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Regulatory proteolysis targets properly folded clients via a
combination of cis-encoded degron sequences and
trans-expressed specificity factors called adaptors. SmiA of
Bacillus subtilis was identified as the first adaptor protein for
the Lon family of proteases, but the mechanism of SmiA-
dependent proteolysis is unknown. Here, we develop a
fluorescence-based assay to measure the kinetics of SmiA-
dependent degradation of its client SwrA and show that
SmiA–SwrA interaction and the SwrA degron were both
necessary, but not sufficient, for proteolysis. Consistent with a
scaffolding adaptor mechanism, we found that stoichiometric
excess of SmiA caused substrate-independent inhibition of
LonA-dependent turnover. Furthermore, SmiA was strictly
required even when SwrA levels were high suggesting that a
local increase in substrate concentration mediated by the scaf-
fold was not sufficient for proteolysis. Moreover, SmiA function
could not be substituted by thermal denaturation of the sub-
strate, consistent with a priming adaptor mechanism. Taken
together, we conclude that SmiA functions via a mechanism
that is a hybrid between scaffolding and priming models.

Maintaining a properly functioning proteome is essential to
cellular fitness, and a variety of proteases degrade proteins in
the bacterial cytoplasm. The majority of cytoplasmic proteases
are composite enzymes belonging to the Clp/Hsp100 family
that consist of an ATP-dependent module responsible for
recognizing, unfolding, and translocating a target protein to
the generalized peptidase module, which catalyzes peptide
bond hydrolysis by a conserved serine/lysine active-site residue
(1–3). The other major family of proteases is the Lon family,
which has similar domain architecture as the Clp/Hsp100
family, but the unfoldase and proteolytic domains are fused
into a single polypeptide (4–7). Since proteolysis is irreversible,
both families of proteases are subject to specificity
determinants that restrict proteolysis to a particular subset of
the proteome (8). In general, both families are responsible for
the degradation of misfolded proteins using more general
recognition features as well as regulatory proteolysis, which
invokes target-specific information to direct proteolysis even
when properly folded (9).
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Misfolded proteins are thought to be discriminated by the
presence of exposed hydrophobic residues that would ordinarily
be concealed in the protein core (10). Moreover, misfolded
protein targets may encode a degron, a short stretch of amino
acids typically found at either the N or C terminus of the protein
that is specifically bound to and directs degradation by a specific
protease (11, 12). Properly folded proteinsmay also be selectively
destroyed as a regulatorymechanism, and such proteinsmay also
encode degrons for protease targeting (13–15). Degron
sequences, while necessary, may be insufficient for high-
frequency recognition and turnover of low abundance targets
during regulatory proteolysis. In these cases, additional speci-
ficity factors called adaptors, defined as one protein that specif-
ically activates the turnover of another protein, may be required
(16).

Adaptors typically increase proteolysis of their target protein
by a priming mechanism or a scaffolding mechanism (17).
Priming adaptors stimulate proteolysis by interaction with
either the client or the protease. Those adaptors that bind to the
client alter client conformation to create a protease-sensitized
state for protease recognition, whereas those that bind to the
protease alter protease conformation such that the affinity for a
particular client is increased (12). Some protease-priming
adaptors bind to and allosterically activate generalized prote-
ase activity, thereby increasing the turnover rate of all clients
including the regulatory target in question. By contrast, scaf-
folding adaptors interact with both the client and the cognate
protease simultaneously forming a tether to increase the local
substrate concentration and enhance delivery, translocation,
and eventual destruction of the target (17–20). Scaffolding
adaptor proteins have primarily been characterized for the Clp
family of proteases, whereas allosteric enhancers have been
primarily reported for the Lon family (15, 21–27). Recently, the
first substrate-specific adaptor protein for the Lon family was
reported when the protein SmiA was shown to be obligately
required for the proteolysis of SwrA, the master activator of
flagellar gene expression in Bacillus subtilis (28, 29).

SwrA is a small, basic, and narrowly conserved protein of
poorly understood function that activates the promoter of a
large operonof genes dedicated toflagellar biosynthesis (30–32).
SwrA requires its partner DNA-binding response regulator
DegU, and SwrA-dependent activation occurs over a narrow
fourfold dynamic range (31, 33, 34). While the transcriptional
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SmiA adaptor mechanism
effects are subtle, the biological consequences are substantial as
SwrA controls the frequency of motile cells in a subpopulation,
the density of flagella synthesized per cell, and the ability of a
population to migrate over solid surfaces (i.e., swarming
motility) (30, 31, 35–39). The levels of SwrAdictate the degree of
flagellar gene activation and are controlled proteolytically in
response to environmental input (28, 31, 38). In liquid envi-
ronments, SmiA-dependent LonA proteolysis restricts SwrA
accumulation, and while motile bacteria are produced, the
average flagellar number per cell is insufficient to support sur-
face motility. Upon surface contact, proteolytic turnover is
relieved, resulting in the accumulation of SwrA that leads to the
increase of flagellar gene expression necessary to potentiate
swarming. How SwrA proteolysis is activated and/or inhibited is
unknown, but we hypothesize that regulation depends on the
mechanism by which SmiA functions as an adaptor.

