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Abstract

Objectives: Characterizing features of the viral rebound trajectories and identifying host, virological, and
immunological factors that are predictive of the viral rebound trajectories are central to HIV cure research.
We investigate if key features of HIV viral decay and CD4 trajectories during antiretroviral therapy (ART) are
associated with characteristics of HIV viral rebound following ART interruption.
Methods: Nonlinearmixedeffect (NLME)models areused tomodel viral load trajectories before and following
ART interruption, incorporating left censoring due to lower detection limits of viral load assays. A stochastic
approximation EM (SAEM) algorithm is used for parameter estimation and inference. To circumvent the
computational intensity associated with maximizing the joint likelihood, we propose an easy-to-implement
three-step method.
Results: We evaluate the performance of the proposed method through simulation studies and apply it to
data from the Zurich Primary HIV Infection Study. We find that some key features of viral load during ART
(e.g., viral decay rate) are significantly associated with important characteristics of viral rebound following
ART interruption (e.g., viral set point).
Conclusions: The proposed three-step method works well. We have shown that key features of viral decay
during ART may be associated with important features of viral rebound following ART interruption.
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Introduction
Characterizing features of the viral rebound trajectories and identifying host, virological, and immunological
factors that are predictive of the viral rebound trajectories are central to HIV cure research (Julg et al. 2019;
Li, Smith, and Mellors 2015; Richman et al. 2009). After the initiation of an antiretroviral therapy (ART),
viral loads typically decline over time and subsequently drop below the assay’s detection limit, i.e., the
viral loads may be left censored. If the ART is discontinued, viral loads usually rise rapidly to peak values,
then decrease and stabilize at a level commonly referred to as a viral set point. There are many barriers to
curing HIV. Efforts have been focusing on either a functional cure (lowering viral set points) or a sterilizing
cure (eliminating all HIV-infected cells), with the former being a more realistic goal (Rouzioux, Hocqueloux,
and Sáez-Cirión 2015).

To date, a number of biomarkers have been found to be predictive of the timing of viral rebound or viral
set point after treatment interruption including ART initiation during acute/early HIV infection (Namazi et
al. 2018; Von Wyl et al. 2011), pre-ATI (analytic treatment interruption) CA-RNA (cell-associated RNA) levels
(Li et al. 2016), and T-cell exhaustion markers measured prior to ART (Hurst et al., 2015). So far, to the best
of our knowledge, most studies focused on predictors that reflect values at a single time point (e.g., age at
the start of treatment interruption), or provide simple summaries of observed values over history (e.g., nadir
CD4 count, changes in numbers of cytotoxic T-lymphocytes) (Bing et al. 2020; Conway, Perelson, and Li 2019;
Oxenius et al. 2002; Wang et al. 2020). Here we investigate the effect of longitudinal biomarkers on features
of viral rebound, leveraging rich information from the Zurich Primary HIV Infection Study, where viral load
and CD4 cell counts were measured longitudinally since seroconversion.

The Zurich Primary HIV Infection Study consists of participants presenting with acute or recent HIV-1
infectionbetweenNovember 2002 and July 2008. This studywasdescribed indetails inGianella et al. (2011). In
brief, acutely and recently HIV-1 infected individuals were offered immediate standard first line combination
ART (cART) according to treatment recommendations of that time (Thompson et al. 2010), and after at least
one year of viral suppression below detection limits (<50 HIV-1 RNA copies/mL of plasma), they could elect
to stop therapy. Reinitiation of cART was based on CD4 count criteria of that time. Figure 1 shows entire viral
load (HIV-1 RNA copies/mL of plasma, in log10-scale) trajectories during ART and following ART interruption
for all subjects and for 5 randomly selected subjects respectively (for data following ART interruption, we only
show the first 36weeks of data because viral load levels typically stabilize before then).We see that viral loads
decline rapidly during ART and then may rebound quickly following ART interruption, and that viral loads
after reaching peak points during rebound exhibit large variations between subjects. Our main objective is to
study if key features of viral decay during ART, such as individual-specific viral decay rates, are associated
with important characteristics of viral rebound following ART interruption, such as individual-specific viral
rebound rates or set points.

Mixed effects models are well-suited to model longitudinal data with large variations between individual
viral load trajectories, since random effects in the models can be used to incorporate the between-individual
variations, as well as individual-specific inference. To model viral load trajectories during ART, Wu and Ding
(1999) proposed nonlinear mixed effects (NLME) models based on reasonable biological arguments, and the
proposed exponential decay models have been shown to fit viral load data during ART very well. For viral
rebound trajectories following ART interruption, Wang et al. (2020) proposed a different NLME model where
the key features of viral rebounds are representedby themodel parameters. Thus, hereweuse these twoNLME
models to model viral load before and after ART interruptions respectively. Mixed effects models with left
censored responses have also been studied in the literature (Hughes 1999; Vaida, Fitzgerald, and DeGruttola
2007; Vaida and Liu 2009; Wu 2002).

Statistical inference forNLMEmodels is typically basedon the likelihoodmethod (Wu2009).Due tounob-
servable random effects and nonlinearity of the models, exact likelihood estimation based on the numerical
integration methods or Monte Carlo expectation-maximization (MCEM) algorithm can be computationally
intensive and may suffer from convergence problems (Wu 2009). A widely used and computationally more
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efficient approximatemethod is the linearizationmethod of Lindstrom and Bates (Lindstrom and Bates 1990),
but its performance can be less satisfactory in some cases (Comets, Lavenu, and Lavielle 2017). Here we
consider the stochastic approximation expectation-maximization (SAEM) algorithm for parameter estimation
and inference of NLME models (Comets, Lavenu, and Lavielle 2017; Delyon, Lavielle, and Moulines 1999;
Samson, Lavielle, and Mentré 2006). The SAEM algorithm is computationally more efficient than the MCEM
algorithm and it performs well in the sense of producing reasonable estimates and fast convergence.

