigh (percentage of voxels with rCBV of ≥ 1.75). Additionally, mean rCBV values from 

the entire CERs of tumors were estimated in each case. Significant differences in FTBhigh, 

FTBlow, and mean rCBV values were observed between recurrent GBMs and treatment 

effect with moderate to high accuracies (FTBlow [70%], mean rCBV [81%], and FTBhigh 

[85%]). The findings from this study indicate that the diagnostic performance of FTB as 

a novel hemodynamic parameter is not significantly better than that of traditionally used 

mean rCBV values in discriminating TP from PsP. We believe that FTB maps using different 

threshold rCBV values should be investigated to improve their diagnostic performance. 

The diagnostic performances of DSC-PWI–derived parameters are summarized in Table 1. 

Lastly, ferumoxytol is a nanosized blood pool agent requiring no contrast agent leakage 

correction. rCBVmean using ferumoxytol has been found to be superior to that of GBCAs for 

evaluating treatment response in GBM patients.68

Collectively, these DSC-PWI studies have shown the clinical usefulness of rCBV in 

differentiating TP from PsP. However, the potential role of rCBV in evaluating treatment 

response in GBM has been limited as increased rCBV may not always necessarily be 
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associated with TP; local inflammatory response may also result in elevated rCBV in the 

tumor beds, particularly in the setting of immunotherapy.69 Moreover, the wide variability 

in DSC-PWI acquisition and the use of different types of postprocessing software, as well 

as the techniques employed for contrast leakage and recirculation correction in different 

studies, are other potential causes of variable results reported in the literature. Moving 

forward, active efforts to standardize the acquisition and analysis of DSC-PWI data must be 

achieved to improve the consistency of interpreting rCBV findings across studies.

2.7 | Dynamic contrast-enhanced MRI

DCE-MRI involves acquisition of T1-weighted images generally using a 3D-spoiled 

gradient recalled-echo (SPGR) or fast low-angle shot (FLASH) sequences before, during, 

and after the injection of GBCA. DCE-MRI measures T1 changes in tissues over time after 

bolus administration of GBCA. DCE-MRI is often performed for generating tissue perfusion 

parameters based on pharmacokinetic modeling that typically requires an additional 

precontrast T1-mapping protocol.70 In clinical settings, a pharmacokinetic model proposed 

by Tofts et al. is generally used to process DCE-MRI data.71 The most commonly used 

DCE-MRI–derived parameter is volume transfer constant (Ktrans), which determines the flux 

of contrast agent from intravascular to extravascular-extracellular space. Physiologically, 

Ktrans reflects the combined effects of vascular permeability and tumor perfusion. The other 

clinically important parameters include volume fraction of extravascular-extracellular space 

in tissues (ve) and volume fraction of plasma space in tissues (vp). The parameter ve has 

been shown to be positively associated with ADC because of reduced cellularity and greater 

extracellular space.72 The parameter vp may reflect angiogenic activity in tumors. Compared 

with DSC-PWI, DCE-MRI possesses greater spatial resolution, is less prone to susceptibility 

artifacts, and provides better estimation of vascular permeability.

In a retrospective DCE-MRI study on post-treatment GBM patients, Thomas et al.42 used 

Ktrans as well as vp to differentiate TP (n = 24) and PsP (n = 13). The investigators found 

a cut-off value of more than 3.6 for Ktrans yielding 69% sensitivity and 79% specificity 

for identifying TP and a cut-off value of less than 3.7 for vp yielding 85% sensitivity and 

79% specificity for identifying PsP. In a related study by Yun et al.,73 the mean Ktrans and 

ve, but not the mean vp, were found to be significantly higher in TP (n = 17) than in PsP 

(n = 16). Although pharmacokinetic model-based quantitative parameters may be useful in 

measuring real physiological tissue properties, their clinical potential is hampered by a lack 

of consensus regarding the use of optimal pharmacokinetic model, water exchange effects, 

and an absence of clear criteria to compute arterial input functions.

Despite some clinical limitations and unsolved issues, the available evidence advocates 

for the potential of perfusion MRI in distinguishing TP from PsP in GBM patients. 

However, more well-controlled studies with standardized protocols are needed to validate 

these promising findings. The diagnostic performances of DCE-MRI–derived parameters are 

summarized in Table 1.

Chawla et al. Page 10

NMR Biomed. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.8 | Combined use of diffusion and perfusion MRI

In GBMs, spatial and temporal intratumoral heterogeneity causes regional variations in 

metabolism, vasculature, oxygenation, and cytoarchitectural integrity that is reflected by 

a mismatch in the findings from different neuroimaging parameters. Therefore, the use 

of a single imaging technique or parameter may not always be reliable in characterizing 

GBMs and evaluating treatment response. Indeed, the multiparametric approach of data 

analysis is an upcoming method in which several quantitative MRI techniques are studied 

in combination to potentiate the individual value of each advanced MRI technique used in 

isolation in addressing the issue of inherent tumor heterogeneity.