Here, we develop an in vitro fluorescence-based turnover
assay to show that SmiA exhibits features of both scaffolding
and priming mechanisms. We show that SmiA binds to SwrA
and promotes optimal turnover when the proteins are present
in a roughly 2:1 ratio. At higher concentrations, SmiA
inhibited proteolysis, and the inhibition was generalized as
LonA activity was diminished even when SwrA was absent.
Thus, like a scaffolding adaptor, SmiA bound to both the client
and the protease. Simultaneous binding however seemed un-
related to a local increase in protein concentration as even
high levels of SwrA were immune to proteolysis when SmiA
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Figure 1. GST-mNG-SwrA is efficiently degraded in the presence of Sm
reactions of GST-SwrA (left) and GST-mNG-SwrA (right). The presence or the a
above the lane. Each protein in the reaction is indicated by an annotated care
SwrA (GSTmNG-SwrA), and SmiA. B, densitometry analysis of band intensity for e
for A. Fraction of remaining protein was calculated relative to band intensity
rescence emission in a plate reader. Lines indicate fluorescence loss in the pres
GST-mNG-SwrA detected by fluorescence emission in a plate reader. Solid line
(K720Q), and dotted line indicates fluorescence loss in the absence of SmiA. E, i
plate reader. Solid line indicates fluorescence loss in the presence of a wildtype
absence of SmiA. Y-axis is the same for C–E. GST, glutathione-S-transferase.
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was absent. SwrA encodes a C-terminal degron sequence that
while necessary was not sufficient for turnover, and thermal
denaturation of SwrA not only failed to expose the degron but
also actually made SwrA resistant to proteolysis even in the
presence of SmiA. We conclude that SmiA exhibits features of
both mechanistic classes in that it binds to both partners and
in so doing, alters each to facilitate SwrA turnover.
Results

A fluorescence-based turnover assay for SwrA proteolysis

To determine the mechanism by which SmiA potentiates
LonA-dependent proteolysis of SwrA, we first set out to develop
a high-throughput assay for in vitro proteolysis. Specifically, a
fusion protein was made in which the gene encoding mNeon-
Green was inserted between the gene encoding the N-terminal
glutathione-S-transferase (GST) purification epitope and the
swrA ORF (GST-mNG-SwrA). When expressed, the solution
containing the recombinant purified protein was an intense
green color suggesting that the fluorophore was functional. To
determine whether the GST-mNG-SwrA fusion was suscepti-
ble to LonA-dependent proteolysis, an in vitro proteolysis assay
was conducted, resolved by SDS-PAGE, and band intensity was
measured by densitometry. Both GST-SwrA and GST-mNG-
SwrA were degraded within 30 min under standard condi-
tions (Fig. 1A). Densitometry suggested that GST-mNG-SwrA
appeared to be degraded at a slightly slower rate, but
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SmiA adaptor mechanism
importantly, neither protein was degraded in the absence of
SmiA (Fig. 1, A and B). We conclude that the GST-mNG-SwrA
fusion was proficient for SmiA-dependent proteolysis and, in an
in vitro protein turnover assay, behaved similarly to the
nonfluorescent standard.

One advantage of the fluorescent fusion is that proteolytic
turnover might be quantitatively measured by loss of fluores-
cence. To determine whether fluorescence level correlated with
protein abundance, the in vitro proteolysis assay was conducted
in amicrotiter plate reader. In the absence of SmiA,fluorescence
of GST-mNG-SwrA decreased at a low but constant rate, and
addition of SmiA caused a dramatic increase in the rate of
fluorescence loss (Fig. 1C). The SmiA-dependent loss of fluo-
rescence was also LonA dependent as the rate was reduced to
near background levels when LonA protein defective in a pro-
teolytic active-site residue (LonAK720Q) was used (Fig. 1D).
Finally, omission of ATP needed for LonA activity resulted in a
baseline rate of fluorescence loss comparable to that observed
when SmiA was absent (Fig. 1E). We infer that the LonA active-
site mutant is partially active for promoting fluorescence loss,
perhaps because of persistent unfoldase activity, and that
fluorescence loss in the absence of SmiA is likely because of
photobleaching of the fluorophore. We conclude that loss of
GST-mNG-SwrA fluorescence is a suitable proxy for SwrA
proteolytic turnover and demonstrates the same basic re-
quirements as have been previously established.
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Another advantage of a fluorescent substrate is that steady-
state kinetic parameters can be measured in real time over a
range of substrate concentrations. For the in vitro reactions, a
variable amount of GST-mNG-SwrA was treated with con-
stant 0.25 μM LonA and 0.5 μM SmiA. The arbitrary fluo-
rescence units were converted to molecules of SwrA by use of
a standard curve (Fig. S1A), and for each substrate concen-
tration, rates were calculated as the slope of the linear part of
the degradation curve subtracted by the constant rate attrib-
uted to photobleaching. The rate of proteolysis increased with
increasing amounts of GST-mNG-SwrA and leveled out at
high concentrations consistent with enzyme saturation in
Michaelis–Menten kinetics (Fig. 2A, left). We note that low
concentrations of substrate gave rise to a sigmoidal response
curve with a Hill coefficient of 1.92 indicative of cooperativity
in the system. Nonlinear regression of the resulting curve
provided a Vmax value from which the Km of the reaction was
calculated to be 1.14 μM GST-mNG-SwrA. No proteolysis of
GST-mNG-SwrA was detected when SmiA was omitted from
the reaction (Fig. 2A, right). For comparison, LonA also
nonspecifically degrades misfolded proteins, and in vitro pro-
teolysis was performed in parallel with the misfolded protein
standard: fluorescently labeled α-casein. The resulting hyper-
bolic curve was consistent with standard Michaelis–Menten
kinetics with a predicted Km of 0.9 μM α-casein and with
previously reported results (40) (Fig. 2B). We conclude LonA
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SmiA adaptor mechanism
has similar affinity for SwrA as it does for misfolded protein
substrates but only when SmiA is present.

