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Abstract 
Doublets are prevalent in single-cell sequencing data and can lead to 
artifactual findings. A number of strategies have therefore been 
proposed to detect them. Building on the strengths of existing 
approaches, we developed scDblFinder, a fast, flexible and accurate 
Bioconductor-based doublet detection method. Here we present the 
method, justify its design choices, demonstrate its performance on 
both single-cell RNA and accessibility sequencing data, and provide 
some observations on doublet formation, detection, and enrichment 
analysis. Even in complex datasets, scDblFinder can accurately identify 
most heterotypic doublets, and was already found by an independent 
benchmark to outcompete alternatives.
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Introduction
High-throughput single-cell sequencing, in particular single-cell/nucleus RNA-sequencing (scRNAseq), has provided
an unprecedented resolution on biological phenomena. A particularly popular approach uses oil droplets or wells to
isolate single cells along with barcoded beads. Depending on the cell density loaded, a proportion of reaction volumes
(i.e. droplets or wells) will capture more than one cell, forming ‘doublets’ (or ‘multiplets’), i.e. two or more cells captured
by a single reaction volume and thus sequenced as a single-cell artifact. The proportion of doublets has been shown to be
proportional to the number of cells captured (Bloom 2018; Kang et al. 2018). It is therefore at present common in single-
cell experiments to have 10-20% doublets, making accurate doublet detection critical.

‘Homotypic’ doublets, which are formed by cells of the same type (i.e. similar transcriptional state), are very difficult to
identify on the basis of their transcriptome alone (McGinnis, Murrow, and Gartner 2019). They are also, however,
relatively innocuous for most purposes, as they appear highly similar to singlets. ‘Heterotypic’ doublets (formed by cells
of distinct transcriptional states), instead, can appear as an artifactual novel cell type and disrupt downstream analyses
(Germain, Sonrel, and Robinson 2020).

Experimental methods have been devised for detecting doublets in multiplexed samples, using barcodes (Stoeckius et al.
2018) or genotypes (e.g. single-nucleotide polymorphisms) to identify droplets containing material from more than one
sample (Kang et al. 2018).While evidently useful, these identify only a fraction of the doublets, and fail to detect doublets
formed by cells from the same sample, including heterotypic doublets.

A number of computational approaches have therefore been developed to identify doublets on the basis of their
transcriptional profile (McGinnis, Murrow, and Gartner 2019; DePasquale et al. 2019; Wolock, Lopez, and Klein
2019; Bais and Kostka 2020; Bernstein et al. 2020). Most of these approaches rely on the generation of artificial doublets
by summing or averaging real cells, and score the similarity between them and the real cells. For example, DoubletFinder
generates a k-nearest neighbor (kNN) graph on the union of real cells and artificial doublets, and estimates the density of
artificial doublets in the neighborhood of each cell (McGinnis,Murrow, andGartner 2019). In a similar fashion, one of the
methods proposed byBais andKostka (2020), bcds, generates artificial doublets and trains a classifier to distinguish them
from real cells. Real cells that are classified with artificial doublets are then called as doublets. Finally, another strategy
proposed by Bais and Kostka (2020) is a coexpression score, cxds, which flags cells that co-express a number of genes
that otherwise tend to be mutually exclusive across cells.

Xi and Li (2021a) recently reported a benchmark of computational doublet detectionmethods, using both simulations and
real datasets with genotype-based true doublets. Interestingly, despite several new publications, the benchmark identified
the oldest method, DoubletFinder (McGinnis, Murrow, and Gartner 2019), as the most accurate. However, another
important observation from the benchmark was that no single method was systematically the best across all datasets,
highlighting the necessity to test and benchmark methods across a variety of datasets, and suggesting that some strategies
might have advantages and disadvantages across situations.

Here, we present the scDblFinder package, building on the extensive single-cell Bioconductor methods and infrastruc-
tures (Amezquita et al. 2019) and implementing a number of doublet detection approaches. In particular, the scDblFinder
method integrates insights from previous approaches and novel improvements to generate fast, flexible and robust
doublet prediction. scDblFinder was independently tested by Xi and Li in the protocol extension to their initial
benchmark and was found to have the best overall performance (Xi and Li 2021b).

Methods
scDblFinder implementation
Figure 1 gives an overview of the scDblFinder method.

As a first step, the dataset is reduced to its top most expressed features (1000 by default); if the cluster-based approach is
used, the top features per cluster are instead selected.

If using the cluster-based approach (and not manually specifying the clusters), a fast clustering is performed (see Fast
clustering). Artificial doublets are then created by combining cells of different clusters, proportional to the cluster sizes. In
explicitly concentrating on inter-cluster doublets, we do not attempt to identify homotypic doublets, which are virtually
unidentifiable and relatively innocuous anyway. In doing so, we reduce the necessary number of artificial doublets (since
no artificial doublet is ‘lost’ modeling homotypic doublets), and prevent the classifier from being trained to recognize
cells that are indistinguishable from singlets (and would therefore call singlets as doublets). An alternative strategy, also
available through scDblFinder, is to generate fully random artificial doublets, and use the iterative procedure (see below)
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to exclude unidentifiable artificial doublets from the training. In practice, the two approaches have comparable
performances (see below), and they can also be combined.