Given that DTI- and PWI-derived parameters provide inherently different but 

complementary physiological information, it may be assumed that these parameters may 

interact synergistically in the combined data analysis, thus providing higher diagnostic 

power than what would be expected from individual parameters (Figures 3–5). In 

accordance with this hypothesis, several studies have reported the importance of merging 

the unique strengths of DTI and PWI together in discriminating necrotic GBMs from 

brain infections,53 histologic grades of nonenhancing gliomas,74 classification of brain 

neoplasms,51,52 discrimination of recurrent tumors from radiation necrosis,75 assessing 

tumor invasiveness,76 predicting survival,77 and evaluating response to immunotherapy in 

patients with GBM.54

In an earlier study, Fink et al.78 observed significantly higher rCBVmax from lesions 

characterized as tumor recurrence (n = 30) compared with those with predominant treatment 

effects (n = 10). However, the investigators did not find any significant difference in 

ADC ratio (minimum value of ADC from lesions normalized to contralateral white matter 

regions) between these two groups. In another study (n = 68), Prager et al.37 observed 

significantly higher rCBV and lower ADC in TP compared with PsP. Notably, the diagnostic 

performance of rCBV was better than that of ADC in distinguishing these two groups of 

tumors. Together, the findings from these two studies support the notion that intratumoral 

heterogeneity causes mismatch and incongruity in the phenotypic information obtained 

from different physiologic MRI-derived parameters, thus emphasizing the importance of a 

multiparametric analytical approach for achieving better diagnostic accuracy. Indeed, when 

rCBV and ADC parameters were included in the combined model, Prager et al.37 obtained a 

slightly better sensitivity and specificity than rCBV or ADC alone in distinguishing TP from 

PsP. Unfortunately, only 60% of all patients had the availability of both DWI and DSC-PWI 

data in that study.

In a similar study from our group (n = 41),32 follow-up GBM patients presenting with new 

enhancing lesions within 6 months of completion of CCRT were classified into TP (n = 

21), mixed tumors (n = 12), and PsP (n = 8) groups based on histopathological findings 

from tumor specimens obtained from repeat surgery. Significantly elevated values of FA, CP, 

CL, and rCBVmax were noticed in TP compared with those with PsP plus mixed tumors 

from CER of neoplasms with variable sensitivities (62%–71%) and specificities (75%–90%) 

of individual parameters. However, the best logistic regression model to differentiate TP 

from PsP comprised FA, CL, and rCBVmax, resulting in an accuracy of 90%, a sensitivity 

of 76%, and a specificity of 95%. Moving forward, we used a combination of DTI and 
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PWI parameters in evaluating treatment response to EGFRvIII targeted chimeric antigen 

receptor T-cell therapy in patients with recurrent GBM (n = 10) in a more recent study.54 

When percent changes in individual imaging parameters were assessed from enhancing 

lesions at different follow-up periods relative to baseline, no definite trends were observed, 

indicating that imaging parameters when used in isolation may have a limited role in 

assessing the heterogeneity of treatment response. However, when we used probabilities of 

tumor progression derived from a combination of FA, CL, and rCBVmax, we were able 

to objectively characterize each lesion as either TP or PsP at each individual time point. 

Collectively, these findings suggest that a multiparametric approach may provide a more 

accurate assessment of treatment response than an individual parameter or technique in 

GBM patients.

2.9 | Proton MR spectroscopy

A number of studies,79,80 including from our group,81–84 have described the usefulness of 
1H MRS in characterizing brain tumors. Several data analytical methods have been proposed 

to report 1H MRS data for studying brain tumor metabolism. To report 1H MRS data, it has 

been a common practice to use metabolite ratios for quantification purposes, as metabolite 

ratios are more easily measured than metabolite concentrations. These metabolite ratios 

correct for several unknown and hard to obtain or uncontrollable experimental conditions 

such as static (B0) and radiofrequency (B1) field inhomogeneities, regional susceptibility 

variations, instrumental gain drifts, localization method differences, variations in voxel 

size and partial volume effects causing contamination with metabolite free cerebral-spinal 

fluid components. Generally, there are two approaches for reporting metabolite ratios, 

and these include normalized (with reference to contralateral normal brain regions) and 

non-normalized methods (with reference to ipsilateral regions).

While it has been reported that the inclusion of a metabolite from a voxel encompassing 

contralateral normal brain region in the denominator can potentially introduce some 

variability such as noise propagation and localization,85 we believe that reporting 

spectroscopy data as a normalized metabolite ratio is a better option. This is because 

normalization of the area under the peak or concentration of metabolites from tumor regions 

with respect to similar metabolite measures from contralateral normal brain regions may 

account for intersubject variability and thus facilitate unbiased group comparisons. Our 

supposition is corroborated by an earlier study, in which normalized metabolite ratios were 

found to be better than non-normalized metabolite ratios in characterizing gliomas.86 In 

another study, normalized metabolite ratios provided improved discrimination of recurrent 

tumors from RN over non-normalized metabolite ratios.87

Using standard multivoxel 1H MRS methods covering both solid/contrast enhancing, and 

peritumoral regions, several studies87–89 have shown the clinical potential of 1H MRS in 

differentiating recurrent tumors from RN in GBM patients. Collectively, these studies have 

shown that metabolite ratios of choline (Cho; a marker of increased cellular proliferation 

that is generally elevated in brain tumors90) relative to N-acetylaspartate (NAA; reflects 

neuronal integrity and viability, and is decreased in tumors90) and/or creatine (Cr; a marker 

of energy metabolism90), either from the ipsilateral voxel from tumors or from the voxel 
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encompassing contralateral normal brain regions, were significantly higher in recurrent 

tumors than in RN. In one study,91 Chotumor/NAAtumor was found to be the best parameter 

in distinguishing recurrent tumors (n = 20) from RN (n = 13) with a sensitivity of 85%, a 

specificity of 69.2%, and an accuracy of 92%.