Adaptor proteins are catalytic by iteratively binding to
either the substrate, protease, or both proteins to potentiate
proteolysis. To determine whether SmiA acts as a single-use
co-substrate or is capable of catalyzing multiple rounds of
proteolysis, 0.5 μM GST-mNG-SwrA was subjected to pro-
teolysis by either excess (1 μM) or substoichiometric
amounts (0.1 μM) of SmiA. Both conditions resulted in
comparable levels of GST-mNG-SwrA remaining after
completion of the reaction, albeit SwrA proteolysis occurred
at different rates (Fig. 2C). Moreover, the residual GST-
mNG-SwrA remaining in the reaction at the two different
SmiA concentrations was largely unchanged by increasing
either the amount of substrate (Fig. 2D) or the amount of
protease (Fig. 2E). Thus, the amount of residual GST-mNG-
SwrA remaining after the reaction was not proportional to
the amount of SmiA added to the reaction, regardless of the
reaction conditions. Finally, SmiA levels did not appear to
decrease over the course of the in vitro proteolysis reaction
(Fig. 1A). We conclude that the total amount of SwrA
degraded was not dependent on the amount of SmiA, and
that SmiA is recycled to catalyze multiple rounds of LonA-
dependent SwrA proteolysis.
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SmiA interacts with LonA transiently
SmiA might function catalytically as either a scaffolding

adaptor or priming adaptor. Consistent with either model,
SwrA was shown to interact with His-SmiA immobilized on a
biolayer interferometry (BLI) biosensor with high affinity, and
the best fit curves were obtained using a 1:1 binding model
(Fig. 3A). To explore the possibility of a scaffolding mechanism,
we sought to determine whether SmiA and LonA directly
interact. When LonA-His was mounted on a BLI biosensor,
addition of ATP and SmiA did not indicate a positive interac-
tion (Fig. 3B). Since BLI relies on changes in the mass of the
complex and SmiA is much smaller than hexameric LonA, the
negative result may have been because of the small size differ-
ential upon SmiA addition. In a parallel approach, we attempted
a protein pull-down assay in which GST-SwrA was loaded on a
Glutathione-Sepharose matrix, and combinations of SmiA and
the active-site mutant version of LonAK720Q were added.
Whereas SmiA was retained in the pellet when GST-SwrA was
present, LonAK720Q was not retained above the background
levels (Fig. 3C). While SmiA and SwrA interact, interaction
between SmiA and LonA remains undetermined with affinity-
based approaches. We conclude that either SmiA and LonA
do not directly interact or the interaction is too transient to
capture by the methods used.
C

85

12

40

M
W

 (k
D

a)

SwrA

SmiA

Supe

SmiA
SwrA
LonA

+
-
-

-
+
-

+
+
+

-
+
+

+
+
-

-
-
+

Pellet

+
-
-

-
+
-

+
+
+

-
+
+

+
+
-

-
-
+

LonA

400 500

100

400 nM
200 nM
100 nM
50 nM

0 200 400 600 800 1000
Time (sec)

Ligand: His6-SmiA
Analyte: GST-SwrAdenat.

600 nM
300 nM
150 nM
75 nM

KD: N/A

F

1000800

. A, biolayer interferometry (BLI) association/dissociation curves in which
e presence of increasing concentration of GST-SwrAWT. B, BLI association/
monitored over time in the presence of increasing concentration of SmiA.

wrA, and αSmiA primary antibodies. Each lane indicates the presence (+) or
r 30 min and then presented to GST-reactive Glutathione-Sepharose resin.
hione. D, BLI association/dissociation curves in which His6-SmiA was coupled
concentration of GST-SwrAΔ101–117. E, BLI association/dissociation curves in
me in the presence of increasing concentration of GST-SwrAΔ1–100. F, BLI
sensor and monitored over time in the presence of increasing concentration
ay line indicates the time point when the biosensor was introduced to buffer



SmiA adaptor mechanism
As an alternative to direct observation by protein–protein
interaction assay, we attempted to use kinetic analysis to
infer protein interaction. To do so, a constant 0.5 μM GST-
mNG-SwrA was treated with constant 0.5 μM LonA and a
variable amount of SmiA in the reaction. The rate of SwrA
proteolysis increased with increasing amounts of SmiA until
the two proteins were at roughly a 2:1 SmiA:SwrA ratio, at
which point addition of greater amounts of SmiA to the
reaction reduced the overall rate of proteolysis (Fig. 4A). To
determine whether the SmiA concentration-dependent effect
on proteolysis was specific for SwrA, a similar curve was
generated using a constant amount of fluorescent α-casein in
the reaction. Unlike that observed with GST-mNG-SwrA,
addition of low levels of SmiA did not substantially increase
the rate of fluorescent α-casein hydrolysis (Fig. 4A). High levels
of SmiA in the reaction, however, inhibited the proteolysis of
fluorescent FITC-α-casein (Fig. 4A). We conclude that SmiA
specifically accelerates proteolysis for its cognate but becomes
generally inhibitory at high concentrations. We further
conclude that SmiA and LonA are capable of at least transient
interaction, as SmiA inhibited LonA activity even when SwrA
was absent likely by occlusion of the LonA-substrate recog-
nition site(s).

If SmiA interacts with LonA, SmiA proteolytic inhibition
might be relieved by titrating LonA. To determine whether
SmiA inhibition was governed by LonA levels, in vitro prote-
olysis experiments were performed with constant SwrA
(0.5 μM), variable SmiA, and either a threefold increase
(1.5 μM) or a threefold decrease (0.17 μM) in LonA concen-
tration. Low levels of LonA were the most responsive to SmiA
titration, both in terms of substoichiometric activation and
superstoichiometric inhibition. As LonA levels increased, both
the activating and inhibitory roles of SmiA were diminished
(Fig. 4B). A similar experiment was performed altering the
ratio of SwrA to SmiA in the reaction, in which a constant
0.5 μM LonA, variable SmiA, and either a threefold increase
(1.5 μM) or threefold decrease (0.17 μM) in GST-mNG-SwrA
levels were provided. Turnover rate increased proportionally
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with both SmiA and GST-mNG-SwrA concentrations, and for
each reaction series, peak turnover rate was achieved when the
two were at or near equimolar ratio (Fig. 4C). We conclude
that the activity of SmiA, both in terms of activation and
inhibition, is primarily dependent on the amount of LonA
present in the system. We conclude that kinetic evidence
supports an interaction between SmiA and LonA, and we infer
that this interaction was not observed by direct assays perhaps
because contact is transient.