Dimension reduction is then performed on the union of real cells and artificial doublets, and a nearest neighbor network is
generated. The network is then used to estimate a number of characteristics for each cell, in particular the proportion
of artificial doublets among the nearest neighbors. Rather than selecting a specific neighborhood size, the ratio is
calculated at different values of k, creatingmultiple predictors that will be used by the classifier. A distance-weighted ratio
is also included. Further cell-level predictors are added, including: projections on principal components; library size; and
co-expression scores (based on a variation of Bais and Kostka 2020). scDblFinder then trains gradient boosted trees to
distinguish, based on these features, artificial doublets from real cells. Finally, a thresholding procedure decides the score
at which to call a cell by simultaneously minimizing the misclassification rate and the expected doublet rate (see
Thresholding).

A key problem with classifier-based approaches is that some of the real cells are mislabeled, in the sense that they are in
fact doublets labeled as singlets. These can mislead the classifier. For this reason, classification and thresholding are
performed in an iterative fashion: at each round, the real cells identified as doublets are removed from the training data for
the next round.

Using the benchmark datasets from Xi and Li (2021a), we next optimized a number of parameters in the procedure,
notably regarding features to include and hyperparameters, so as to provide robust default parameters (see Germain
2021b, Figures 1-6). Some features, such as the distance to the nearest doublet or whether the nearest neighbor is an
artificial doublet, had a negative impact on performance (see Germain 2021b, Figure 1), presumably because it led to
over-fitting. Indeed, because artificial doublet creation can only approximate real doublets, a risk of classifier-based
approaches is that the exact classification problem on which they are trained, namely distinguishing artificial doublets
from real cells, slightly differs from the real problem onwhich they are expected to function (distinguishing real doublets
from real singlets). To test the hypothesis that this can lead to overfitting, we used scDblFinder without the dimensional
reduction and kNN steps, which arguably involve a loss of information, and trained the classifier directly on the
expression of the selected genes. This resulted in a reduction in area under the precision and recall curve (AUPRC) in real
datasets (see Germain 2021b, Figure 2; see also Figure 4). Finally, in line with a discrepancy between the trained and real
problems, we observed that the variable importance calculated during training (see Germain 2021b, Figure 3) did not
necessarily match that of the variable drop experiments (see Germain 2021b, Figure 1).

Figure 1. Overview of the scDblFinder method.
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We finally optimized hyperparameters (see Germain 2021b, Figure 4) as well as the number of iterations (see Germain
2021b, Figure 5), finding that a relatively low number of iterations (2-3) was sufficient.

Fast clustering

Irlba-based singular value decomposition is first run using the scater package, and a kNN network is generated using the
Annoy approximation implemented in BiocSingular. Louvain clustering is then used on the graph. If the dataset is
sufficiently large (>1000 cells), a first rapid k-means clustering (using the mbkmeans package) is used to generate a large
number of meta-cells, which are then clustered using the graph-based approach, propagating clusters back to the cells
themselves.

Thresholding

Unless manually given, the expected number of doublets (e) is specified by e¼ n2=10�5 (where n is the number of cells
captured). This is then restricted to heterotypic doublets using random expectation from cluster sizes or, if not using the
cluster-based approach, using the proportion of artificial doublets misidentified. The doublet rate is accompanied by an
uncertainty interval (dbr.sd parameter), and the deviation from the expected doublet number for threshold t is then
calculated as

deviationt ¼
0 if ot ≥ elow ∧ ot ≤ ehigh

� �

2 � min ot� elowj j, ot� ehigh
�� ��� �

elowþ ehigh
otherwise

8><
>:

where ot represents the number of real cells classified as doublets at threshold t, and elow and ehigh represent, respectively,
the lower and higher bounds of the expected number of heterotypic doublets in the dataset (based on the given or
estimated doublet rate the dbr.sd parameter). The cost function being minimized is then simply given by costt ¼
FNRtþFPRt þdeviation2t , where the false negative rate (FNRt) represents the proportion of artificial doublets

Figure 2. Illustration of the cost function to be minimized for thresholding. Plotted are the false negative rate
(FNR; the rate of misclassified artificial doublets), the false positive rate (FPR; the proportion of real cells classified as
doublets), the squared proportion deviation from the expected doublet rate (denoted ‘dev’), and the integrated cost
function to be minimized (mean of the previous). The dashed line indicates the threshold called.
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misclassified as singlets at threshold t, and the false positive rate (FPRt) represents the proportion of real cells classified as
doublets. This is illustrated in Figure 2.

Since this is performed in an iterative fashion, the FPR is calculated ignoring cells which were called as doublets in the
previous round.

Doublet enrichment analysis
Cluster stickiness

Cluster ‘stickiness’ can be evaluated by fitting a single generalized linear model on the observed abundance of doublets of
each origin, in the following way:

log observediþ0:1ð Þ¼ log eið Þþβz � log difficultyið Þþβaaiþβbbiþβcciþ…þ ϵi,

where observedi and ei represent the numbers of doublets formed by specific combination i of clusters which are
respectively observed or expected from random combinations, and ai, bi and ci (etc) indicate whether or not (0/1) the
doublet involves each cluster.