Despite the success of reporting 1H MRS data as metabolite ratios, relative quantification 

methods may introduce some potential errors and can lead to misinterpretation of 1H 

MRS data.85 On the other hand, quantifying the absolute concentration of metabolites 

allows unambiguous interpretation of data. There are several methods for estimating the 

absolute concentration of metabolites that include an external standard reference, tissue 

water signal as an internal reference, phantom replacement method and principle of 

reciprocity. Interested readers are referred to excellent articles available in the literature for a 

detailed overview on computing absolute concentrations of metabolites using 1H MRS.92–94 

Tissue water signal as an internal reference has been the most commonly used method for 

estimating metabolite concentrations for characterizing brain tumors in previous studies.95,96

Because the pathogeneses of RN and PsP are comparable,10,97 it may be hypothesized 

that these two entities would present similar metabolic patterns such that widely available 

reports of abnormal metabolite profiles from RN may be extrapolated to understand 

differences between TP and PsP (Figure 6). Indeed, the investigators of a longitudinal 

study98 observed elevated levels of lipids and decreased Cho/NAA in PsP compared with 

TP patients. 3D echo planar spectroscopic imaging (3D-EPSI) allows acquisition of high-

resolution whole brain metabolite maps.99,100 The utility of 3D-EPSI has been reported in 

several applications in neuro-oncology.54,101–105 Using the 3D-EPSI sequence, we recently 

reported promising findings in distinguishing TP (n = 18) from PsP (n = 9) in GBM 

patients.43 While comparing metabolite ratios from CER, immediate peritumor region (IPR) 

and distal peritumor region (DPR) of neoplasms, significantly elevated Cho/NAA was 

observed from all of these regions in TP patients compared with those with PsP (Table 1). 

Additionally, significantly elevated Cho/Cr levels from CER were observed in TP compared 

with PsP. Higher Cho/NAA from peritumoral regions (IPR and DPR) in TP in comparison 

with PsP suggests that TP lesions were associated with a greater degree of neoplastic 

infiltration and/or greater damage to neuronal integrity in regions beyond the CER. These 

findings imply that the mapping of metabolite ratios from peritumoral areas should also be 

considered when differentiating TP from PsP. We believe that assessment of the real extent 

of neoplastic spread will enable the formulation of more aggressive treatment strategies for 

the management of TP patients.

2.10 | Amide proton transfer imaging

Chemical exchange saturation transfer (CEST) is a somewhat novel metabolic imaging 

technique that allows detection of both exogenous and endogenous molecules possessing 

labile proton groups such as hydroxyls (-OH), amides (-NH), and amines (-NH2) that are 

present in very low concentrations (μM to mM range). These exchangeable protons are 

selectively saturated using a continuous radiofrequency irradiation. Subsequently, when 

these saturated protons exchange with bulk water protons, a decline in the bulk water signal 

is observed over a period of time. The degree of CEST effect depends on the concentration 
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of molecules, number of labile proton groups per molecule, and the exchange rate of these 

labile protons. Fluctuations in environmental conditions such as temperature and pH can 

also vary the CEST effect by altering the exchange rate.

APT-weighted imaging is a CEST method widely used to map the endogenous mobile 

proteins and peptides in tissues by exploiting the labile amide protons.106 These amide 

protons resonate at about 8.3 ppm on the MR spectrum, and hence have a chemical shift 

3.5 ppm downfield from bulk water resonance (4.8 ppm). Because of the slow exchange rate 

(10–30 s−1), it is feasible to obtain almost complete saturation of amide protons utilizing a 

low-power and long-duration saturation pulse. The slow exchange rate of amide protons also 

permits acquisition of good quality APT-weighted images, even at a clinical field strength of 

3 T.

It is widely believed that malignant cells express higher amounts of mobile peptide 

components that contribute to higher APT signals from tumor tissues.107 APT contrast 

has been shown in demarcating the neoplastic lesions from normal brain tissues in 

both preclinical and clinical studies.108 A few studies109,110 have also demonstrated the 

strong clinical potential of APT-weighted imaging in delineating malignant neoplastic 

infiltration from peritumoral vasogenic edema, in distinguishing histopathological grades, 

and in discriminating high-grade gliomas from CNS lymphomas. Some studies44 have also 

documented significantly higher APT-weighted signal intensities in TP (n = 20) than in PsP 

(n = 12) cases, mainly due to the presence of higher mobile proteins/peptides concentrations 

in TP (Table 1).

Collectively, these studies suggest that APT is rapidly evolving as a novel molecular MRI 

technique in neuro-oncology. However, several technical factors impact the tissue contrast 

generated by APT-weighted imaging.111 Water longitudinal relaxation time (T1) has been 

shown to influence the APT signal. Depending on the levels of direct water saturation, the 

T1 effect on APT signal is either linear or complex. This relationship further depends on 

the field strength, irradiation power and steady state or nonsteady state acquisition schemes. 

Furthermore, magnetization transfer (MT) and nuclear Overhauser enhancement (NOE) 

saturation transfer effects are known to impact the APT signal intensity.112 Because of these 

reasons, we believe that more research is needed to establish whether APT can be used 

routinely for post-treatment imaging in GBM patients.

