Table 2:
Parameter | Estimate | Naive SE | Bootstrap SE | z-Value | p-Value |
---|---|---|---|---|---|
P 1 | 11.258 | 0.283 | 0.204 | 55.176 | 0.000 |
λ 1 | 4.790 | 0.380 | 0.236 | 20.321 | 0.000 |
P 2 | 3.271 | 0.117 | 0.167 | 19.575 | 0.000 |
λ 2 | 0.225 | 0.027 | 0.019 | 11.627 | 0.000 |
α 1 | 0.087 | 0.007 | 0.011 | 7.765 | 0.000 |
α 2 | 24.080 | 0.517 | 0.518 | 46.456 | 0.000 |
β 1 | 2.946 | 0.375 | 0.127 | 23.196 | 0.000 |
β 2 | 1.542 | 1.040 | 0.419 | 3.680 | 0.000 |
β 3 | 3.280 | – | 0.448 | 7.327 | 0.000 |
γ 31 | 0.837 | 0.053 | 0.211 | 3.971 | 0.000 |
γ 32 | −4.589 | 0.177 | 2.691 | −1.705 | 0.088 |
γ 33 | −1.110 | 0.008 | 0.317 | −3.501 | 0.000 |
γ 34 | −221.564 | 12.712 | 116.409 | −1.903 | 0.057 |
γ 35 | −0.106 | 0.023 | 0.109 | −0.969 | 0.333 |
γ 36 | −0.090 | 0.445 | 8.458 | −0.011 | 0.991 |
β 4 | 0.772 | 0.448 | 0.057 | 13.625 | 0.000 |
Naive SE is the standard error based on separate model fitting without bootstrap, z-Value is the ratio of estimate/bootstrap SE, and p-Value is based on the z-Value and the standard normal tail probability for a two-sided test. A naive SE is unavailable, possibly due to parameters being unidentifiable.