Figure 3. Characterization of real doublets. A: Observedmedian (and +/- onemedian absolute deviation in) library
sizes per cell type against additive expectation for single cell and doublet types in a real dataset. The dashed line
indicates the diagonal. B: Relative contribution of composing cell types in real doublets (each point represents a
doublet) plottedagainst theexpectedrelative contributions (basedon the ratiobetween themedian library sizesof the
composing cell types). Values indicate the relative contribution of one of the two cell types to the doublet’s tran-
scriptome. The dashed line indicates the diagonal, and the thick line indicates the weighted mean per doublet type.
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Because some doublets are easier to identify than others, some deviation from their expected abundance is typically
observed. For this reason, a difficultyi term is optionally included, indicating the difficulty in identifying doublets of
origin i, estimated from the misclassification of scDblFinder’s artificial doublets of that origin (by default, the term is
included if at least seven clusters). A βa significantly different from zero, then, indicates that cluster a forms more or less
doublets than expected – if positive, it indicates cluster ‘stickiness.’

For the (quasi-)binomial distributions, logit was used instead of log transformation, and the mean of observed and
expected counts was used as observational weights.

Figure 4. Benchmark.Accuracy (areaunder theprecision and recall curve) of doublet identificationusingalternative
methods across 16 benchmark datasets. The size of the dots indicate the relative ranking for the dataset, and the
numbers indicate the actual area under the (PR) curve. For each dataset, the topmethod is circled in black. Methods
in bold are available through the scDblFinder package.

Figure 5. Doublet types and real accuracy of heterotypic doublet identification. A: Schematic (toy data)
representing the different types of doublets. Within-genotype heterotypic doublets will wrongly be labeled as false
positives, and inter-genotype homotypic will be labeled as false negatives. B: Adjusted PR curve for an example
sample (GSM2560248). The two shaded areas represent the expected proportion of within-genotype heterotypic
doublets (i.e. wrongly labeled as singlets in the truth) and inter-genotype homotypic doublets, respectively.
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Enrichment for specific combinations

To account for the different identification difficulty across doublet types, we first fit the following global negative
binomial model:

log observedið Þ¼ αþ log eið Þþβ � log difficultyið Þ,

The fitted values are then considered the expected abundance, and the probability of each double type count given this
expectation is calculated using either underlying distributions (for the negative binomial, the global over-dispersion
parameter calculated in the first step is used).

Direct classification
The direct classification approach is implemented in the directDblClassification function of the package. It uses the same
doublet generation, thresholding and iterative learning procedures as scDblFinder, but trains directly on the normalized
expressionmatrix of real and artificial cells instead of kNN-based features. The hyperparameters were the same except for
the maximum tree depth, which was increased to six to account for the increased complexity of the predictors.

Feature aggregation
For feature aggregation, scDblFinder first normalizes the counts using the Term Frequency - Inverse Document
Frequency (TF-IDF) normalization, as implemented in Stuart et al. (2019). Principal component analysis (PCA) is then

Figure 6. Thresholding. Receiver-operator characteristic (ROC) curves (with square-root transformation on the
x axis) of the different benchmark datasets. In B-C, the colors indicate the scDblFinder doublet scores, and the
crosses indicate the thresholds established through the thresholdingmethod (B) or by taking the expected number
of heterotypic doublets (C).
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performed and the features are clustered into the desired number of meta-features using mini-batch k-means (Hicks et al.
2021) or, if not available, simple k-means. The counts are then summed per meta-feature.

scDblFinder operation
scDblFinder is provided as a bioconductor package. The input data for scDblFinder (denoted x below) can be either
i) a count matrix (full or sparse), with genes/features as rows and cells/droplets as columns; or ii) an object of class

Figure 7. Comparison of four multi-sample strategies. B1 and B2 the two batches from dataset GSE96583, and
contain 3 and 2 captures, respectively. The datasets with the suffix ‘s’ are versions downsampled to 30%. Using
doublet detection on each capture separately (full split) was generally comparable to treating the captures as one
(and adjusting the doublet rate).

Figure 8. Doublet identification in single-nucleus ATAC-seq. Performance of scDblFinder with default (.raw)
parameters or on aggregated features (.aggregation) versus ArchR (GSE162690 dataset).
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SingleCellExperiment. In either case, the object should not contain empty drops, but should not otherwise have
undergone very stringent filtering (which would bias the estimate of the doublet rate). The doublet detection can then
be launched with:

library (scDblFinder)

sce <- scDblFinder(x)

The output is a SingleCellExperiment object including all of the input data, as well as a number of columns to the colData
slot, the most important of which are:

• sce$scDblFinder.score: the final doublet score (the higher the more likely that the cell is a doublet)

• sce$scDblFinder.class: the binary classification (doublet or singlet)

scDblFinder can run on any system running R >= 4.0 and Bioconductor >= 3.12.

For more details, see the package’s vignettes.

Results
Characterization of real doublets
As most approaches rely on some comparison of real cells to artificial doublets, it is crucial to appropriately simulate
doublets. To this end, we first characterized real doublets using a dataset of genetically distinct cell lines (Tian et al. 2018).
Because each cell line represents a distinct andmore or less homogeneous transcriptional state, it is possible to identify the
‘cell types’ composing each doublet (Figure 3). Although often larger, the median library sizes of doublets were

Figure 9. Doublet enrichment analysis. A, B: Doublet enrichment in a toy example. A: Proportion of different
doublet types from random expectations based on the cell type abundances. B: The fold-enrichment over this
expectation in two different doublet enrichment scenarios. C, D: Performance of the cluster stickiness tests (C) and
tests for enrichment of specific combinations (D) using different underlying distributions.
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systematically smaller than the sum of themedian library sizes of composing cell types (Figure 3A).We next investigated
the relative contributions of the composing cell types using non-negative least square regression, expecting the larger cell
types to contribute more to the doublet’s transcriptome.