In this article, we consider three mixed effects models: two NLME models with left censored responses
– one NLMEmodel for viral dynamics during ART and another NLMEmodel for viral rebound following ART
interruption, and a linear mixed effects (LME) model for CD4 data during ART. The three models are linked
through shared random effects. To reduce the computational burden, we fit the threemodels separately based
on a three-stepmethod, using the SAEM algorithm.We use a parametric bootstrapmethod to obtain standard
errors of all parameter estimates and incorporate estimation uncertainty from separate model fittings. Our
contributions are: (i) to our knowledge, our work is the first to study the relationship between viral declines
duringARTandviral reboundafter ARTbased onNLMEmodels; (ii) the proposed three-stepmethod is simple,
andcanbe implementedwithexistingsoftware; (iii) theproposedmethod isbasedonexact likelihoodmethod,
so there is no concern about approximation accuracies as in other approximatemethods such as linearization
methods, and it is also computationally feasible; and (iv) the proposed method performs well, as shown
in simulations, and clearly outperforms a common naive method that uses an imputed value for censored
observations and model-based standard errors.

The article is organized as follows. In Section 2, we describe themodelsmotivated by the real dataset, and
we propose a three-step method for parameter estimation. Section 3 presents a comprehensive data analysis.
The proposedmethod is evaluated in Section 4 via simulations. We conclude the article with some discussion
in Section 5.

Models for data before and following ART interruption
In this section, we first consider an NLMEmodel for viral decay and an LMEmodel for CD4 trajectories during
ART. Then, the random effects in these two models, which summarize individual-specific CD4 and viral load
trajectories, are used as “covariates” in the viral rebound NLME model following ART interruption. Our goal
is to exam if the individual-specific viral rebound characteristics following ART interruption are associated
with individual-specific CD4 and viral load profiles during ART.

Models for viral load and CD4 during ART

First, we model viral load trajectories during ART. Let Yij be the (log10-transformed) viral load value (in
copies/mL) of individual i measured at time tij during ART. Let yij be the observed value of Yij, and let
yi = (yi1, yi2,… , yini )

T, i = 1, 2,… , n, j = 1, 2,… , ni. We use similar notation for other variables. The values of
Y may be left censored due to the assay’s lower detection limit. Based on possible virus elimination and
production processes,Wu and Ding (1999) showed that the viral load trajectories during ART typically exhibit
exponential decay patterns and may be modelled by NLME models.

A general NLME model can be written as follows:

yi j = g(xi j,𝜼,bi)+ ei j,

bi ∼ N(0,B), ei ∼ N(0,Σi), i = 1, 2,… , n, j = 1, 2,… , ni,
(1)

where g(⋅) is a known nonlinear function, xij is a vector containing covariates including time, 𝜼 is a vector
containing fixed effect parameters,bi = (b1i,… , bqi)T contains random effects, ei = (ei1, ei2,… , eini )

T contains
within-individual random errors, and B and Σi are covariance matrices. The random effects bi and the
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random errors ei are assumed to be independent.When the function g(⋅) is a linear function, the NLMEmodel
(1) reduces to an LME model. It is common to assume that the within-individual errors are conditionally
independent given the random effects, i.e., Σi = 𝜎2Ini , where Ini is the ni × ni identity matrix.

For the viral load data during ART, as shown in Figure 1, we consider the following NLMEmodel (Wu and
Ding 1999)

yi j = log10
(
eP1i−𝜆1iti j + eP2i−𝜆2iti j

)
+ ei j, i = 1, 2,… , n, j = 1, 2,… , ni,

P1i = P1 + b1i, P2i = P2 + b2i, 𝜆1i = 𝜆1 + b3i, 𝜆2i = 𝜆2 + b4i,
(2)

where bi = (b1i, b2i, b3i, b4i)T are random effects, 𝜆1 is the first-phase viral decay rate, which corresponds to the
rapid decay phase reflecting decay of productively, long-lived and/or latently infected cells, 𝜆2 is the second-
phase viral decay rate during ART, which corresponds to the slow decay phase reflecting decay of long-lived
and/or latently infected cells and other residual infected cells, log10

(
eP1 + eP2

)
is typical viral load value at

the start of ART. This NLME model is rooted from a biological compartment model describing the interaction
between HIV and its host cells and has been shown to provide a good fit to the viral decay phase after ART
initiation (Wu and Ding 1999). Figure 2A shows the viral decline profile for a typical subject based on model
(2). Random effects are introduced to each parameter to incorporate large variations between individuals. As
shown in Figure 1, some viral load values are left censored or below the detection limit. In estimating the
parameters in the above NLME model, the censored viral load values must be taken into account to avoid
biased results (Hughes 1999; Wu 2002).

In addition to viral loads, CD4 cell count during ART may be also associated with viral rebounds,
due to the known association between CD4 and viral load. The observed CD4 values are highly variable,
reflecting both short-term biological variation and measurement error. To address measurement errors in the
observed CD4 values, we may model the observed CD4 longitudinal data empirically to estimate true CD4
values. Specifically, let zij be the observed CD4 cell count (in cells/mm3) of individual i measured at time tij,
i = 1, 2,… , n, j = 1, 2,… ,mi. We may consider the following general LME model for CD4 data

zi j = uTi j𝜶 + vTi jai + 𝜀i j ≡ z∗i j + 𝜀i j, i = 1, 2,… , n, j = 1, 2,… ,mi, (3)

where vectors uij and vij contain covariates including time, vector 𝜶 contains fixed effect parameters, vector
ai contains random effects with ai ∼ N(0,A), z∗i j is the assumed (unobserved) true CD4 value whose cor-
responding observed error-prone value is zij based on the classical measurement error model, and 𝜀ij is
the measurement error, with 𝜀ij’s are ∼N(0, 𝛿2). We may take appropriate transformations of the observed
CD4 values, such as a log-transformation or a √zi j-transformation so that the transformed data are more
compatible with the normality and constant variance assumptions. We compare different models based on
observed/predicted plots, normal QQ-plots, and residual plots (see Appendix), as well as the simplicity of the
model and its interpretation. We find that a√zi j-transformation of CD4 provides satisfactory results since it
produces similar results as the log-transformation and it is widely used in the analysis of datasets from the
AIDS Clinical Trials Group network (ACTG) (see, e.g., Noubary and Hughes 2012).