2.11 | Amino acid-based positron emission tomography imaging

Over the last several years, [18F]-2-Fluoro-2-deoxy-D-glucose ([18F]-FDG) has been the 

most commonly used positron emission tomography (PET) tracer with which to study 

brain tumors.113,114 Elevated [18F]-FDG uptake in neoplastic cells reflects increased 

expression of glucose transporters and/or enzymatic activity of hexokinase.115 However, 

normal brain parenchyma shows a natural higher uptake of [18F]-FDG, which undermines 

the diagnostic accuracy of FDG tracer for accurate delineation of brain tumor margins, 

especially from adjacent gray matter regions. On the other hand, several amino acid-based 

PET imaging tracers have emerged as alternative candidates for metabolic imaging of brain 

tumors.116 These tracers are characterized by high tumor to brain contrast based on their 

relatively high specificity for neoplastic cells and low accumulation in normal brain tissues. 
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Frequently used amino acid tracers include O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]-FET), 

[11C]methyl-L-methionine ([11C]-MET), and 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine 

([18F]-FDOPA) targeting energy-independent amino acid transporters of L-type (LAT) that 

are known to be upregulated in brain tumors.117 In addition to amino acid-based tracers, 18F-

fluorothymidine ([18F]-FLT), a pyrimidine analogue, has been used as a surrogate marker 

for cellular proliferation in neuro-oncology because of its preferential uptake by rapidly 

dividing neoplastic cells where it indicates the activity of thymidine kinase-1 (a key enzyme 

involved in DNA synthesis).118

In a prospective study using FLT-PET imaging, Brahm et al.119 did not observe any 

differences between TP (n = 7) and PsP (n = 7) in GBM patients who were treated with 

CCRT, mainly because of the fact that FLT uptake in GBMs reflects not only the trapping 

of FLT in proliferating neoplastic cells, but also the disruption of BBB integrity.120 The 

limited diagnostic utility of FLT-PET in distinguishing TP from PsP might be attributed to 

the fact that BBB leakage is known to occur in both TP and PsP. On the other hand, amino 

acid-based PET imaging tracers can cross the intact BBB, allowing the depiction of tumor 

regions beyond the contrast enhancement that is seen on MR imaging.121 Using [18F]-FET 

as a PET imaging tracer, Kebir and his colleagues45 were successful in distinguishing TP 

(n = 19) from PsP (n = 7) in GBM patients treated with CCRT. Some other studies46,47 

have also shown the potential of [18F]-FET-PET imaging in distinguishing TP from PsP in 

GBMs (Table 1). The plausible explanation might be that active tumor cells express higher 

concentrations of mobile protein and peptide components,122 providing a higher contrast in 

TP than in PsP. The other potential significance of using [18F]-FET-PET has been that FET 

tracer exhibits a high uptake by neoplastic cells and less uptake by inflammatory cells.123

2.12 | Combined analysis of physiologic MRI and molecular biomarkers

The recent emergence of molecular biomarkers in neuro-oncology has had a considerable 

bearing on the clinical management of GBM patients. Numerous genetic and molecular 

alterations in GBMs have been associated with the development of PsP, including an 

isocitrate dehydrogenase (IDH) mutation, a p53 mutation, and an MGMT promoter 

methylation.124

The methylation (deactivated) status of MGMT gene promoter is an important biomarker of 

tumor response to TMZ chemotherapy.125 Patients harboring methylated MGMT promoters 

are associated with more favorable prognosis and survival outcomes than those with 

unmethylated genotype.126,127 It is essential to develop imaging biomarkers that can help 

us in identifying the MGMT status of GBMs noninvasively. While some studies128,129 

have documented lower ADC in tumors with unmethylated MGMT promoters, some other 

studies130,131 have found no significant relationships between ADC and MGMT promoter 

methylation status. In a multiparametric analysis,132 a combination of tumor location, extent 

of necrosis, ADC, and cerebral blood flow had the greatest accuracy in identifying MGMT 

promoter methylation status.

While evaluating the potential of diffusion and perfusion imaging parameters in predicting 

PsP within GBM patients based on stratification via MGMT methylation status, Yoon et 

al.133 noticed a trend towards higher accuracy in the MGMT promoter methylation group 
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than in the unmethylation group. Additionally, the pairing of MGMT methylation status with 

imaging parameters was found to have a better accuracy for predicting PsP compared with 

MGMT methylation status alone. Furthermore, the probability of PsP was highest (95.7%) 

when the 90th percentile of normalized CBV (nCBV90) was below 4.02 in the MGMT 

promoter methylation group. In another study,36 the unmethylated MGMT promoter group 

had a significant difference in mean rCBV between TP and PsP, although the methylated 

MGMT promoter group had no significant difference. Collectively, these studies suggest that 

diffusion and perfusion imaging-derived parameters may reveal variable investigative values 

in predicting PsP in GBM patients stratified by MGMT promoter methylation status.

2.13 | Radiomics and ML

Radiomics is an emerging translational field that automatically produces mineable high 

dimensionality data from clinical images.134 Readily interpretable and quantitative features 

are extracted from a predefined ROI encompassing both solid and peritumoral regions of 

neoplasms in a typical fashion. Then ML is used to train classifier models using various 

radiomic features. ML is a group of computational procedures that are based upon predictive 

models, which identify imaging patterns in a set of training data that are statistically 

associated with a clinical outcome. The training cohort is used to instruct the computer 

algorithm to detect patterns of features that are subsequently examined in a validation cohort 

to evaluate the performance of the algorithm in correctly predicting the presence or absence 

of a feature and its association with outcome. A feature selection module diminishes the 

number of highly associated features and/or noise, thus increasing the prediction accuracy.