Although differences in median library size across cell types were small (less than two-fold) compared to other datasets,
we observed aweak association of the relative contributionswith the relative sizes of the composing cell types (Figure 3B,
p = 2e-10). This effect was however considerably smaller than the variation within doublet type. This suggests that
there are i) large variations in real cell size within a given cell type, and/or ii) large variations in the mRNA sampling
efficiency that are independent for the two composing cells. In light of these ambiguities, we opted for amixed strategy in
the generation of artificial doublets: a proportion is generated by summing the libraries of individual cells, another by
performing a poisson resampling of the obtained counts, and a third by re-weighting the contributions of cells depending
on the relative median sizes of the composing cell types.

scDblFinder outperforms alternative methods
A previous version of scDblFinder was already compared, and shown to be superior to existing alternatives in an
independent benchmark by Xi and Li (2021a). Here we reproduced this benchmark using the most recent versions of the
packages, and including variant methods from the scDblFinder package (among which the updated version of scran’s
original method, and now available in the scDblFinder package as computeDoubletDensity). Figure 4 compares the
performance of scDblFinder to alternatives across the real benchmark datasets. scDblFinder has the highest mean area
under the precision-recall (PR) curve (see Germain 2021b, Figure 7), ranking first in a majority of datasets, and otherwise
typically very close to the top. In addition, scDblFinder runs at a fraction of the time required by the next best methods
(Figure 4, left).

Most heterotypic doublets are accurately identified
Several of the benchmark datasets have true doublets flagged by their mixing of single-nucleotide polymorphisms from
multiple individuals (Kang et al. 2018). In most of these cases, however, the doublets include also inter-individual
homotypic doublets (in the sense of being a combination of cells of the same type from different individuals), which are
difficult to detect from gene expression (Figure 5A). In addition, they miss heterotypic doublets that are the result of the
combination of different cell types from the same individual. Indeed, datasets where there is a full correspondence
between cell type and individual (such as the human-mouse mixtures, e.g. hm-6k and hm-12k) typically have a much
higher area under the Receiver-operator characteristic (ROC) and precision-recall (PR) curves (Figure 4). It is therefore
likely that the accuracy reported in the benchmark is below the actual one in detecting heterotypic doublets. Based on the
frequency of the different individuals and cell types in a dataset, it is possible to infer the expected rate of inter-individual
homotypic doublets and within-individual heterotypic doublets. This, in turns, allows us to adjust the measured true
positive rate (TPR) and false discovery rate and get a better picture of our ability to detect heterotypic doublets. Figure 5B
shows such an analysis for a complex dataset from Kang et al. (2018) . The inflection point of the PR curve roughly
coincides with the expected proportion of heterotypic doublets among those flagged as true doublets.

Adjusting for both types of error in the truth, the area under the PR curve is considerably better (0.82 instead of 0.64), and
at the automatic threshold we estimate that 87% of heterotypic doublets can be identified with a real FDR of 32%
(a similar analysis for a different sample is shown in Germain 2021b, Figure 9).

Flexible thresholding for doublet calling
Most doublet detection methods provide a ‘doublet score’ that is higher in doublets than in singlets, and users are left to
decide on a threshold above which cells will be excluded as doublets. Because scDblFinder’s scores come from a
classifier, they can directly be interpreted as a probability. Nevertheless, a threshold needs to be set, and it should ideally
be placed at the inflection point (assuming there is one) of the ROC or PR curve, so that most doublets and not too many
singlets are excluded. While these curves are typically not available in practice, we found that in most cases the
scDblFinder scores are rapidly changing from high to low very close to the inflection point (Figure 6). One possibility is
therefore to use directly a fixed probability threshold to call doublets. In some cases, however, there is a more gradual
change in score (e.g. nuc-MULTI dataset), making it more difficult to establish a threshold in a non-arbitrary fashion.
Building on the fairly tight relationship (especially in 10x-based datasets) between the number of cells captured and the
rate of doublets generated (Kang et al. 2018), another approach consists in setting the threshold based on the number of
doublets (or heterotypic doublets) one expects to find in the data. scDblFinder includes a thresholding method that
combines both rationales, and attempts to minimize both the proportion of artificial doublets being misclassified and the
deviation from the expected doublet rate (see Thresholding).

The identified thresholds are shown in Figure 6A-B, and compared to thresholds based on the expected doublet rate in
Figure 6C. In general, scDblFinder thresholds are closer to the inflection point.
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Doublet detection across multiple samples/captures
Multiple samples are often profiled and analyzed together, with the very common risk of batch effects (either technical or
biological) across samples (Lütge et al. 2021). Therefore, while the cells from all samplesmight in principle providemore
information for doublet detection than a single sample can afford on its own, this must be weighted against the risk of bias
due to technical differences. To investigate this, we implemented different multi-sample approaches and tested them on
two real multi-sample datasets with demuxlet-based true doublets, as well as a sub-sampling of them (Figure 7).

