Table 1:
Parameter | Estimate | Naive SE | Bootstrap SE | z-Value | p-Value |
---|---|---|---|---|---|
P 1 | 11.258 | 0.283 | 0.167 | 67.449 | 0.000 |
λ 1 | 4.790 | 0.380 | 0.362 | 13.244 | 0.000 |
P 2 | 3.271 | 0.117 | 0.206 | 15.872 | 0.000 |
λ 2 | 0.225 | 0.027 | 0.019 | 11.788 | 0.000 |
α 1 | 0.087 | 0.007 | 0.017 | 5.178 | 0.000 |
α 2 | 24.080 | 0.517 | 0.438 | 54.985 | 0.000 |
β 1 | 2.828 | 0.161 | 0.243 | 11.651 | 0.000 |
γ 11 | 0.144 | 0.073 | 0.075 | 1.911 | 0.056 |
γ 12 | −0.027 | 0.559 | 0.755 | −0.035 | 0.972 |
γ 13 | −0.252 | 0.079 | 0.116 | −2.177 | 0.029 |
γ 14 | −97.574 | 50.944 | 26.294 | −3.711 | 0.000 |
γ 15 | −0.026 | 0.033 | 0.035 | −0.728 | 0.467 |
γ 16 | 0.811 | 1.290 | 4.291 | 0.189 | 0.850 |
β 2 | 1.588 | 1.308 | 0.694 | 2.289 | 0.022 |
β 3 | 3.360 | 1.614 | 0.828 | 4.056 | 0.000 |
β 4 | 0.783 | 0.119 | 0.151 | 5.195 | 0.000 |
Naive SE is the standard error based on separate model fitting without bootstrap, z-Value is the ratio of estimate/bootstrap SE, and p-Value is based on the z-Value and the standard normal tail probability for a two-sided test.