To investigate the possibility of transient SmiA–LonA
interaction, we performed in vitro proteolysis of GST-mNG-
SwrA in the presence of inhibitory levels of SmiA and
titrating in candidate competitive substrate and protease
inhibitors. Increasing amounts of nonfluorescent GST-SwrA
gradually inhibited the turnover of the fluorescent protein
suggesting that both versions functioned as substrates and that
the nonfluorescent form titrated the pool of both the SmiA
adaptor and the LonA protease (Fig. 5A). Addition of low
levels of the proteolytically inactive mutant LonAK720Q

however actually increased the proteolytic rate suggesting that
the protease-defective subunits titrated the SmiA inhibitory
effect on the active subunits in the reaction (Fig. 5B). Higher
levels of added LonAK720Q appeared to lessen the antagonism
perhaps because subunit exchange, if any, between proteolytic
defective and wildtype LonA complexes began to inhibit the
overall rate (Fig. 5B, left). We conclude that inactive
LonAK720Q sequesters and effectively dilutes the amount of
SmiA that would otherwise inhibit the rate of proteolysis
(Fig. 5B, right). We further conclude that the effect is transient
as while LonAK720Q titrates SmiA it also allows for the recy-
cling of the SmiA pool and a net overall increase in SwrA
turnover.

SmiA–SwrA interaction is necessary for degron presentation

SmiA-dependent proteolysis was previously shown to
require B. subtilis LonA, perhaps consistent with specific in-
teractions between the two proteins (28). The Lon family of
proteins however is highly conserved in bacteria, and thus, we
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SmiA adaptor mechanism
infer that specificity, if present, must be relegated to areas of
low conservation (Fig. S2). To re-explore SmiA specificity
using our quantitative fluorescence-based assay, GST-mNG-
SwrA was presented to purified Escherichia coli EcLon prote-
ase. The EcLon prep was proteolytically active as it degraded
FITC-α-casein with a Km similar to that observed for LonA
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(Fig. 6A). Consistent with previous observations, EcLon was
unable to proteolyze GST-mNG-SwrA in the presence of a
stoichiometric amount of SmiA in the reaction (Fig. 6B). GST-
mNG-SwrA proteolysis could be observed however, albeit at
suboptimal rates, when the concentration of SmiA was so high
that it would ordinarily inhibit the activity of LonA from
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SmiA adaptor mechanism
B. subtilis (Fig. 6B). We conclude that SmiA can in fact
potentiate proteolysis of SwrA by E. coli Lon, but that the
affinity between the protease and the adaptor was greatly
reduced relative to the biological cognate. In addition, the
inhibitory effect of superstoichiometric amounts of SmiA on
B. subtilis LonA was not observed for EcLon (Fig. 6C) when
FITC-α-casein was used as a substrate. We further conclude
that excess SmiA inhibits proteolysis of B. subtilis Lon by
interfering with the protease in a manner that depends on the
interaction affinity.

Interaction affinity with a protease is governed by extrinsic
factors like adaptors and intrinsic properties of the target such
as a degron. SwrA is a 117 amino acid protein, and previous
genetic analysis of residues necessary for SmiA-dependent
LonA proteolysis was localized to the last 17 amino acids
inferred to constitute a degron (29). To re-explore the degron
hypothesis using our quantitative fluorescence-based assay, a
mutant in the C-terminal region of SwrA previously shown to
resist proteolysis both in vivo and in vitro (SwrAS107L) was
fused to GST-mNeonGreen and purified. Quantitative analysis
indicated that GST-mNG-SwrAS107L was not fully resistant to
proteolysis but reduced the rate twofold relative to wildtype
(Fig. 7A). We infer that the twofold reduction in rate was
sufficient to permit SwrAS107L accumulation in vivo, but the
reduced rate of proteolysis was previously difficult to detect
because of the large amounts of substrate protein necessary
in vitro when SDS-PAGE and Coomassie staining was used as
a reporter (29). We conclude that at least one previously iso-
lated mutant in the degron region reduced but did not abolish
proteolysis of SwrA.

To further explore the hypothesis that the C terminus of
SwrA functioned as a degron, the last 17 amino acids of SwrA
(SwrAΔ101–117) were deleted from the GST-mNG construct,
and the GST-mNG-SwrAΔ101–117 protein was purified. GST-
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mNG-SwrAΔ101–117 failed to be degraded in vitro either in the
presence or in the absence of SmiA (Fig. 7B, blue). While
proteolysis was abrogated, SmiA and GST-SwrAΔ101–117

retained a positive protein–protein interaction by BLI analysis
(Fig. 3D). We conclude that the sequence contained within the
last 17 amino acids of SwrA is essential for proteolysis but not
interaction with the adaptor. Previous work indicated that the
degron region of SwrA was not sufficient to promote
proteolysis when appended to an artificial substrate like GST
(GST-SwrAΔ1–100) (29). To re-explore sufficiency using our
quantitative fluorescence-based assay, we used a GST-mNG-
SwrAΔ1–100 variant protein that appended only the degron
region of SwrA to GST-mNG. As previously reported, addition
of the last 17 amino acids of SwrA to GST-mNeonGreen did
not stimulate loss of fluorescence in in vitro proteolysis
(Fig. 7B, red). Finally, no interaction was detected between
His-SmiA and GST-SwrAΔ1–100 (Fig. 3E). We conclude that
while the C terminus of SwrA behaves as a degron, it is
necessary but not sufficient for LonA recognition and/or
proteolysis. Moreover, SmiA interacts with SwrA outside the C
terminus, and we infer that this interaction is necessary for
proper presentation of the degron sequence.