The differentmulti-sample strategies had only aminor impact on the accuracy of the identification. Based on these results,
the best overall strategy appears to be to process all samples as if they were one, however in our experience this can lead
to biases against some samples when there are very large variations (e.g. in number of cells or coverage) across samples
(not shown). This approach also greatly increases running time. In contrast, running the samples fully separately is
computationally highly efficient, and is often equally accurate.

scATACseq: aggregating rather than selecting features
We next investigated whether scDblFinder could be applied to other types of single-cell data prone to doublets, such as
single-cell Assay for Transposase-Accessible Chromatin sequencing (ATACseq). To evaluate this, we used the mixture
of 10 cell lines fromGranja et al. (2021).With default parameters, scDblFinder performed very poorly (Figure 8). This is
chiefly because scDblFinder follows the common scRNAseq strategy of selecting an informative subset of the features,
while ATACseq reads are typically sparsely distributed across the genome. However, working with all features
(i.e. peaks) is computationally very expensive. An alternative to both approaches is to begin by reducing the size of
the dataset by aggregating correlated features into a relatively small set, thereby using information from all. These
aggregated features can then directly be used as the space in which to calculate distances. This method yielded equal or
better performance than specialized single-cell ATACseq software (Figure 8).

Doublet origins and enrichment analysis
When artificial doublets are generated between clusters, we can keep track of the clusters composing them, and we
reasoned that this information could be used to infer the clusters composing real doublets (hence after referred to as
‘doublet origin’). Using a simulation as well as the aforementioned real dataset with doublets of known origins (mixture
of five cell lines from Tian et al. (2018)), we assessed the accuracy of doublet origin prediction based on the nearest
artificial doublets in the kNN. These proved inaccurate, both in real and simulated data (see Germain 2021b,
Figure 9A-B). Even training a classifier directly on this problem failed (see Germain 2021b, Figure 9C-D). The problem
appears to be that, due to the very large variations in library sizes (and related variations in relative contributions of the
composing cells – see Figure 3B), doublets often contain a large fraction of reads from one cell type, and conversely a
small fraction from the other cell type. As a consequence, we can typically call at least one of the two originating cell
types, but seldom both. In the real dataset, at least one of the two originating cell type is correctly identified in 73% of
doublets (random expectation: 36%), but both are correct in only 20% of cases.

While the identification of doublet origins remains a challenge, for the sake of completeness we nevertheless developed
strategies to investigate whether certain doublet types were found more often than expected. Such enrichment could, for
instance, indicate cell-to-cell interactions. We defined two forms of doublet enrichment (Figure 9A-B), and specified
models to test each possibility: i) enrichment in doublets formed by a specific combination of celltypes, or ii) enrichment
in doublets involving a given cell type, denoted ‘sticky.’

The `stickiness’ of each cluster (as proxy for cell types) can be evaluated by fitting a single generalized linearmodel on the
observed abundance of doublets of each origin (see Methods). We tested the performance of this test under different
underlying distributions using simulated doublet counts. The number of doublets of each type is generated from random
expectation with or without added stickiness (as factors of 1 to 3 on the probability) using negative binomial distributions
with different over-dispersion parameters (Figure 9C and Germain 2021b, Figure 10). The quasi-binomial showed the
best performance, followed by the negative binomial, but in all cases the p-values were not well calibrated andmany false
positives were reported at a nominal FDR<0.05. This was robust across different over-dispersion values (see Germain
2021b, Figure 10).

We next sought to establish a test for the enrichment of specific combinations. Here, we simply computed the probability
of the observed counts for each combination using different models (seeMethods).We again tested this approach relying
on different underlying distributions, on simulations with varying over-dispersion. The negative binomial performed
best, however all variants suffered a high false discovery rate (Figure 9C).
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Conclusions
The characterization of real doublets suggests a multi-layered variation in mRNA capture efficiency, and calls for a
varied approach to artificial doublet generation. The scDblFinder package includes a set of efficient methods for
doublet detection. In particular, themain scDblFinder approach usesmixed doublet generation approaches and integrates
insights from previous approaches into a comprehensive doublet detection method that provides robustly accurate
detection across a number of benchmark datasets, at a considerably greater speed and scalability than the best alternatives.
Even in complex datasets, most heterotypic doublets can be accurately identified. Although the doublet scores given by
scDblFinder can be directly interpreted as probabilities, simplifying their interpretation, themethod also includes a trade-
off thresholding procedure incorporating doublet rate expectations with classification optimization, thereby facilitating
its usage. Finally, we further demonstrate that, with slight changes in parameters, the approach is also amenable to other
data types such as single-nucleus ATAC-seq.

scDblFinder additionally provides utilities for identifying the origins of doublets (in terms of composing cell types) and
testing for different forms of doublet enrichment. At present, however, the value of such tests is limited by the difficulty of
accurately identifying doublet origins. Further research will be needed to assess to what extent this can be improved.

In conclusion, we believe that scDblFinder, with its flexibility, accuracy and scalability, represents a key resource for
doublet detection in high-throughput single-cell sequencing data.

Software availability
scDblFinder is available from Bioconductor: http://www.bioconductor.org/packages/release/bioc/html/scDblFinder.html.

The source code is available from: https://github.com/plger/scDblFinder.

Archived source code at time of publication: https://doi.org/10.6084/m9.figshare.16543518.v1 (Germain, 2021a).

The software is released under the GNU Public License (GPL-3).

Data availability
Underlying data
figshare: scDblFinder. https://doi.org/10.6084/m9.figshare.16543518.v1 (Germain, 2021a).