Several studies135–137 have shown the potential of radiomic signatures, derived from 

conventional MRI features, in distinguishing TP from PsP. In a recent study, Kim et al.137 

incorporated DWI and DSC-PWI parameters in a radiomic model and showed improved 

diagnostic performance in distinguishing TP (n = 35) from PsP (n = 26). Moreover, their 

predictive model had good generalizability and showed robustness in a multicenter setting. 

In a recent histopathology-validated ML study involving quantitative multiparametric 

(structural and physiologic parameters) analysis from independent discovery (n = 40; TP 

= 23, PsP = 6, mixed tumors = 11) and replication (n = 23; TP = 12, PsP = 4, mixed 

tumors = 7) cohorts of GBM patients who underwent second resection due to progressive 

radiographic changes suspicious for recurrence, Akbari et al.138 proposed a method 

to define multiparametric features of the resected tissues after deformable registration 

of postoperative to preoperative images using publicly available software139 known as 

Deformable Registration Attribute Matching and Mutual-Saliency weighting (DRAMMS). 

The areas in preoperative images that corresponded to the resected tissues in postsurgery 

images were defined in ROIs in an effort to correlate imaging and histopathological features 

from the same regions within neoplasms. Based on the histopathological assessment (degree 

of pseudopalisading necrosis, microvascular proliferation, dystrophic calcification, vascular 

hyalinization, quantitative assessment of Ki-67, and number of mitotic figures), the whole 

resected specimens were scored from 1 to 6. Score 1 represented less than 10% neoplastic 

features, score 2 10%–25% neoplastic features, score 3 25%–50% neoplastic features, score 

4 50%–75% neoplastic features, score 5 75%–90% neoplastic features, and a score of 

6 more than 90% neoplastic features. The scores of 1–2 were defined as PsP, 3–4 as 
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mixed tumors (a mixture of TP and PsP), and 5–6 as TP. The investigators of this study 

employed deep learning and conventional feature extraction methods to extract quantitative 

imaging characteristics from multiparametric MRI. They found good correlations between 

the imaging features and histopathologic characteristics of the resected tissue specimens for 

TP, PsP, and mixed tumors (Figure 7). The accuracy of the proposed imaging signatures was 

87% for predicting PsP and 84% for predicting TP in leave-one-out cross-validation tests, 

whereas in the discovery/validation cohort, the accuracy was 87% for predicting PsP and 

78% for TP. Moreover, seven of 10 TP and eight of 10 PsP patients were correctly diagnosed 

by the predictive model, resulting in an accuracy of 75% when interinstitutional validation 

was performed from 20 GBM patients.

As radiomics is a relatively young and evolving field, it is associated with some technical 

challenges and limitations that hamper its implementation in routine clinical settings. 

Owing to variations in data acquisition, data processing schemes and lack of external 

validations, the findings from ML methods may not always be generalized or transferred 

from one patient cohort to another patient cohort. The issue of reproducibility of radiomic 

features has become even more pertinent in retrospective studies involving publicly 

available repositories such as the cancer genome atlas-GBM (TCGA-GBM) and Ivy GBM 

atlas project (Ivy-GAP), where imaging data are collected and archived from different 

MR systems and sites. Currently, several efforts are underway to standardize the image 

acquisition protocols, data processing pipelines, and radiomic feature extraction modules 

across multiple sites. Additionally, the availability of open-source platforms such as the 

Cancer Imaging Phenomics Toolkit, which was specifically developed for neuro-oncology 

applications,140 and the accessibility of more widespread packages such as Pyradiomics,141 

can provide the research community with a standardized workflow for radiomic feature 

extraction and analysis.

As GBMs are extremely heterogenous in nature, the critical aspect of the radiomic pipeline 

is the segmentation of such tumors into entire tumor volumes or subvolumes known as 

“tumor habitats”. A variety of problems that complicates image segmentation of a GBM 

includes normal anatomic variations, postsurgical anatomic variations, neoplastic infiltration 

and irregular tumor boundaries, inadequate contrast, as well as the presence of tissue and 

technical artifacts within an image. Manual tumor segmentation is not only a labor-intensive 

process but is also impacted by interobserver variability and subjectivity.142 While some 

radiomic studies have used automatic and semiautomatic methods for segmentation,143 the 

existing segmentation algorithms are not consistent among different research groups and can 

have a substantial impact on the radiomic analyses as well as on developing reliable, and 

reproducible, diagnostic, predictive, and prognostic models.

Another potential problem in the field of radiomics concerns the small data size, which 

increases the risk of overfitting the data. Relatively small datasets can lead to significant 

variability or bias; thus, an ML algorithm trained based on a small dataset may suffer 

from lower performance and reproducibility when applied to a large dataset. To solve this 

issue, retraining the algorithm is generally required. Another possible solution is utilizing 

incremental learning and adjusting the computerized systems in an automatic way. Random 

sampling, choosing simple models, and removing outliers from data are some other potential 
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strategies that can be used with small datasets to improve the accuracy of a classification 

model.144

We believe that with continuous progress in ML algorithms and the availability of large 

datasets, the upcoming field of radiomics and ML will have a vital role in evaluating 

treatment response in GBM patients with high accuracy.