Note that the general LME model (3) includes nonparametric mixed effects models which may be useful
if the CD4 trajectories are complicated without clear patterns, since we can use a basis-based approach to
approximate the nonparametric mixed model by an LME model (Wu 2009). Thus, the general LME model (3)
is quite flexible for modelling complex CD4 longitudinal data.

For the motivating dataset shown in Section 1, we considered several empirical polynomial LME models
for CD4 data during ART. We find that the following simple empirical LMEmodel fits the CD4 data reasonably
well (see Appendix)

zi j = 𝛼1i + 𝛼2iti j + 𝜀i j, 𝛼1i = 𝛼1 + a1i, 𝛼2i = 𝛼2 + a2i, (4)

where 𝜶 = (𝛼1, 𝛼2)T are fixed effects and ai = (a1i, a2i)T are random effects. More complex models, such as a
quadratic LME model zi j = 𝛼1i + 𝛼2iti j + 𝛼3it2i j + 𝜀i j with 𝛼3i = 𝛼3 + a3i, do not improve the model fit substan-
tially but they are more complex and less stable. Thus, we choose the simpler LME model (4) for the (square
root transformed) CD4 data.
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A viral rebound model following ART interruption

Wenowmodelviral rebounddata followingARTinterruption.Letwij be the (log10-transformed)viral loadvalue
of individual imeasured at time t∗i j, i = 1, 2,… , n, j = 1, 2,… , n∗i , where t

∗
i j is the time since ART interruption

(not since the start of ART). After ART interruption, the viral load trajectories typically rise to a peak value
followed by a decrease to a viral load set point. Wang et al. (2020) proposed an NLME model with a flexible
functional form to capture this non-linear trajectory and provide biological insights regarding the rebound
process. In comparison to non-parametric modeling approaches such as the use of penalized smoothing
splines (Zhao et al. 2021), key features of viral rebound trajectories are represented by the parameters in the
model, which provides a means to assess the covariate effects on each of these model parameters and allows
us to identify critical pre-ATI predictors for these features directly. Comparison of this parametric NLMEmodel
to a dynamic viral model (Prague et al. 2019) found that both modeling approaches led to good individual fits
and consistent conclusions regarding the features of the viral rebound process (Bing et al. 2020).

Following Wang et al. (2020) (with minor modification), we consider the following NLME model for
modelling the viral rebound following ART interruption

wi j = 𝛽1i
t∗i j

t∗i j + exp
(
𝛽2i − 𝛽3it∗i j

) + 𝛽4i + 𝜉i j, (5)

𝜷 i = Ri𝜷 + 𝝉 i, i = 1, 2,… , n, j = 1, 2,… , n∗i , (6)

where vector 𝜷 i = (𝛽1i,… , 𝛽4i)T contains individual-specific parameters, vector 𝜷 = (𝛽1,… , 𝛽q∗ )T contains
fixed effect parameters, Ri is a 4 × q∗ design matrix contains covariates, and 𝝉 i = (𝜏1i,… , 𝜏4i)T ∼ N(0,G)
contains random effects with G being a covariance matrix, and 𝜉ij is within-individual random error. We
assume that the random effects 𝝉 i and the random error 𝜉ij are independent, and 𝜉ij are i.i.d.∼N(0, 𝜔2). Here
themodification fromWang et al. (2020) is to replace the term that describes the decline of the viral load from
peak to set-point by a constant parameter. The reason for this modification is that our viral load data after
their peaks during rebound exhibit large between-subject variations without a clear pattern, so the parameter
in the original model of Wang et al. (2020) that characterizes the ‘dip’ after the leak may not be estimated
well; including such parameter in themodelmay also lead to non-convergences issues. In our current setting,
we focus onmodeling the rate of rise and viral set points. While the simplification with a constant term in the
above model limits our ability to estimate the peak and the decline from the peak, it provides a good fit to the
data and allows the parameters of primary interest (rate of rise and viral set point) to be estimated well.

Note that the above NLME model (5) and (6) may be viewed as a two-stage model: In stage 1, model
(5) describes the viral rebound trajectories within an individual; and in stage 2, model (6) assumes that the
between-individual variations in the individual-specific parameters in model (5) may be partially explained
by covariates in Ri as well as random effects 𝝉 i.

The parameters in NLME model (5) have the following attractive interpretations (Wang et al. 2020):
parameter 𝛽1i represents set point after rebound, parameter 𝛽2i and 𝛽3i respectively characterize the timing
and rate of rise in viral rebound, and parameter 𝛽4i denotes initial viral load value at the start of rebound.
Figure 2B shows the viral load rebound profile for a typical subject based on model (5). Therefore, each
of the four parameters denotes an important characteristic of the viral rebound trajectories following ART
interruption.

As noted in Section 1, our main objective is to assess if key features of viral load or CD4 trajectories after
ART initiationmay be associated with important characteristics of viral rebounds following ART interruption.
We may use the second-stage model (6) to evaluate such possible associations. Note that the random effects
bi in NLME model (2) for viral load data during ART may be viewed as individual-specific characteristics of
the viral load trajectories during ART. Thus, we may use the random effects bi as “covariates” in the rebound
model (6) to see if these “covariates” may partially explain the large variations in the individual-specific
parameters 𝜷 i during viral rebound. Similarly, we may consider the random effects ai in the CD4 model
(4) during ART and use them as possible “covariates” in the NLME model (6) for viral load following ART
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interruption. Specifically, in the NLME model for viral rebound, we may consider the following second-stage
model for (6)

𝛽ki = 𝛽k + 𝛾k1b1i + 𝛾k2b2i + 𝛾k3b3i + 𝛾k4b4i + 𝛾k5a1i + 𝛾k6a2i + 𝛾
T
k7v∗i + 𝜏ki,

𝛽k’i = 𝛽k’ + 𝜏k’i, k’ ≠ k, k’, k = 1,… , 4, i = 1,… , n,
(7)

where 𝛽k’s are fixed effects parameters, 𝛾kl’s are fixed effect parameters associated with the corresponding
random effects respectively, and v∗

i denotes other baseline covariates.
For the motivating dataset shown in Figure 1, the sample size is small. In this case, we may simplify the

second-stage model (7) to reduce the number of parameters and only focus on the key features of viral decay
and viral rebound. For example, to see if the initial viral decay rate 𝜆1i = 𝜆1 + b3i in NLME model (2) during
ART may be associated with the values of setpoints 𝛽1i after viral rebound, we may consider the following
second-stage model

𝛽1i = 𝛽1 + 𝛾13b3i + 𝜏1i, 𝛽ki = 𝛽k + 𝜏ki, k = 2, 3, 4. (8)

Then, testingH0: 𝛾 13 = 0 vs.H1: 𝛾 13 ≠ 0 allows us to assess possible association between b3i and 𝛽1i. Similarly,
we can evaluate other possible associations.