This repository contains the following underlying data:

• scDblFinder 1.7.4 (archived software version used in the paper).

• scDblFinder_paper (code to reproduce the analyses and figures).

The code to reproduce the analyses and figures is additionally available at https://github.com/plger/scDblFinder_paper.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Extended data
figshare: Supplementary Figures for the scDblFinder paper. https://doi.org/10.6084/m9.figshare.16617571.v1 (Germain,
2021b)

This repository contains the following extended data:

• Supplementary Figures 1-10

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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Summary 
 
The authors describe scDblFinder, a computational tool for doublet/multiplet annotation in single-
cell RNA sequencing and single-cell ATAC sequencing data. They explain and motivate method 
design and parameter choices, reproduce a benchmark on scRNA-seq data (originally performed 
by Xi and Li  2021) and demonstrate scDblFinder’s performance; this includes inferring cell-types of 
origin for doublets, deriving binarized doublet calls, and annotating doublets scATAC-seq data. 
 
General Comments 
 
The reviewers note that they have not considered other reviews for the same manuscript prior to 
or during the writing of this report. 
 
scDblFinder is probably the most competitive method for computational doublet annotation, so 
this manuscript, describing the method in detail, is an important contribution and valuable for the 
community.  We have the following general comments:

Positive points of the manuscript that stand out are the authors’ discussion of their results 
on annotating cell-types of origin for doublets (and the conclusion that it remains a 
challenge), scDblFinder’s good performance on scATAC-seq data, and its thresholding 
approach for generating binarized doublet calls. 
 

○

While the quality of the manuscript is generally high, we still feel that clarity can be ○
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improved, especially in describing methods (see specific comments). 
 
Further on, as the authors describe, parameters of scDblFinder have been tuned to 
maximize performance on 16 benchmark data sets used for evaluation. As a consequence, 
performance comparison with methods that did not perform parameter optimization on the 
benchmark data is biased in favor of scDblFinder; this should be mentioned in the 
manuscript’s discussion section.

○

Specific Comments
Terminology: It would be good to consistently use a term (like “droplet”, for example) for 
sequenced units of RNA that can contain more than one cell, whereas the term “cell” could 
be reserved to indicate a single cell. 
 

○

In the introduction, the authors comment on drawbacks of multiplexing technologies and 
that they only identify a fraction of doublets. It would be good to (a) include that these 
experimental methods incur additional drawbacks, like increased cost and decreased yield 
and (b) that there are definite benefits of sample multiplexing in the context of 
experimental design. 
 

○

Methods, page 3: It would be helpful to streamline the description of  scDblFinder's 
approach/procedure. Specifically, a verbal description would help. In the current version, for 
example, the authors talk about "the cluster-based approach", but it is not at all clear what 
they mean at that point in the manuscript. 
 

○

Methods, page 4: The authors state that mislabeled cells can mislead the classifier and use 
this to motivate their iterative approach (in paragraph 2). It would be helpful to reference 
Supplemental figure 5 here, which shows the positive effect of removing doublet-classified 
but singlet-annotated droplets. 
 

○

Formula on page 5: It is not discussed how the dbr.sd parameter that is used for e_low and 
e_high is estimated for a given dataset. Is there a motivation for choosing this specific 
functional form for deviation? 
 

○

Figure 2: It looks like the dashed line is not at the minimum of the cost function (black line). 
 

○

Formulae on page 6 and 8: It is not described how difficulty is estimated from 
misclassification of simulated doublets. In general, it would be good to present a consistent 
discussion for both models, including motivation, definition of all quantities, and error 
terms. 
 

○

For the dataset used in Figure 3, it would be helpful to give a more in detailed description of 
the cell lines (organism, type, etc). 
 

○

Methods page 9. In paragraph 1, how is the desired number of features determined (is it a 
method parameter)? 
 

○

Results page 10. It would be helpful to briefly describe cell lines in the Tian et al. 2018 
dataset (see previous comment about Figure 3). 
 

○
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Results page 11. It would be helpful to add details about how artificial doublets were 
generated in paragraph 2. How were contributions "re-weighted based on the relative 
median sizes of the composing cell-types”? 
 

○

Results page 11. In paragraph 4 and Figure 5 panel B: How was the expected rate of 
homotypic / heterotypic doublets estimated? In the legend of Figure 5, maybe change 
“truth” to “annotation” (also in the short paragraph 5 on page 11). Further on, a description 
on how the adjusted AUPRC is calculated should be included. Since doublet prediction is 
imbalanced, has a non-zero minimum AUPRC 
(https://dl.acm.org/doi/10.5555/3042573.30427801) been taken into account as well? Finally, 
does the black dot in Figure 5 B denote a cutoff such that the number of doublets 
scDblFinder would call corresponds to the expected number of heterotypic doublets? 
 

○

Results page 11. In paragraph 5 (3 lines), it would be helpful to make explicit what two types 
errors are accounted for. Further on, it appears the adjustment is based on estimated 
doublet rates, and it would be good to discuss how reliable these are, and how that, in turn, 
impacts the adjusted areas under the curve. Finally, the reference should be to 
supplemental figure 8 (not 9). 
 

○

Figure 6: It is not clear what the dots in panel A denote. In addition, it is really hard to 
compare the different points across panels B and C; perhaps sub-panels (one per curve) 
with both points on each curve would be clearer. 
 