To determine whether the requirement of SmiA could be
bypassed, thermal denaturation was attempted as an alterna-
tive means of degron presentation. To test this hypothesis,
GST-SwrA was incubated at a variety of temperatures above
the standard condition of 37 �C for 15 min before being added
to a standard LonA in vitro proteolysis assay. Each sample was
resolved by SDS-PAGE, and the amount of SwrA protein
remaining was detected by Coomassie staining. Incubation of
SwrA at 42 and 47 �C exhibited little reduction in proteolysis,
but treatment at 52 �C and above resulted in near complete
stability (Fig. 8, B and C). We infer that SwrA conformation is
important for proteolytic targeting and that a protease-
sensitive state cannot be achieved simply by denaturation.
Unlike SwrA, thermal denaturation of the inherently disor-
dered substrate α-casein did not abolish proteolytic turnover
(Fig. 8, D and E), and thus, denaturation of SwrA likely abol-
ished proteolysis by abrogating SmiA interaction. Consistent
with an interaction failure, thermal denaturation of GST-SwrA
above the threshold temperature also abolished interaction
with His-SmiA mounted on a BLI biosensor tip (Fig. 3F).
Finally, incubation of SmiA at 52 �C and below exhibited little
reduction in SwrA proteolysis, but treatment at 57 �C and
above resulted in near complete stability of SwrA (Fig. 8, A and
C). We conclude that when SmiA interacts with SwrA, the C-
terminal degron is exposed and presented to LonA as a tran-
sient three-protein supercomplex necessary for proteolysis.

Discussion
SmiA of B. subtilis is the first substrate-specific adaptor

protein reported for the Lon family of proteases, and the
mechanism by which SmiA potentiates proteolysis of its client
SwrA was unknown (28). Adaptors are well known and
characterized for the Clp family of proteases however, and
these adaptors tend to fall into two general mechanistic clas-
ses: scaffolding and priming adaptors. Scaffolding adaptors
J. Biol. Chem. (2022) 298(7) 102045 7
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SmiA adaptor mechanism
bind to both the substrate and protease simultaneously and
accelerate proteolysis by increasing local substrate concen-
tration at the enzyme. In contrast, priming adaptors either
bind exclusively to the substrate to expose a protease-sensitive
degron sequence or bind exclusively to the protease to allo-
sterically alter conformation to expose a degron-recognition
pocket or stimulate overall protease activity (17). Here, we
show that SmiA optimally potentiates the proteolysis of SwrA
when in a 2:1 ratio relative to the cargo. Moreover, we provide
kinetic evidence to show that SmiA exhibits properties
consistent with both scaffolding and priming adaptors and
appears to confer LonA-specific degradation of SwrA as a
hybrid of the two mechanisms.

Consistent with a scaffolding adaptor, SmiA interacts with
both the client SwrA and the protease LonA. While interaction
between SmiA and SwrA can be directly observed, the evi-
dence for interaction with LonA was kinetic and indirect
(Fig. 3, A–C). Specifically, SmiA becomes generally inhibitory
when in stoichiometric excess of LonA, and SmiA inhibition
was titrated by adding additional inactive LonA complexes to
the reaction (Figs. 4A and 5B). Ultimately, we conclude that
the SmiA–LonA interaction is likely transient, as low levels of
additional nonfunctional LonA titrated excess SmiA while
permitting the recycling of functional complexes and
accelerating the net reaction (Fig. 5B). It is unclear whether
SmiA-excess–dependent inhibition is biologically relevant as
SmiA expression appears to be SwrA activated, artificial
expression of SmiA confers no phenotype, and phenotypes
conferred by the mutation of B. subtilis LonA besides motility
8 J. Biol. Chem. (2022) 298(7) 102045
inhibition are unknown. Regardless, inhibition of client pro-
teolysis in the presence of excess adaptor is a feature observed
for those that function by a scaffolding mechanism, as excess
occupancy of the adaptor–protease complex restricts cargo
delivery (20). The direct detection of scaffolding adaptor–
protease interactions however is rare in the literature likely
because of similar transient contacts and the dynamic
exchange that permits adaptors to function catalytically,
potentially under-reporting the prevalence of scaffolds (18, 19,
41). While SmiA interacts with both the client and protease,
we infer that SmiA likely does not simply act to increase local
SwrA concentration because the SmiA requirement cannot be
bypassed, even when in vitro SwrA concentrations are artifi-
cially high (Fig. 2A, right).

Consistent with a priming adaptor, SmiA binds to the SwrA
client to present a C-terminal degron sequence. A C-terminal
degron was supported by previously isolated point mutations
in the SwrA C terminus (e.g., SwrAS107L) that were sufficient to
elevate SwrA levels in vivo, but here, we show that a repre-
sentative mutant only reduced in vitro turnover twofold (29)
(Fig. 7A). Nonetheless, we further strengthen the C-terminal
degron requirement by demonstrating that deletion of the last
17 amino acids of SwrA (SwrAΔ101–117) rendered the protein
immune to proteolysis. While the degron is necessary for
LonA degradation, it was not sufficient as appendage of the
final 17 amino acids to GST-mNeonGreen (GST-mNG-
SwrAΔ1–100) was insufficient to promote turnover. Finally,
thermal denaturation could not artificially expose the degron
on native SwrA, and we further demonstrate that the native
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SmiA adaptor mechanism
conformation of both SwrA and SmiA was important for LonA
presentation. We therefore conclude that SmiA also acts as a
priming adaptor, to either expose the degron on SwrA, put
LonA in a conformation able to register the degron, or both.
We ultimately arrive at a hybrid model of scaffolding and
priming mechanisms whereby SmiA both delivers and
conformationally alters its client to license proteolysis (Fig. 9).

Proteolytic adaptor proteins are thought to behave primarily
as either priming or scaffolding factors, and thus, the hybrid
model presented here may seem unusual when compared with
other systems. Only one other specificity factor for the Lon
family of proteases, HspQ of Yersinia pestis, has been reported
and appears quite different from SmiA as it binds to Lon and
stimulates the overall rate of proteolysis for a variety of sub-
strates (40). In B. subtilis, the adaptor MecA was originally
thought to primarily function by binding to its client ComK,
but it also binds to and promotes heximerization of the ClpC
unfoldase subunit of the ClpCP complex (42–45). Thus, like
SmiA, it may exhibit simultaneous priming and scaffolding
activity, but unlike SmiA, MecA stimulates ClpCP-mediated
proteolysis of multiple targets, including MecA itself (45, 46).
Also in B. subtilis, the adaptor YjbH appears to be a priming
adaptor as it binds to and licenses the transcription factor Spx
for proteolysis by the ClpXP complex (18, 47, 48). We note
however that while direct interaction between YjbH–Spx and
ClpXP has been difficult to detect, the lack of a positive result
in classical protein–protein interaction assays does not
necessarily rule out the kind of transient scaffolding in-
teractions described here (49). We suspect that detailed kinetic
studies of other adaptors may reveal more hybrid mechanisms.