Parameter estimation and inference

In the previous section, we describe two NLMEmodels and an LMEmodel for viral load and CD4 longitudinal
data before and following ART interruption respectively. A challenge in data analysis is that some viral loads
are left censored in the later period during ART and in the early period after ART interruption. In other words,
bothNLMEmodels for viral loadsmust incorporate left censored data. In this section,we consider a likelihood
method for parameter estimation and inference, incorporating left censoring. Note that we may consider the
(joint) likelihood for all observed data under the three models. However, such a unified approach can be
computationally very intensive, as will be discussed later in this section. To circumvent the computational
burden, here we consider likelihood methods for the three models separately, but accounting for shared
random effects linking these models. Then we propose a simple three-step method for parameter estimation
and inference.

We first consider the NLME model (2) for viral dynamics during ART. Suppose that the lower detection
limit of viral load is di for subject i, i.e., viral load values smaller than di cannot be observed. The observed
value of viral load yij for individual i at time tij can then be written as

(
yoi j, ci j

)
, where cij is the censoring

indicator such that yi j = yoi j is observed if cij = 0 and yij is left censored if cij = 1, i = 1, 2,… , n; j = 1, 2,… , ni.
Let ci = (ci1,… , cini )

T, let yoi denote the observed components of yi = (yi1,… , yini )
T, and let ycen,i denote the

censored components ofyi. Theobserveddataof viral loadbeforeART interruptionare{
(
yoi , ci

)
, i = 1,… , n}.

Let f (⋅) denote a generic density function andF(⋅) denote the corresponding cumulative density function (cdf).
Let 𝜽1 be the collection of all unknown parameters in the NLME model (2). The likelihood for the observed
viral load data during ART based on the NLME model (2) can be written as

Lo(𝜽1) =
n∏

i=1
∫

{ ni∏

j=1

(
f (yi j| bi,𝜽1)

)1−ci j (F(di | bi,𝜽1)
)ci j

}

f (bi|B) dbi

=
n∏

i=1
∬

{ ni∏

j=1
f (yi j| bi,𝜽1) f (bi|B)

}

dycen,i dbi.

We see that the likelihood Lo(𝜽1) involves an intractable integration, since the dimension of (ycen,i,bi) is high
and the model is nonlinear.

To evaluate Lo(𝜽1), a commonly used method is the MCEM algorithm (Wei and Tanner 1990), treating the
left censored values ycen,i and random effects bi as “missing data” (Hughes 1999; Wu 2002). Specifically, the
E-step at the kth EM iteration can be written as
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Q(𝜽1|𝜽
(k)
1 ) =

∬

[
log f (yi|bi,𝜽(k)1 )+ log f (bi|𝜽(k)1 )

]
f (yi,bi|yoi , ci,𝜽

(k)
1 ) dycen,i dbi,

where 𝜽(k)1 is the parameter estimate from previous EM iteration (k = 1, 2,…). To evaluate Q(𝜽1|𝜽
(k)
1 ) in the

E-step, we can use Monte Carlo methods to simulate a large number of “missing data” (ycen,i,bi) from the
conditional distribution f (yi,bi|yoi , ci,𝜽

(k)
1 ), and then approximate Q(𝜽1|𝜽

(k)
1 ) by the empirical mean based on

thesimulatedvalues.Thissimulationstepcanbe implementedbyGibbssampleralongwithrejectionsampling
methods or the importance samplingmethod or otherMarkov ChainMonte Carlo (MCMC)methods (Wu 2009).
The M-step can be based on the Newton-Raphson method. This MCEM algorithm can be computationally
intensive since the dimension of the “missing data” (ycen,i,bi) can be high, so simulating large numbers from
the conditional distribution f (yi,bi|yoi , ci,𝜽

(k)
1 ) can be very slow.

Alternatively, a computationallymore efficientmethod than theMCEMalgorithm is the stochastic approx-
imation EM (SAEM) algorithm (Delyon, Lavielle, andMoulines 1999). The SAEM algorithm replaces the E-step
of theMCEMalgorithmbya singledraw fromtheconditionaldistribution f (yi,bi|yoi , ci,𝜽

(k)
1 ) basedonanMCMC

method, and then use a stochastic approximation to update Q(𝜽1|𝜽
(k)
1 ). Delyon, Lavielle, and Moulines (1999)

shows theoretically that SAEM converges to a (local) maximum of the likelihood under general conditions.
The SAEM algorithm for NLME models has been implemented in the software “Monolix” (Comets, Lavenu,
and Lavielle 2017; Kuhn and Lavielle 2005). Samson, Lavielle, and Mentré (2006) extends the SAEM method
to NLMEmodels with left censoring, based on simulating the left-censored values ycen,i from a right-truncated
Gaussian distribution f (ycen,i|yoi ,bi,𝜽

(k)
1 ) based on the Gibbs sampling in the E-step of the SAEM algorithm.