○

Results page 11. For the last paragraph, it would be good to provide metrics that compare 
the two approaches in a qualitative way. One possibility would be a table showing for each 
benchmark dataset the number of annotated doublets, called doublets, false positives and 
false negatives together with a performance metric (e.g., Matthews correlation coefficient). 
 

○

Results, page 12. The authors conclude from Figure 7 that “as one” is the “best overall 
strategy”. Performance seems really close (and the conclusion only holds for AUPRC, not 
really for AUROC), so it is not clear if (a) the advantage is significant and (b) is expected to 
generalize to other data sets. This could be discussed. 
 

○

Figure 8 is very large. 
 

○

Figure 9: Some colors are different between panels C and D, which makes interpretation of 
the legend confusing.

○

Supplemental Figure 1: It would be helpful to better explain the setup in the legend, so it is 
clear what TRUE/FALSE mean and how differences in AUPRC are defined (e.g., high = better 
performance without variable, low = worse performance without variable). If the violins are 
summarizing 16 points, it might be informative to show the points themselves. Does the dot 
indicate the median or the mean, what interval is denoted? 
 

○

Supplemental Figure 2: In panel B, maybe show log of elapsed time. 
 

○

Supplemental Figure 3: Consider using the same type of violin plot as before.○

Typo on page 5: “based on the given or estimated doublet rate the dbr.sd parameter” 
should be “based on the given or estimated doublet rate and the dbr.sd parameter”. 

○
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Typo on page 8: “probability of each double type” should be “ probability of each doublet 
type 
 

○

Type on page 11: “This, in turns, allows” should be “This, in turn, allows”○
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
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Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computational genomics, evolutionary genomics, statistical phylogenetics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 23 Apr 2022
Pierre-Luc Germain,  

We thank the reviewers for their thorough reading and useful comments, and have tried to 
address all of them in the revised version. A detailed point-by-point version will be made 
available along with the new version, but here are the main points of response:

Bias due to parameter optimization based on the benchmark datasets: The 
reviewers were absolutely right to raise this important point, we now state it clearly in 
the discussion, with the note however that a previous version of scDblFinder 
(developed with only 5 of the datasets) was also found to outperform alternatives in 

1. 
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the addendum to Xi and Li’s (2020) original benchmark.
Terminology and clarifications: We thank the reviewers for their excellent 
suggestions regarding terminology and clarifications, which we adopted in the 
revised version (see the full point-by-point response for details). We also tried to 
provide a simpler 'verbal' overview of the method in the Results section, as 
suggested, and to clarify the methods section.

2. 

AUPRC: We thanks the reviewer for the suggested paper on AUPRC. While it was 
quite an interesting read, we do not think that either the random or the minimal 
AUPRC affects any of the claims being made, as it is certainly well below any of those 
observed, and our main point in this section is that the performance in estimating 
heterotypic doublets is underestimated in most of the benchmark datasets. This 
being said, we now added the random expectation in Figure 4B.

3. 

Finally we also addressed the minor comments.4. 
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Summary 
 
The authors describe scDblFinder — a doublet detection algorithm that uses gradient boosted 
trees to classify doublets as cells with elevated proportions of artificial nearest neighbors, library 
sizes, and co-expression scores. The authors describe parameter selection and hyperparameter 
optimization workflows before benchmark their method against the Xi & Li datasets. These efforts 
effectively demonstrate that scDblFinder performs very strongly relative to other doublet 
detection methods. Moreover, building on the existing doublet detection literature, the authors 
also make the following improvements/alterations to existing workflows and reaffirmations of 
previous observations:  
 

Authors simulate doublets using a ‘mixed strategy’ including summing counts, Poisson 
resampling of counts, and weighted-averaging of counts based on cell-type-specific library 

○
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sizes. This approach is distinct from current methods which simulate doublets by 
summing/averaging counts or averaging PC coordinates — Perhaps an improvement but 
needs more analysis (Major comment #1).

 
Authors demonstrate that scDblFinder is predominantly sensitive to heterotypic doublets 
and that removing homotypic doublets from ground-truth data improves doublet prediction 
performance metrics — Affirming previous observations in the DoubletFinder and other 
manuscripts. 

○

 
Authors threshold doublet classification probability distributions (i.e., likelihood scores 
generated from gradient boosting) using a combination of two known approaches: (i) 
Threshold based on artificial doublet misclassification rate (from Scrublet) or (ii) Threshold 
based on expected number of doublets inferred from droplet microfluidics Poisson loading 
statistics (from DoubletFinder) — Perhaps an improvement (Major comment #2).

○

 
Authors show that scDblFinder (and other classifiers) should be run on individual scRNA-seq 
samples in instances when those samples are not multiplexed using Cell Hashing, MULTI-
seq, etc. — This is an ‘unwritten’ rule for doublet detection workflows but hadn’t been 
definitively demonstrated. 

○

 
Authors show that scDblFinder performs as well as ArchR for predicting doublets in snATAC-
seq data after aggregating features — This is good to know, but authors need to include the 
current gold-standard for snATAC-seq doublet detection in their analysis, AMULET, such that 
readers are correctly informed about their analytical options for snATAC-seq doublet 
detection (Major Comment #3).