3 | CONCLUSIONS

While distinguishing TP from PsP in GBMs, large variations in the diagnostic performances 

of metabolic and physiologic MRI parameters have been observed from several previous 

studies. These variations may be attributed to several factors, including inherent spatial 

and temporal heterogeneity of GBMs, small sample size, variability and subjectivity in 

the tissue segmentation methods, and inconsistencies in drawing the ROIs from different 

tissue compartments of tumors. Notwithstanding some of the above-described shortcomings 

and unresolved issues, metabolic and physiological MRI techniques provide quantifiable, 

unbiased, and physiologically relevant information in post-treatment characterization of 

GBMs. When used in combination (i.e., a multiparametric approach), these advanced MRI 

techniques offer more comprehensive information with enhanced accuracy in differentiating 

TP from PsP. However, data acquisition protocols for MRI and PET imaging are variable 

across different imaging sites, which adversely impact the generalizability of imaging 

findings. To facilitate widespread clinical acceptance, standardization, and harmonization 

of methodology, guidelines have been provided for data acquisition and analysis, quality 

assessment and data interpretation for MR diffusion,145 perfusion,146 spectroscopy,147,148 

and PET imaging149 techniques. Additional improvement in this field requires data sharing, 

and large multi-institutional and validation studies.
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Abbreviations used:
1H MRS proton MR spectroscopy

3D three-dimensional

AD axial diffusivity

ADC apparent diffusion coefficient

APT amide proton transfer

CCRT concurrent chemoradiation therapy

CER contrast-enhancing region
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CEST chemical exchange saturation transfer

Cho choline

CL coefficient of linear anisotropy

CP coefficient of planar anisotropy

Cr creatine

CS coefficient of spherical anisotropy

DCE dynamic contrast enhanced

DKI diffusion kurtosis imaging

DPR distal peritumoral region

DRAMMS Deformable Registration Attribute Matching and Mutual-Saliency 

weighting

DSC dynamic susceptibility contrast

DTI diffusion tensor imaging

DWI diffusion-weighted imaging

EPSI echo planar spectroscopic imaging

FA fractional anisotropy

FDM functional diffusion map

FET fluoroethyl-L-tyrosine

FLAIR fluid-attenuated inversion recovery

FLT fluorothymidine

GBCA gadolinium-based contrast agent

GBM glioblastoma

IDH isocitrate dehydrogenase

IPR immediate peritumoral region

IVIM intravoxel incoherent motion

Ktrans volume transfer constant

MD mean diffusivity

MET methyl-L-methionine

MGMT O6-methylguanine-DNA methyltransferase
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MIDAS metabolite imaging and data analysis system

MK mean kurtosis

MPRAGE magnetization-prepared rapid acquisition of gradient echo

MRI magnetic resonance imaging

MT magnetization transfer

MV maximum value

NAA N-acetylaspartate

nCBV90 90th percentile of normalized cerebral blood volume

NOE nuclear Overhauser enhancement

PET positron emission tomography

PHP peak height position

PRM parametric response map

PsP pseudoprogression

PWI perfusion-weighted imaging

RANO response assessment in neuro-oncology

rCBV relative cerebral blood volume

RD radial diffusivity

RN radiation necrosis

ROI region of interest

TMZ temozolomide

TP true progression

TRAM treatment response assessment map

TTFields tumor-treating fields

Ve volume fraction of extravascular-extracellular space in tissues

Vp volume fraction of plasma space in tissues
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FIGURE 1. 
Representative contrast-enhanced T1-weighted (A, C, E and G) and fluid-attenuated 

inversion recovery (FLAIR) (B, D, F and H) images from two patients with glioblastomas 

(GBMs) at baseline (top row) and 1-month follow-up (bottom row). The images (A-D) 

are from a patient with pseudoprogression (PsP), showing increased tumor size at follow-

up. The images (E-H) are from a patient with true progression (TP), showing decreased 

tumor size at follow-up, suggesting the limitation of conventional MR imaging in reliable 

distinction of TP from PsP in GBMs
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FIGURE 2. 
Block diagram showing the trends in structural, metabolic, and physiologic magnetic 

resonance imaging-derived parameters that are usually observed in distinguishing true 

progression (TP) from pseudoprogression (PsP) in glioblastomas. ADC, apparent diffusion 

coefficient; APT, amide proton transfer; CEST, chemical exchange saturation transfer; Cho, 

choline; CL, coefficient of linear anisotropy; CP, coefficient of planar anisotropy; Cr, 

creatine; CS, coefficient of spherical anisotropy; DCE, dynamic contrast-enhanced; DSC, 

dynamic susceptibility contrast; DTI, diffusion tensor imaging; DWI, diffusion-weighted 

imaging; FA, fractional anisotropy; GBCA, gadolinium-based contrast agent; Ktrans, volume 

transfer constant; MD, mean diffusivity; NAA, N-acetylaspartate; PC-T1, postcontrast 

T1-weighted images; rCBV, relative cerebral blood volume; TRAM, treatment response 

assessment map; Ve, volume fraction of extravascular-extracellular space in tissues; Vp, 

volume fraction of plasma space in tissues
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FIGURE 3. 
Axial MR images from a glioblastoma patient with true progression. The postcontrast 

T1 (PC-T1)-weighted image shows a ring-enhancing lesion in the left parietal region. 