Similarly, the foregoing SAEM method can be used for the NLME model (5) and (6) for viral rebound
data following ART interruption. In fact, we may consider the SAEM algorithm for all three models simulta-
neously based on the joint likelihood of all observed data. However, such a joint likelihood method can be
difficult to implement and computationally extremely intensive, since the dimension of the “missing data”
(ycen,i,wcen,i,bi, 𝝉 i, ai) is very high so even a single simulation using anMCMCmethod can be computationally

over-whelming, where wcen,i denotes the censored components of wi =
(
wi1,wi2,… ,win∗i

)T
. Therefore, here

we propose to use SAEM for each NLME model with left censoring separately to reduce the computation
burden. Specifically, we propose the following three-step (TS) method:
– Step 1: For data during ART, fit the NLME model (2) for viral load with censoring using the above SAEM

algorithm and fit the LME model for CD4 using the standard method respectively, and then obtain the
maximum likelihood estimates (MLEs) of the fixed parameters and the empirical Bayes estimates of the
random effects, b̂i and âi, respectively;

– Step 2: For viral rebounddata followingART interruption, fit theNLMEmodel (5)with left censoringusing
the above SAEM algorithm, with the random effects ai and bi in the second-stage model (7) substituted
by their empirical Bayes estimates b̂i and âi from Step 1;

– Step 3: Obtain the standard errors of the parameter estimates based on a (parametric) bootstrap method,
which incorporates the estimation uncertainty of random effect estimates b̂i and âi in Step 1.

The parametric bootstrap method works as follows:
1. Simulate CD4 and viral load data with left censoring, based on the fitted LME and two NLME models

using the above three-step method, where the model parameters are replaced by their estimates.
2. For the simulated CD4 and viral load data, fit all three models again using the above three-step method

and obtain all parameter estimates.
3. Repeat the above process B times (say, B = 100), we obtain B estimates for each parameter. The sample

standarddeviationof theseB estimatesof eachparameter is theparametricbootstrapestimateof standard
error of the corresponding parameter estimate.

The above bootstrap method incorporates the estimation uncertainty of the parameter and random effect
estimates in the TS method with separate model fitting, so it should produce more reliable standard errors of
the parameter estimates than those from separate model fitting. Note that, in Step 2 of the above TS method,
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we use the empirical Bayes estimates of the random effects. An alternative approach is to sample from the
posterior distribution of the random effects, but this approach may introduce additional variability from the
sampling.

Results of data analysis
In this section, we analyze the dataset shown in Figure 1 using the proposed TS method and a naive (NV)
method,which still uses theSAEMalgorithmbut the censoredvalues are substitutedbyhalf thedetection limit
and inference is based onmodel-based standard errors. There are 75 patients in the study. Viral loads and CD4
are repeatedlymeasured on patients during ART and following ART interruption, with the longest time of 58.4
months and shortest time of 16.73months. After ART interruption, viral loadusually increases to a peakwithin
6–10 weeks, then decrease to a stable level over a time scale of months. Therefore, we restrict our attention to
data within week 36 (9 months). We excluded individuals with 2 or less repeated measurements either during
ART or following ART interruption (n = 5) or individuals with un-suppressed viral load values at the first time
point following ART interruption (n = 4). For remaining viral load data during ART, the minimum number
of repeated measurements is 5, and the maximum number of repeated measurements is 19, with an average
number of repeated measurements being 9.32. For viral load data following ART interruption, the minimum
number of repeated measurements is 3, and the maximum number of repeated measurements is 23, with an
average number of repeated measurements being 6.63. The proportions of viral load measurements that are
left censored (below the detection limit) before or after ART interruption are 59.6% or 23.9%, respectively.
From Figure 1, we can see that the viral load trajectories during ART exhibit clear patterns of viral decay.
Following ART interruption, the viral loads rebound quickly, but their trajectories become complicated after
reaching peak points, with substantial between-subject variations.

For viral load data during ART, we fit the NLME model (2) of Wu and Ding (Wu and Ding 1999), with
left-censoreddata addressedby theSAEMmethod. Thebi-exponential decayNLMEmodel (2) fits the viral load
data very well. Figure 3A (top four figures) shows the fitted values vs. the corresponding observed values for
four randomly selected subjects during ART. For the CD4 data during ART, the CD4 trajectories do not appear
to exhibit clear patterns, with large between-subject variations, possibly due to substantial measurement
errors. However, there seems an overall upward trend. Thus, we fit the LME model (4) to the CD4 data, which
captures a rough upward trend before ART interruption.

For viral load data following ART interruption, we consider the following NLME model

wi j = 𝛽1i
ti j

ti j + exp(𝛽2i − 𝛽3iti j)
+ 𝛽4i + 𝜉i j,

𝛽1i = 𝛽1 + 𝛾11b1i + 𝛾12b2i + 𝛾13b3i + 𝛾14b4i + 𝛾15a1i + 𝛾16a2i + 𝜏1i,

𝛽ki = 𝛽k + 𝜏ki, k > 1,

(9)

where 𝛽1i is the viral set point during rebound and the random effects (b1i, b2i, b3i, b4i, a1i, a2i) are defined in
model (7) (e.g., b3i is the random effect associated with the initial viral decay rate 𝜆1i during viral decay before
ART interruption).We again address left-censored data by the SAEMmethod.Weuse the parametric bootstrap
method with B = 100 to estimate the standard errors of all the fixed effect parameter estimates. This NLME
model for viral rebound also fits the data reasonably well. Figure 3B (bottom four figures) shows the fitted
values vs. the corresponding observed values for four randomly selected subjects during viral rebound.

Table 1 shows parameter estimation results for models (2) and (9) (the time unit in data analysis is
month). We see that parameters 𝛾 13 and 𝛾 14, which link the initial viral decay rates 𝜆1i and 𝜆2i during ART to
viral setpoints 𝛽1i following ART interruption for individual i, suggest an association among these features
(p-value = 0.029 and < 0.001 respectively). Specifically, the initial viral decay rates during ART appears to
be negatively associated with the viral setpoints following ART interruption: the faster the viral decay after
start of ART, the lower the setpoints following ART interruption. In addition, the second-phase viral decay
rates during ART appears to be negatively associated with the viral setpoints following ART interruption: the



Gao et al.: Nonlinear mixed-effects models for HIV | 11

Figure 3: Observed and fitted viral load trajectories before (top four figures) and following (bottom four figures) ART interruption
for 4 randomly selected subjects respectively. The red vertical bars represent left-censored viral loads.