○

 
Authors present a strategy for inferring doublet origins which could be useful for identifying 
instances of biological doublets formed due to cell-cell interactions or ‘stickiness’ — Could 
be useful theoretically, but the approach is not sufficiently developed to be useful (although 
we commend the authors for including this analysis) 

○

 
On balance, we believe that scDblFinder is a great method (likely the new gold standard for the 
field) and strongly recommend its indexing, assuming that our Major Comments are addressed.  
 
Major Comments 
 

The authors do a good job at justifying the theoretical utility of the proposed ‘mixing 
strategy’ for doublet simulation in Figure 3. However, while the authors compare 
scDblFinder performance before/after dimensionality reduction and kNN and using cluster-
limited vs random doublet simulation, they do not do analogous analyses for comparing the 
‘mixing strategy’ to more standard methods (e.g., summing, averaging, etc.). As such, it is 
unclear whether the proposed strategy improves performance. 
 

1. 

In Figure 6, the authors plot ROC curves annotated by the thresholds defined by their 
proposed cost-minimization framework (Fig. 6B) or by the expected number of doublets 
(Fig. 6C). Since the cost-minimization framework also aims to minimize artificial doublet 
misclassification rate (as implemented by Scrublet), we would also like to see the same ROC 
plots with thresholds defined by this strategy (i.e., instead of just the expected doublet 

2. 
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strategy implemented by DoubletFinder). We would also like the authors to provide 
summary statistics for the comparisons (see Minor Comment #1) Without this, it is unclear 
whether the cost-minimization framework is actually an improvement over existing 
approaches.   
 
The application of scDblFinder to snATAC-seq data is not satisfactory as it only involves 
benchmarking against ArchR, which was recently shown in the AMULET paper (Thibodeau, 
Eroglu, et al. Genome Biology, 2021) to perform sub-optimally on snATAC-seq data. The 
authors need to include reference to AMULET in this section and benchmark the 
performance of AMULET, ArchR, and scDblFinder. 
 

3. 

We believe that the manuscript in its current form suffers from poor readability – we really 
had to parse every sentence in the Methods section to understand what the authors were 
intending to convey. For one tangible example, when discussing the overfitting hypothesis 
on page 4 (which itself was conveyed quite clearly), the authors could include a clear 
rationale for why comparing scDblFinder performance before and after dimensionality 
reduction and kNN addresses the hypothesis. Notably, we believe that this manuscript was 
very well-executed and that scDblFinder is a great method. We also recognize that the 
authors write very accessibly in the Results section. However, many in the single-cell 
genomics community who may want to use scDblFinder are not machine learning experts 
will likely have a hard time appreciating the quality of this work, especially in its current 
structure (i.e., Methods section before Results). As such, we strongly recommend that the 
authors add more ‘plain English’ explanations to the Methods section (or put the Results 
before the Methods section, if the journal will allow that) to improve readability for a 
broader audience. 
 

4. 

Minor Comments
Should provide quantitative analysis of distance of scDblFinder vs heterotypic doublet 
thresholding strategies to the real inflection point (related to Figure 6). 
 

1. 

Authors should cite papers related to the benchmarking datasets used in Xi & Li.1   
 

2. 

Authors should cite Chord from Xiong and colleagues, which also uses boosting to improve 
doublet detection.2 
 

3. 

On page 3, the authors state that multiplexing approaches “identify only a fraction of the 
doublets” — this is technically true, but a bit misleading. The fraction of doublets detected in 
multiplexing experiments scales with the number of multiplexed samples. In instances 
where only a handful of samples are multiplexed, it is fair to say that ‘only a fraction' are 
identified. However, any modestly large experiment will result in the vast majority of 
doublets being detected. And even in the lowly multiplexed contexts, it is straightforward to 
remove heterotypic at the cluster-level by identifying clusters enriched for empirically-
defined doublets. Authors should clarify (or remove) this statement as it suggests that 
scDblFinder is a ‘competitor’ with multiplexing approaches for doublet detection 
performance. Computational prediction will very rarely out-compete empirical 
measurements — instead, scDblFinder has the key advantage of being applicable to any 
past or future scRNA-seq data, which is not the case for Cell Hashing, MULTI-seq, etc.

4. 
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
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Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 23 Apr 2022
Pierre-Luc Germain,  

We thank the reviewers for their thorough reading and useful comments, and have tried to 
address all of them in the revised version. A detailed point-by-point version will be made 
available along with the new version, but here are the main points of response:

Artificial doublet generation: The reviewers are right that we simply assumed, 
because the doublets showed lower library size than expected from summation, that 
the mixed strategy would be superior. We now tested this, along with averaging. 
While averaging expectedly resulted in poorer performance, we in fact did not see a 
clear overall improvement of the mixed strategy. We now discuss this explicitly.

1. 

Thresholding: Following the reviewers' suggestions, we also rewrote much of this 
section in a more open fashion, reflecting the choices that ultimately enter any 

2. 
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thresholding decision (i.e. the lack of an objective optimal threshold), and changed 
the figure to provide clearer readouts that compare more alternative procedures.
scATACseq: Thanks for the suggestions, at the time of submission we were not aware 
of the AMULET method. We now included it in the comparison, along with the dataset 
with ground truth with which it was published. We also reimplemented the method in 
our package, for the convenience of R users.

3. 

Text structure and clarity: With permission from f1000, we now moved the Methods 
section to the end (as it was originally conceived), tried to offer a simpler overview of 
the method in the Results section, and to clarify the methods.

4. 

Finally we also addressed the minor comments.5. 
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