Regulatory proteolysis invokes control over the degrada-
tion of the target protein, and SwrA proteolysis appears to
be regulated by environmental factors (28). For example, a
basal level of SwrA activates moderate expression of flagellar
basal body proteins to support swimming motility in liquid,
but SwrA accumulates to a higher level on surfaces to
support swarming by further increasing flagellar number.
We infer that the transition from liquid to a swarm agar
surface somehow reduces proteolytic licensing by SmiA but
if, and how, SmiA is regulated is unknown. SmiA could be
activated in liquid to keep SwrA at a moderate level, and
SmiA seems to be coregulated with flagellar structural
proteins creating the potential for homeostatic feedback.
How homeostatic restriction would be abrogated on surfaces
is unclear, and the loss-of-function genetic screen that
identified modulators of SwrA levels only identified SmiA
and LonA. We infer that the absence of other candidates
argues against a putative activator that would phenocopy
SmiA (50). Alternatively, SmiA activity could be inhibited on
a solid surface, thereby allowing SwrA to accumulate.
Negative regulation is likely as other adaptors have been
shown to be inhibited either by a partner switch with small
antiadaptor proteins or by covalent post-translational
modification of the adaptor (9, 51–54). Whatever the
mechanism of control, SmiA activity seems to be governed
by extracytoplasmic information as SmiA inhibits swarming
motility when cells are disrupted for particular peptido-
glycan hydrolases (50). We presume there exists an as-yet-
undiscovered component of LonA regulatory proteolysis
that somehow participates in transduction of extracellular
information across the cell membrane.
Experimental procedures

Strains and growth conditions

E. coli strains were grown in lysogeny broth (10 g tryptone,
5 g yeast extract, and 5 g NaCl/ per l) or on lysogeny broth
plates fortified with 1.5% Bacto agar (BD Scientific) at 37 �C.
When appropriate, antibiotics were added at the following
concentrations: 25 μg/ml chloramphenicol, 50 μg/ml carbe-
nicillin, 25 μg/ml kanamycin, or 100 μg/ml ampicillin.
Strain construction

All PCR products were amplified from B. subtilis genomic
DNA (gDNA) or E. coli-generated plasmid DNA from the
indicated strains. All plasmids used in this study are listed in
Table S2. All primers used in this study are listed in Table S3.
J. Biol. Chem. (2022) 298(7) 102045 9
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Protein expression plasmids

To generate the SmiA expression construct, a PCR fragment
containing the smiA ORF was amplified from DK1042 gDNA
using primers 6497 and 6498. The amplicon was digested with
EcoRI and NcoI and ligated into the EcoRI and NcoI sites of
the pHis-parallel2 vector to generate pSS920.

To generate the LonAK720Q-6XHis expression construct, a
PCR fragment with the lonA ORF containing the K720Q
mutation was amplified from DK3297 gDNA using primers
4574 and 4575. The amplicon was digested with EcoRI and
NcoI and ligated into the EcoRI and NcoI sites of the pET28a
vector to generate pSO31.

To generate the GST-mNeonGreen-SwrA expression
construct, a PCR fragment containing the mNeonGreen ORF
and the sequence encoding the Waldo linker (GGATCCGC
TGGCTCCGCTGCTGGTTCTGGCGAATTC) was amplified
from pDP427 plasmid DNA with primers 7546 and 7547. The
amplicon was inserted into the BamHI restriction site of
pSM94 via Gibson assembly to generate pSO45.

To generate SwrA mutant expression constructs, PCR
fragments containing the desired mutations were amplified
from the GST-mNeonGreen-SwrA template (pSO45) or the
GST-SwrA template (pSM94) with primer pairs 7581/7582
(GST-mNeonGreen-SwrAS107L) (GST-SwrAS107L), 7625/7626
(GST-mNeonGreen-SwrAΔ1–100), and 7627/7628 (GST-
mNeonGreen-SwrAΔ101–117) (GST-SwrAΔ101–117). The linear
PCR fragments were DpnI treated and circularized by Gibson
assembly to yield pSO46, pSO47, pSO51, pSO52, and pSO53,
respectively. The assembled products were subsequently
passaged though electrocompetent E. coli (DH5α).