12 | Gao et al.: Nonlinear mixed-effects models for HIV

Table 1: Parameter estimates with a second-stage model for setpoint 𝛽1i.

Parameter Estimate Naive SE Bootstrap SE z-Value p-Value

P1 11.258 0.283 0.167 67.449 0.000
𝜆1 4.790 0.380 0.362 13.244 0.000
P2 3.271 0.117 0.206 15.872 0.000
𝜆2 0.225 0.027 0.019 11.788 0.000
𝛼1 0.087 0.007 0.017 5.178 0.000
𝛼2 24.080 0.517 0.438 54.985 0.000
𝛽1 2.828 0.161 0.243 11.651 0.000
𝛾11 0.144 0.073 0.075 1.911 0.056
𝛾12 −0.027 0.559 0.755 −0.035 0.972
𝛾13 −0.252 0.079 0.116 −2.177 0.029
𝛾14 −97.574 50.944 26.294 −3.711 0.000
𝛾15 −0.026 0.033 0.035 −0.728 0.467
𝛾16 0.811 1.290 4.291 0.189 0.850
𝛽2 1.588 1.308 0.694 2.289 0.022
𝛽3 3.360 1.614 0.828 4.056 0.000
𝛽4 0.783 0.119 0.151 5.195 0.000

Naive SE is the standard error based on separate model fitting without bootstrap, z-Value is the ratio of estimate/bootstrap SE,
and p-Value is based on the z-Value and the standard normal tail probability for a two-sided test.

faster the viral decay in the slow decay phase during ART, the lower the setpoints following ART interruption.
The naive method produces similar estimates but different standard errors (we only show naive SE in Table 1
since naive estimates are similar). We will evaluate the two methods via simulation in the next section.

We may also consider the following second stage model associated with the NLME model (9) for viral
rebound following ART interruption:

𝛽3i = 𝛽3 + 𝛾31b1i + 𝛾32b2i + 𝛾33b3i + 𝛾34b4i + 𝛾35a1i + 𝛾36a2i + 𝜏3i,

𝛽ki = 𝛽k + 𝜏ki, k ≠ 3.
(10)

Table 2: Parameter estimates with a second-stage model for rebound rate 𝛽3i.

Parameter Estimate Naive SE Bootstrap SE z-Value p-Value

P1 11.258 0.283 0.204 55.176 0.000
𝜆1 4.790 0.380 0.236 20.321 0.000
P2 3.271 0.117 0.167 19.575 0.000
𝜆2 0.225 0.027 0.019 11.627 0.000
𝛼1 0.087 0.007 0.011 7.765 0.000
𝛼2 24.080 0.517 0.518 46.456 0.000
𝛽1 2.946 0.375 0.127 23.196 0.000
𝛽2 1.542 1.040 0.419 3.680 0.000
𝛽3 3.280 – 0.448 7.327 0.000
𝛾31 0.837 0.053 0.211 3.971 0.000
𝛾32 −4.589 0.177 2.691 −1.705 0.088
𝛾33 −1.110 0.008 0.317 −3.501 0.000
𝛾34 −221.564 12.712 116.409 −1.903 0.057
𝛾35 −0.106 0.023 0.109 −0.969 0.333
𝛾36 −0.090 0.445 8.458 −0.011 0.991
𝛽4 0.772 0.448 0.057 13.625 0.000

Naive SE is the standard error based on separate model fitting without bootstrap, z-Value is the ratio of estimate/bootstrap SE,
and p-Value is based on the z-Value and the standard normal tail probability for a two-sided test. A naive SE is unavailable,
possibly due to parameters being unidentifiable.
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The analysis results are presented in Table 2. We see that the rate of rise during viral rebound following ART
interruption 𝛽3i appears to be negatively correlated with initial viral decay rate (𝛾33) and positively correlated
with initial viral load values (𝛾31). That is, the faster the initial viral decline during ART or the lower the initial
viral loads, the slower the viral rising following ART interruption.

In summary, the analysis results show that some key characteristics of the viral load trajectories during
ART, especially the initial viral decay rates after the start of ART, appear to be associated with some important
features of the viral rebound following ART interruption, such as viral setpoints and rates of viral rising. The
CD4 data during ART do not seem to be associated with important features of the viral rebound following ART
interruption.

Simulation study
In this section, we conduct extensive simulations to evaluate the proposed TS method and compare it with
the naive method used in data analysis. We choose similar NLME models to those in the data analysis
section, but we omit the CD4 model for simplicity. The true values of the model parameters are set to be
similar to those estimated in the data analysis section. The sample size is set to be n = 50 individuals.
For the within-individual longitudinal measurements, to mimic the real dataset, for half the sample we
choose 10 repeated measurements during ART and 9 repeated measurements following ART interruption,
while for the remaining half the sample we choose 11 repeated measurements during ART and 11 repeated
measurements followingART interruption. Themeasurement times are chosen tobe similar to those in the real
dataset. Two sets of measurement times during ART are t1 = (0.5, 1.6, 2.3, 3, 4.6, 6.5, 7.6, 11.2, 14.9, 19.1) and
t2 = (0.5,0.7, 1.7, 3, 4.4, 5.9, 7.9, 9.6, 11.7, 14, 16.5). Two sets of measurement times following ART interruption
are t∗1 = (0.1, 1.1, 1.6, 2.4, 2.8, 3.3, 3.7, 4.2, 5.2) and t∗2 = (0.2,0.6, 1.1, 1.6, 2.1, 2.5, 3, 3.5, 4, 4.4, 4.9).