Coregistered diffusion tensor imaging-derived parametric maps and cerebral blood volume 

(CBV) maps are shown. Increased mean diffusivity (MD) and coefficient of spherical 

anisotropy (CS), and decreased fractional anisotropy (FA), coefficient of linear anisotropy 

(CL), and coefficient of planar anisotropy (CP), are observed from the enhancing part 

compared with the contralateral normal white matter regions. The enhancing part of the 

lesion is also demonstrating high blood volume on CBV maps. FLAIR, fluid-attenuated 

inversion recovery
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FIGURE 4. 
Axial MR images from a glioblastoma patient with pseudoprogression (PsP). The 

postcontrast T1 (PC-T1)-weighted image shows a ring-enhancing lesion in the right parietal 

lobe. Coregistered diffusion tensor imaging-derived parametric maps and cerebral blood 

volume (CBV) maps are shown. Decreased mean diffusivity (MD) and coefficient of 

spherical anisotropy (CS), and increased fractional anisotropy (FA), coefficient of linear 

anisotropy (CL), and coefficient of planar anisotropy (CP), are noticed from the enhancing 

part compared with normal white matter. Please also note the presence of lower CBV 

from contrast-enhancing regions compared with that from a true progression (TP) patient 

as shown above suggesting a lower degree of perfusion and neovascularization in PsP 

compared with TP. FLAIR, fluid-attenuated inversion recovery
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FIGURE 5. 
Axial postcontrast T1 (PC-T1)-weighted image from a patient with true progression (TP) 

(top row), demonstrating a neoplasm in the right parietal region infiltrating into the lateral 

ventricles. The regions of interest are overlaid on the image, with the colors indicating the 

following defined regions: white, contrast-enhancing region; yellow, central core; orange, 

immediate peritumoral region; and brown, distal peritumoral region. Fractional anisotropy 

(FA), cerebral blood volume (CBV), volume transfer constant (Ktrans), and volume fraction 

of plasma space in tissues (Vp) values from the enhancing regions (arrows) in TP are higher 

than those of pseudoprogression (PsP) (bottom row). A photomicrograph of hematoxylin–

eosin (H & E) stain from the TP case demonstrates areas of high tumor cellularity, 

pseudopalisading necrosis, endothelial proliferation, and increased mitotic activity, whereas 

PsP shows predominant treatment-related changes, including extensive geographic necrosis 

and vascular fibrinoid necrosis
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FIGURE 6. 
Left panel (true progression [TP]): the axial postcontrast T1-weighted image demonstrates 

a nodular contrast-enhancing lesion in the left temporal lobe. The square box overlaid on 

the enhancing lesion is a combination of 16 voxels (nominal voxel size = 4.3 × 4.3 × 5.6 

mm3). Corresponding summed 1H MRS spectrum from these 16 voxels exhibiting various 

metabolites. Right panel (pseudoprogression [PsP]): the axial postcontrast T1-weighted 

image shows a heterogeneously enhancing lesion in the right more than left frontal 

lobes involving the genu and body of corpus callosum. The square box overlaid on the 

enhancing lesion is a combination of 16 voxels (nominal voxel size = 4.3 × 4.3 × 5.6 

mm3). Corresponding summed 1H MRS spectrum from these 16 voxels exhibiting various 

metabolites. Please note the presence of higher Cho/NAA and Cho/Cr ratios in TP than in 

PsP. Both these patients were scanned on a 3-T MR system after the completion of maximal 

resection of tumor followed by standard-of-care chemoradiation therapy and were exhibiting 

new contrast-enhancing lesion in the resection bed within 6 months of standard treatment. 

The whole-brain 1H MRS was acquired using a three-dimensional echoplanar spectroscopic 

imaging sequence (a modified spin-echo sequence with GRAPPA). The typical sequence 

parameters were: repetition time/echo time = 1700/17.6 ms; scanning time = ~17 min that 

included interleaved acquisition of metabolite and water reference scans. Cho, choline; Cr, 

creatine; Glx, glutamate + glutamine; mI, myo-inositol; NAA, N-acetylaspartate
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FIGURE 7. 
Processing pipeline of the artificial intelligence radiographic biomarkers and histopathologic 

analyses. Top row (imaging): (1) multiparametric (mp) MRI scans: T1-weighted precontrast 

and postcontrast, T2-weighted, T2 fluid-attenuated inversion recovery (T2-FLAIR), 

diffusion tensor imaging (DTI), dynamic susceptibility contrast (DSC)-MRI and defining 

the resected tissues; (2) defining the resected enhancing tissues after registration of the 

preoperative with postoperative images using Deformable Registration Attribute Matching 

and Mutual-Saliency weighting (DRAMMS) software. Features are extracted from each 

region, quantifying intensity, shape, principal component analysis, statistics, and texture. 

Machine learning analysis is performed. Bottom row (pathology): (1) excisional biopsy; 

(2) histological characteristics and defined pathology scores from resected tumor specimen. 