Protein purification

SmiA

The His6-tobacco etch virus (TEV)-SmiA protein expres-
sion vector pSS920 was transformed into Rosetta-gami E. coli
and grown to an absorbance of �0.5 at 600 nm in 1 l of Terrific
broth (TB) (900 ml deionized water, 24 g yeast extract, 12 g
tryptone, 4 ml glycerol, and 100 ml potassium phosphate so-
lution), induced with 1 mM IPTG, and grown overnight at 16
�C. Cells were pelleted and resuspended in SmiA lysis buffer
(25 mM Tris [pH 8.0], 200 mM NaCl, 10 mM imidazole, and
10% glycerol), and PMSF was added to a final concentration of
1 mM. The lysate was subsequently frozen and stored at −80
�C. The frozen cell pellet was thawed and subjected to lysis by
emulsification. Lysed cells were clarified by centrifugation at
14,000g for 30 min, and the cleared supernatant was combined
with equilibrated nickel–nitrilotriacetic acid (Ni–NTA) resin
(Novagen). The lysate–resin mixture was added to a 1 cm
separation column (Bio-Rad) and allowed to pack. The flow
through was collected and subsequently reapplied to the
packed resin bed twice. The column was washed with three
column volumes (CVs) of SmiA wash buffer (25 mM Tris [pH
8.0], 200 mM NaCl, 20 mM imidazole, and 10% glycerol).
Immobilized His6-TEV-SmiA was eluted from the resin with
SmiA elution buffer (25 mM Tris [pH 8.0], 200 mM NaCl,
200 mM imidazole, and 10% glycerol), and the elution
10 J. Biol. Chem. (2022) 298(7) 102045
fractions were separated on a 15% SDS-PAGE gel followed by
Coomassie staining. The appropriate elution fractions were
then pooled and concentrated to �2 ml. The concentrate was
further purified via size-exclusion chromatography on a
Superdex 75 16/60 (GE Healthcare) using SmiA storage buffer
(20 mM Tris [pH 8.0], 200 mM NaCl, 10% glycerol, and 1 mM
DTT). Peak fractions were collected and subjected to cleavage
by the TEV protease overnight at 4 �C. The cleavage reaction
was applied to �2 ml (bed volume) Ni–NTA resin in a 1 cm
separation column, and the cleaved SmiA protein was
collected via subtractive immobilized metal affinity chroma-
tography. The SmiA protein was then buffer exchanged and
concentrated using a 3000 Da cutoff Amicon concentrator
column with SmiA storage buffer. Aliquots were snap frozen
and stored at −80 �C. Protein concentration was determined
by Bradford assay (Bio-Rad).

GST-SwrA

The GST-SwrA protein expression vector pSM94 was
transformed into chemically competent BL21 E. coli and
grown to an absorbance of �0.5 at 600 nm in 1 l of TB,
induced with 1 mM IPTG, and grown overnight at 16 �C. Cells
were pelleted and resuspended in GST-SwrA lysis buffer
(25 mM Tris [pH 8.0], 200 mM NaCl, 1 mM EDTA, and 10%
glycerol), and PMSF was added to a final concentration of
1 mM. The lysate was subsequently frozen and stored at −80
�C. The frozen cell pellet was thawed and subjected to lysis by
emulsification. Lysed cells were clarified by centrifugation at
14,000g for 30 min, and the cleared supernatant was combined
with equilibrated Glutathione-Sepharose resin (GE Health-
care) and incubated overnight at 4 �C. The lysate–resin
mixture was added to a 1 cm separation column (Bio-Rad)
and allowed to pack. The column was washed with 1 CV of
GST-SwrA wash buffer (25 mM Tris [pH 8.0], 250 mM NaCl,
1 mM EDTA, 10% glycerol, and 0.1% NP-40) followed by three
CVs of GST-SwrA elution buffer (without glutathione)
(25 mM Tris [pH 8.5], 250 mM NaCl, 1 mM EDTA, and 10%
glycerol). Bound GST-SwrA was eluted from the resin with
GST-SwrA elution buffer containing 20 mM glutathione And
the elution fractions were separated on a 15% SDS-PAGE gel
followed by Coomassie staining. The appropriate elution
fractions were then pooled and buffer exchanged into GST-
SwrA storage buffer (25 mM Tris [pH 8.0], 250 mM NaCl,
10 mM MgCl2, 10% glycerol, and 1 mM DTT) using a HiTrap
Desalting column (GE Healthcare). The protein sample was
collected and clarified through a 0.22 μm syringe filter and
subsequently concentrated using a 3000 Da cutoff Amicon
concentrator column. GST-SwrA was snap frozen and stored
at −80 �C. Protein concentration was determined by Bradford
assay (Bio-Rad).

GST-mNG-SwrA variants

The GST-mNG-SwrA protein expression vectors pSO45,
pSO46, pSO51, and pSO52 were transformed independently
into chemically competent BL21 (+precursor tRNA) E. coli and
grown to an absorbance of �0.5 at 600 nm in 1 l of TB,
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induced with 1 mM IPTG, and grown overnight at 16 �C. Cells
were harvested, lysed, and clarified as described previously.
Protein was purified by affinity chromatography and buffer
exchanged as described previously.
LonA-His6
The protein expression vectors pACB60 (LonA-His6) or

pSO31 (LonAK720Q-His6) were transformed independently
into chemically competent BL21 (+precursor tRNA) E. coli and
grown to an absorbance of �0.5 at 600 nm in 1 l of TB,
induced with 1 mM IPTG, and grown overnight at 16 �C. Cells
were pelleted and resuspended in LonA lysis buffer (25 mM
Tris [pH 8.0], 200 mM NaCl, 100 mM KCl, 10 mM MgCl2,
10 mM imidazole, and 10% glycerol), and DTT was added to a
final concentration of 1 mM. The lysate was subsequently
frozen and stored at −80 �C. The frozen cell pellet was thawed
and subjected to lysis by emulsification. Lysed cells were
clarified by centrifugation at 14,000g for 30 min, and the
cleared supernatant was combined with equilibrated Ni–NTA
resin. The lysate–resin mixture was added to a 1 cm separation
column (Bio-Rad) and allowed to pack. The column was
washed with one CV of LonA lysis buffer and three CVs of
LonA wash buffer (25 mM Tris [pH 8.0], 200 mM NaCl,
100 mM KCl, 10 mM MgCl2, 50 mM imidazole, and 10%
glycerol). Immobilized protein was eluted from the resin with
LonA elution buffer (25 mM Tris [pH 8.0], 200 mM NaCl,
100 mM KCl, 10 mM MgCl2, 500 mM imidazole, and 10%
glycerol), and the elution fractions were separated on a 15%
SDS-PAGE gel followed by Coomassie staining. The appro-
priate elution fractions were then pooled and buffer exchanged
into LonA storage buffer (50 mM Tris [pH 8.0], 300 mM NaCl,
100 mM KCl, 10 mM MgCl2, 10% glycerol, and 1 mM DTT)
using a HiTrap desalting column (GE Healthcare). The protein
sample was collected and clarified through a 0.45 μm syringe
filter and subsequently concentrated to �3 ml using a
50,000 Da cutoff Amicon concentrator column. LonA-His6 or
LonAK720Q-His6 protein samples were snap frozen and stored
at −80 �C. Protein concentration was determined by Bradford
assay (Bio-Rad).
Gel-based in vitro proteolysis assay