We generate the viral load data during ART based on the following NLME model

yi j = log10
(
eP1i−𝜆1iti j + eP2i−𝜆2iti j

)
+ ei j

P1i = P1 + b1i, P2i = P2 + b2i, 𝜆1i = 𝜆1 + b3i, 𝜆2i = 𝜆2 + b4i,
(11)

where eij i.i.d.∼N
(
0, 𝜎2

1
)
and bi = (b1i, b2i, b3i, b4i)T ∼ N(0,D). The true values are P1 = 17.0, P2 = 2.6, 𝜆1 = 4,

𝜆2 = 0.05, and 𝜎1 = 0.5. The detection limit is set to be d = 1.60. For the viral load data following ART
interruption, we generate the data based on the following NLME model

wi j = 𝛽1i
ti j

ti j + exp(𝛽2i − 𝛽3iti j)
+ 𝛽4i + 𝜉i j,

𝛽1i = 𝛽1 + b3i𝛾3 + 𝜏1i, 𝛽2i = 𝛽2 + 𝜏2i, 𝛽3i = 𝛽3 + 𝜏3i, 𝛽4i = 𝛽4 + 𝜏4i,

where b3i is the random effect from model (11), 𝜉i j ∼ N
(
0, 𝜎2

3
)
, and 𝜏 i ∼ N(0,G). The true parameter values

are 𝛽1 = 3.2, 𝛽2 = 5.6, 𝛽3 = 10, 𝛽4 = 1, 𝛾3 = 1, 𝜎3 = 0.5,

D =

⎡
⎢
⎢
⎢
⎢
⎣

1.7 −0.4 0.06 −0.003
−0.4 1.5 −0.1 0.005
0.06 −0.1 0.05 −0.002

−0.003 0.005 −0.002 0.0002

⎤
⎥
⎥
⎥
⎥
⎦

, and G =

⎡
⎢
⎢
⎢
⎢
⎣

0.5 0.03 0.2 0.03
0.03 2.3 −0.3 −0.04
0.2 −0.3 11.8 0.06
0.03 −0.04 0.06 0.006

⎤
⎥
⎥
⎥
⎥
⎦

.

We evaluate the proposed TS method based on bias, mean square error (MSE), and coverage rates of
95% confidence intervals. For a parameter 𝛽 and its estimate 𝛽, the bias and root MSE (rMSE) are defined as
bias = E(𝛽)− 𝛽, rMSE =

√
MSE, and the coverage rate is the proportion of confidence intervals which covers

the true value. We compare the TS method to a naive method which replaces censored viral loads by half the
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Table 3: Simulation results.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 17.097 0.425 0.097 0.435 0.95
Naive 17.088 0.257 0.088 0.272 0.91

𝜆1 4.0 TS 4.092 0.240 0.092 0.257 0.91
Naive 4.137 0.216 0.137 0.256 0.91

P2 2.6 TS 2.794 0.398 0.194 0.442 0.95
Naive 2.222 0.111 −0.378 0.394 0.39

𝜆2 0.1 TS 0.040 0.081 −0.010 0.081 0.95
Naive 0.029 0.009 −0.021 0.023 0.40

𝛽1 3.2 TS 3.267 0.140 0.067 0.155 0.95
Naive 3.324 0.130 0.124 0.180 0.86

𝛾3 1.0 TS 0.986 0.096 −0.014 0.097 0.94
Naive 0.999 0.083 −0.001 0.083 0.92

𝛽2 5.6 TS 5.588 1.187 −0.012 1.187 0.94
Naive 6.370 1.354 0.770 1.558 0.84

𝛽3 10.0 TS 10.079 2.062 0.079 2.064 0.94
Naive 11.170 2.650 1.170 2.897 0.88

𝛽4 1.0 TS 0.930 0.092 −0.070 0.115 0.85
Naive 0.861 0.072 −0.139 0.157 0.62

detection limits and uses the model-based standard errors for inference. For the TS method, the number of
bootstrap samples is B = 100. The simulations are repeated 100 times. While a larger number of repetitions
may bemore desirable, the computation involving bootstrap is intensive and the 100 repetitions results seem
sufficient to allow us to make reasonable conclusions (Morris, White, and Crowther 2019).

The simulation results are shown in Table 3. We see that the proposed TS method performs quite well
and clearly outperforms the naive method: estimates based on the TS method are approximately unbiased
with estimated coverage probabilities close to the nominal level 0.95, while estimates based on the naive
methodmay sometimes produce biased results with estimated coverage probabilities way below the nominal
level 0.95. Despite the simulation results, both methods seem to produce similar results on the real data
analysis in the previous section. Note that the SE’s based on the naive method maybe underestimate the true
variation since the naive method ignores the uncertainties of the censored values and the separate NLME
model fitting, therefore the naive method may lead to smaller MSE’s but lower coverage probabilities. On
the other hand, the proposed TS method incorporates the uncertainty of the censored values by the SAEM
algorithmand the separateNLMEmodelfittingbybootstrap, so itmay lead to largerMSE’sbut correct coverage
probabilities.

Since the performance of MLEs of mixed effects models depends both on the sample size and the number
of repeated measurements, we also conduct another simulation study by choosing more frequent repeated
measurements, with other true parameter values remaining the same. The measurement times are chosen to
be close to those in the real dataset with additional measurement times in between. Specifically, the new set
of measurement times during ART are chosen to be t1 = (0.4, 1.2, 1.6, 2.1, 3.2, 4.6, 5.3, 7.8, 10.4, 13.4, 17), and
the new set of measurement times following ART interruption are chosen to be t∗1 = (0,0.6,0.8, 1.2, 1.4, 1.7,
1.9, 2.1, 2.6, 3.1, 3.8, 4.5, 5.4, 6). The simulation results are shown in Table 4. The proposed TS method again
outperforms the naive method.
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Table 4: Simulation results with more frequent repeated measurements.

Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 16.820 0.733 −0.180 0.755 0.93
Naive 16.981 0.259 −0.019 0.260 0.89

𝜆1 4.0 TS 4.011 0.288 0.011 0.288 0.92
Naive 4.103 0.202 0.103 0.227 0.85

P2 2.6 TS 2.968 0.705 0.368 0.796 0.95
Naive 2.273 0.142 −0.327 0.357 0.51

𝜆2 0.1 TS 0.096 0.186 0.046 0.191 0.95
Naive 0.041 0.012 −0.009 0.015 0.34

𝛽1 3.2 TS 3.223 0.132 0.023 0.134 0.94
Naive 3.304 0.121 0.104 0.159 0.87

𝛾3 1.0 TS 0.986 0.095 −0.014 0.096 0.97
Naive 0.996 0.089 −0.004 0.089 0.96

𝛽2 5.6 TS 5.553 0.873 −0.047 0.874 0.95
Naive 6.258 0.676 0.658 0.943 0.79

𝛽3 10.0 TS 9.757 1.460 −0.243 1.481 0.96
Naive 10.715 1.166 0.715 1.368 0.82

𝛽4 1.0 TS 0.980 0.079 −0.020 0.081 0.88
Naive 0.886 0.048 −0.114 0.124 0.63

Conclusions and discussion
We have shown that key features of viral decay during ART may be associated with important features of
viral rebound following ART interruption. For example, the faster the viral decay after start of ART, the
lower the setpoints following ART interruption. Such a finding may provide insights into HIV cure research.
Recent findings suggest that HIV-1 latent reservoir is primarily established near the time of ART initiation
(Abrahams et al. 2019); interventions in addition to ART to inhibit the formation of latent reservoir may
subsequently lead to a lower viral set point – a key goal of the HIV functional cure. A limitation of our dataset
is that the sample size is somewhat small.

In the future, if we are able to obtain a larger dataset, we may be able to identify more interesting
associations between features of viral decay and viral rebound. Another issue is the frequencies of the
repeated measurements within each individual. If the longitudinal data were collected more frequently over
time, themixed effects model parameters might be estimatedmore accurately in the sense of possibly smaller
standard errors, allowing us to identifymore interesting associations. It would also be of interest to investigate
optimal study design, e.g., how to schedule measurement times, to improve efficiency of data analysis.

We have considered two NLME models with left censoring and an LME model, and we estimate the
model parameters separately using an SAEM algorithm and a bootstrap method, called a three-step method.
Similar ideas have appeared in the context of measurement error literature (Carroll et al. 2006). A major
advantage of the proposed three-step method is that it is easy to implement and is computationally efficient.
A disadvantage is that the parameter estimates may not be most efficient if the assumed models hold, since
the model parameters are estimated separately. In addition, other possible useful covariates, such as the
time from viral suppression to ART interruption, are not included in the models in order to keep the models
relatively simple, and the possible association between the random effects in the viral load models and the
CD4model is ignored for simplicity, due to small sample sizes. Onemay also consider simultaneous likelihood
inference based on the joint likelihood of all three models via an Monte Carlo EM algorithm (e.g., Wu 2009),
but such a method can be computationally very intensive and may encounter convergence issues, since the
dimensions of unobservable random effects and censored values are high. Alternatively, we may consider
approximate joint likelihood inferences based on the so-called h-likelihood (Lee, Nelder, and Pawitan 2017)
or based on Laplace approximations (Vonesh et al. 2002), but the accuracy of these approximations could be
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a potential issue. Another promising approach is to use Bayesian methods (e.g., Dey, Chen, and Chang 1997;
Huang et al. 2018), which will be investigated separately.

In this article, we have focused on studying the associations among the individual viral dynamic charac-
teristics during ART and following ART interruption, such as the individual viral decay rates and setpoints.
Another important direction is to study the association between the individual viral dynamic characteristics
during ART and times to viral rebound or times to setpoints after ART is stopped. For example, are individuals
with faster viral declines during ART associated with slower viral rebounds after the therapy is stopped?
Such questions may be answered using joint inference for an NLME model for viral dynamics during ART
and a time-to-event model such as a Cox proportional hazards model. There is an extensive literature on joint
models for longitudinal and survival data and modelling times to viral rebound (e.g., Conway, Perelson, and
Li 2019; Hill et al. 2016; Yu, Wu, and Gilbert 2018). We will explore this direction separately.

The models can be extended in different ways. For example, we may consider semiparametric NLME
models for viral rebound data since the viral rebound trajectories after reaching peak pointsmay not be easily
modelled parametrically due to large between-individual variations without clear patterns. In the article, we
have assumed that the left censored viral loads follow the same distribution as the observed viral loads. Such
an assumption is not testable based on the observed data. We may consider an approach which does not
make such assumption, e.g., treating the censored values as point masses as in Yu, Wu, and Gilbert (2018).

Appendix: Model selection and diagnostics
In this section, we consider model selection and diagnostics for CD4models. These viral loadmodels are well
studied in the literature (e.g., Wang et al. 2020;Wu and Ding 1999;Wu 2009). For the CD4 data, we considered
log-transformation and square root transformation so that the transformed data are more compatible with
the normality and constant variance assumptions. We find that these two transformations lead to similar
results. More complex transformations, such as those based on the Box-Cox transformations, do not appear
to improve the results substantially, and they are harder to interpret. Therefore, in the paper, we choose the
square root transformation of CD4 counts since it is widely used in ACTG data analyses.

For CD4 model selections, since the CD4 model is secondary in the paper and CD4 data are measured
with errors, we focus on the simplicity and goodness-of-fit of the candidatemodels.We find that a simple LME
model captures the main features of the CD4 trajectories and it also fits the observed CD4 data reasonably
well, i.e., in the paper, we choose the CD4 model:

√
CD4i j = 𝛼1i + 𝛼2iti j + 𝜀i j, 𝛼ki = 𝛼k + aki, k = 1, 2,

where CD4ij is the original CD4 count for subject i measured at time tij, 𝛼k’s are fixed effects, and aki’s are
random effects. Note that this simple CD4 model may also be interpreted as a classic measurement error
model, where z∗i j = 𝛼1i + 𝛼2iti jmay be interpreted as the unobserved true (transformed) CD4 value for subject i
at time tij. The AIC (BIC) values for the CD4models with a quadratic term (and a random effect) and without a
quadratic term are 2690 (2733) and 2733 (2759), respectively. Thus, adding a quadratic term t2i j does not appear
to improve the model substantially but it may make the model more complicated and less stable.

Figure 4 shows the observed/fitted CD4 values for four randomly selected subjects. We see that the CD4
model captures themain features of the CD4 trajectories. Figure 5 shows the normalQQ-plots for the estimated
random effects in the intercepts and slopes of the CD4 model. We see that the normality assumptions are
mostly reasonable. Figure 6 shows the overall residual plots of the CD4 model. These model diagnostics
indicate that the simple CD4 model is a reasonable choice.
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