Right panel: a plot showing a correlation between pathology scores and imaging scores via 

artificial intelligence (radiomics scores)
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TABLE 1

Summary of the diagnostic performances of metabolic and physiologic MRI and PET imaging parameters in 

distinguishing TP from PsP in GBMs

Imaging 
technique Parameter Study/reference

Cut-off 
value Sensitivity Specificity Accuracy

DWI ADCmean Lee et al. 201225 TP (n = 10); PsP (n = 12) 1.2 × 10−3 

mm2/s
80% 83.3% 81.2%

5th percentile of 
ADC3000

Chu et al. 201328 TP (n = 15); PsP (n = 15) 0.645 × 
10−3 mm2/s

93.3% 100% 88.9%

5th percentile of 
ADC1000

Chu et al. 201328 TP (n = 15); PsP (n = 15) 0.929 × 
10−3 mm2/s

73.3% 73.3% 66.7%

rADC Reimer et al. 201730 TP (n = 28); PsP (n = 7) 27.05% 86% 86% 84.4%

DTI FA + CL + 
rCBVmax

Wang et al. 201632 TP (n = 21); mixed tumors (n 
= 12); PsP (n = 8)

0.55 76% 95% 90.5%

DKI rMK Wu et al. 202133 TP (n = 24); PsP (n = 16) 0.87 87.5% 87.5% 85.0%

DSC-PWI CBV-PHP Kim et al. 201034 TP (n = 14); mixed tumors (n = 
10); PsP (n = 15)

1.7 90.2% 91.1% 97.3%

CBV - MV Kim et al. 201034 TP (n = 14); mixed tumors (n = 
10); PsP (n = 15)

2.6 96.5% 93.1% 98.7%

ΔrCBV Mangla et al. 201035 TP (n = 12); PsP (n = 7) NA 76.9% 85.7% 85%

rCBV Kong et al. 201136 TP (n = 33); PsP (n = 26) 1.49 81.5% 77.8% NA

rCBV lesion Prager et al. 201537 TP (n = 58); PsP (n = 10) 1.27 86.5% 83.3% 86.3%

rCBV ROI Prager et al. 201537 TP (n = 58); PsP (n = 10) 1.74 91.9% 66.7% 79.7%

ΔnCBV Boxerman et al. 201738 TP (n = 9); PsP (n = 10) NA 100% 85% 97%

nCBV – 
histograhic 
pattern

Baek et al. 201239 TP (n = 42); PsP (n = 37) NA 85.7% 89.2% 93.4%

rCBV optimal 
threshold

Hu et al. 201240 TP (n = 16); PsP (n = 9) 1.0 100% 100% 100%

FTBhigh Iv et al. 201941 TP (n = 30); PsP (n = 17) >24.9% 80% 82% 85%

FTBlow Iv et al. 201941 TP (n = 30); PsP (n = 17) <28.5% 50% 94% 77%

rCBV Iv et al. 201941 TP (n = 30); PsP (n = 17) 1.53 70% 88% 81%

DCE-MRI Ktrans
mean Thomas et al. 201542 TP (n = 24); PsP (n = 13) 3.6 69% 79% 80.8%

vp mean Thomas et al. 201542 TP (n = 24); PsP (n = 13) 3.7 85% 79% NA

vp 90% Thomas et al. 201542 TP (n = 24); PsP (n = 13) 3.9 85% 92% 90.4%

3D-EPSI Cho/Cr + 
Cho/NAA

Verma et al. 201943 TP (n = 18); PsP (n = 9) 0.40 94% 87% 93%

APT APTmean Ma et al. 201644 TP (n = 20); PsP (n = 12) 2.42% 85% 100% 98%

APT APTmax Ma et al. 201644 TP (n = 20); PsP (n = 12) 2.54% 95% 91.7% 97%

aF-FET-PET TBRmax Kebir et al. 201645 TP (n = 19); PsP (n = 7) 1.9 84% 86% 85%

aF-FET-PET TBRmean Werner et al. 202146 TP (n = 12); PsP (n = 11) 1.95 82% 92% 87%

aF-FET-PET TBRmax Werner et al. 202146 TP (n = 12); PsP (n = 11) 2.85 64% 92% 78%

aF-FET-PET TBRmean Lohmann et al. 202147 TP (n = 18); PsP (n = 16) 1.95 75% 61% 68%

aF-FET-PET TBRmax Lohmann P, et al. 202147 TP (n = 18); PsP (n = 
16)

2.25 81% 67% 74%
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Abbreviations: 3D-EPSI, three-dimensional echoplanar spectroscopic imaging; ADC, apparent diffusion coefficient; ADC3000, ADC using a 
‘b’ value of 3000s/mm2; ADC1000, ADC using a ‘b’ value of 1000s/mm2; APT, amide proton transfer; Cho, choline; CL, coefficient of 
linear anisotropy; Cr, creatine; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; DKI, diffusion kurtosis imaging; DSC-PWI, 
dynamic susceptibility contrast perfusion-weighted imaging; DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; FA, fractional 

anisotropy; FTB, fractional tumor burden; GBM, glioblastoma; Ktrans, volume transfer constant; MV, maximum value; NA, not available; 
NAA, N-acetylaspartate; nCBV, normalized cerebral blood volume; PET, positron emission tomography; PHP, peak height position; PsP, 
pseudoprogression; rADC, relative apparent diffusion coefficient; rCBV, relative cerebral blood volume; rMK, relative mean kurtosis; ROI, 
region of interest; TBRmax, maximum tumor/brain ratio; TBRmean, mean tumor/brain ratio; TP, true progression; Vp, volume fraction of 

extravascular-extracellular space in tissues; ΔnCBV, change in normalized CBV.

18F-FET-PET = O-(2-[18F]fluoroethyl)-L-tyrosine.
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