SwrA proteolytic degradation assays containing GST-SwrA
(1 μM), SmiA (1 μM), and LonA6 (0.17 μM as a hexamer)
were assayed at 37 �C in TKM buffer (25 mM Tris [pH 8.0],
100 mM KCl, 10 mMMgCl2, and 1 mM DTT). Reactions were
initiated by the addition of 1× ATP regeneration mixture
(75 μg/ml creatine kinase, 15 mM creatine phosphate, and
4 mM ATP). Samples were withdrawn at the indicated time
points, quenched with 6× SDS-loading dye, separated by 15%
SDS-PAGE, and detected by Coomassie brilliant blue staining.
For heat denaturation experiments, either SmiA, GST-SwrA,
or α-casein were incubated in TKM buffer at the indicated
temperatures for 15 min. The reactions were then initiated by
the addition of LonA6 (0.17 μM) and ATP regeneration mix.
Samples were incubated at 37 �C for 10 min and quenched
with 6× SDS-loading dye, and protein was detected as
described.

Fluorescence-based in vitro proteolysis assay

Degradation of GST-mNG-SwrA was monitored as a loss of
fluorescence over time. 20 μl reactions prepared in TKM
buffer containing the indicated concentrations of proteins
were initiated by the addition of 1× ATP regeneration mix (see
aforementioned one). Reactions were performed in triplicate at
37 �C and monitored by a BioTek plate reader (384-well
format) with excitation and emission spectra of 490 and
520 nm, respectively. For assays containing 1.5 μM
GST-mNG-SwrA, the excitation and emission spectra were
440 and 520 nm, respectively. When appropriate, the data were
fit to a nonlinear least-squared fit of the Michaelis–Menten
equation to obtain the Vmax and Km. Reported fluorescent
and kinetic values were the averages of (n = 3) ± 1 SD.

In vitro pull-down assay

Reactions were prepared in 250 μl T(1) buffer (25 mM Tris
[pH 8.0], 100 mM KCl, 10 mM MgCl2, 0.02% NP-40, 1 mM
DTT, and 5 mM ATP) containing 0.5 μM SmiA, 0.5 μM GST-
SwrA, or 80 nM LonAK720Q-His6 (monomeric). Each reaction
series was incubated statically at 37�C for 20 min. About 250 μl
of 50% Glutathione-Sepharose resin slurry equilibrated with
T(0) buffer (25 mM Tris [pH 8.0], 100 mM KCl, 10 mM
MgCl2, and 0.02% NP-40) was added to each reaction series
and incubated at room temperature with gentle agitation for
1 h. The resin was pelleted by centrifugation, and the super-
natant was removed. The remaining pellets were washed three
times with 250 μl T(1) buffer, followed by centrifugation and
aspiration of the supernatant. The pellets were resuspended in
T(1) buffer to a final volume of 250 μl, and 6× SDS-loading dye
was added to both the pellet and supernatant fractions. Sam-
ples were then boiled for 10 min at 95 �C and subjected to
Western blot analysis.

Western blotting

Prepared samples were separated by 15% SDS-PAGE, and
the proteins were electroblotted onto nitrocellulose membrane
(GE Healthcare). The immunoblots were probed with anti-
SmiA primary antibody (1:4000 dilution), anti-SwrA primary
antibody (1:4000 dilution), anti-LonA primary antibody
(1:10,000 dilution), and horseradish peroxidase–conjugated
goat anti-rabbit immunoglobulin secondary antibody
(1:10,000 dilution). The immunoblot was developed using the
Peirce ECL Western blotting substrate kit (Thermo Fisher
Scientific).

Biolayer interferometry (BLI)

Anti-penta-His (HIS1K) biosensors (ForteBio) were hy-
drated by incubating in assay buffer (1× PBS, 1× kinetics buffer
[ForteBio], 2% dialyzed fetal bovine serum, and 0.5 mM Tris(2-
carboxyethyl)phosphine) for at least 10 min prior to beginning
assay. The ligand His6-SmiA (300 nM) was loaded onto HIS1K
biosensors for 200 s. Various concentrations of the analyte(s)
J. Biol. Chem. (2022) 298(7) 102045 11
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GST-SwrAWT, GST-SwrAΔ101–117, or GST-SwrAΔ1–100

(50–400 nM) were used to measure the association kinetics for
100 s, after which the sensors were subsequently exposed to
fresh assay buffer for 500 s to measure disassociation kinetics.
The resulting association curve (0–100 s) and disassociation
curve (0–300 s) were analyzed using the Octet RED96 in-
strument, and the data were processed using the ForteBio
software. The binding data from the ligand sensors were
normalized by subtracting a reference ligand sensor that was
not exposed to GST-SwrA. The data were fit by a 1:1 binding
model to obtain the KD. For LonA-binding experiments, the
assay buffer was supplemented with 5 mM ATP, and 50 nM
LonA-His6 was used as the ligand, and 200 to 800 nM SmiA
was used as the analyte. The resulting association curve (0–500
s) and disassociation curve (0–500 s) were analyzed and pro-
cessed as described. To determine the binding kinetics of
unfolded SwrA, 600 nM His6-SmiA was used as the ligand, and
the analyte GST-SwrAWT (75–600 nM) was thermally dena-
tured at 60 �C for 15 min prior to beginning the assay. The
resulting association curve (0–500 s) and disassociation curve
(0–500 s) were analyzed and processed as described. Analyzed
data are presented in Table S1.

Data analysis

All kinetic data were processed using GraphPad Prism soft-
ware (GraphPad Software, Inc). For statistical significance tests,
data were analyzed using ordinary one-way ANOVA tests. FIJI
software (ImageJ) was utilized for densitometry analysis.

Data availability

All data for this article are contained within the text or
supporting information.
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