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Abstract

Hearing loss is the most common sensory neural disorder in humans, and according to a WHO estimation, 5.5% (466
million) of people worldwide have disabling hearing loss. In this study, a Chinese family with prelingual sensorineu-
ral hearing loss was investigated. The affected individuals showed moderately severe hearing loss at all frequencies.
Using target genome enrichment and high-throughput sequencing, the homozygous variant c.2372del; p.(Ser791fs)
was identified in PDZD7. This variant lies in exon 15 of PDZD7 and results in a frame shift followed by an early stop
codon. Itis classified as pathogenic according to the ACMG/AMP guidelines and ClinGen specifications. Our study
expands the pathogenic variant spectrum of PDZD7 and strengthens the clinical importance of this gene in patients

with moderately severe hearing loss.
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Introduction

Hearing loss is the most common sensory neural dis-
order in humans, and according to a WHO estimation,
5.5% (466 million) of the world population has disabling
hearing loss (https://www.who.int/health-topics/heari
ng-loss). It is estimated that more than half of neonatal
sensorineural hearing loss (SNHL) is caused by genetic
factors [1]. Nonsyndromic SNHL, in which no other
symptoms occur, accounts for approximately 70% of
hereditary SNHL. Syndromic SNHL, which is associated
with other symptoms, accounts for approximately 30%
of hereditary SNHL [1]. To date, 124 genes have been
implicated in nonsyndromic SNHL, and more than 400
syndromic SNHLs have been identified (https://hered
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itaryhearingloss.org/, data updated on August 30, 2021).
In the hearing system, the proteins encoded by most of
these deafness genes are located in inner ear hair cells.
These are polarized epithelial cells with stereocilia bun-
dles at the top, which translate motion to neuronal sig-
nals [2].

PDZD?7 encodes a scaffold protein that is expressed in
the cortex and inner ear. Pathogenic variants in PDZD7
have been reported to cause autosomal recessive non-
syndromic SNHL [3, 4]. Moreover, PDZD?7 has been sug-
gested to be a contributor to digenic Usher syndrome
type IIC and a modifier in patients with Usher Syndrome
(USH) Type IIA [5]. As the most common cause of deaf
blindness, USH is divided into three subtypes (USHI,
USH2, and USH3) based on the degree and onset age
of hearing loss, onset age of retinitis pigmentosa and
involvement of vestibular impairment. Twelve genes have
been linked to USH, including 6 USH1 genes (MYO7A,
USHIC, CDH23, PCDH15, USHIG and CIB2), 4 USH2
genes (USH2A, ADGRVI1, WHRN and PDZD?7), and 2
USH3 genes (CLRN1 and HARS) [6]. Eight of these USH
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genes have been identified to cause both USH and non-
syndromic SNHL, namely, MYO7A, CDH23, USHIC,
PCDH15, WHRN, CIB2, USH1G and PDZD?.

In this study, we present the genetic characteristics of a
Chinese Han family with congenital SNHL. The affected
individuals had moderately severe hearing loss at all fre-
quencies. Using targeted genome enrichment (TGE) and
high-throughput sequencing (HTS), we identified a novel
homozygous frameshift variant in exon 15 of PDZD?7.
The variant results in a frame shift followed by an early
stop codon and would most likely lead to nonsense-
mediated mRNA decay (NMD). Our study enriches the
variant spectrum of PDZD7 and suggested that TGE and
HTS are reliable tools for genetic testing of hereditary
hearing loss for large genes such as PDZD?.

Materials and methods

Subjects

Participants in this study were recruited from the out-
patient department of the Affiliated Eye and ENT Hos-
pital of Fudan University, Shanghai, China. All family
members were evaluated by audiological tests. Pure tone
audiometry at frequencies of 125, 250, 500, 1000, 2000,
4000, and 8000 Hz was performed on family members
above the age of 6. Romberg and tandem gait tests were
performed to evaluate vestibular functions. Auditory
brainstem response (ABR) test was performed on family
members under the age of 6. High-resolution computed
tomography (HRCT) scans of the temporal bone were
obtained to examine inner ear malformations. Written
informed consent was obtained from adult participants
and parents of all minor participants involved in the
study. This study was approved by the ethics committee
of the Institutional Review Board of the Eye, Ear, Nose
and Throat Hospital affiliated with Fudan University
(Shanghai, China).

Targeted exome sequencing

Genomic DNA was extracted from the whole blood from
participants using a genomic DNA isolation kit (Qia-
gen, Hilden, Germany). To screen common pathogenic
deafness variants in the G/B2, SLC26A4, and MT-RNRI
genes, the patients were prescreened by PCR amplifi-
cation and Sanger sequencing. A paired-end sequenc-
ing library was prepared using a library preparation kit
(New England Biolabs, Ipswich, MA, catalog# E6040). A
human deafness gene exon enrichment kit including 168
genes was used to capture target genome intervals (Addi-
tional filel: Table S1). High-throughput sequencing was
performed using Illumina HiSeq 2000 according to the
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manufacturer’s instructions (Illumina, Inc., San Diego,

CA).

Bioinformatics and validation of the variants

Sequencing reads were generated by the Illumina
CASAVA v1.8 pipeline and aligned to the human ref-
erence genome (hgl9) using the Burrows—Wheeler
Aligner (BWA) program. Variants were called using the
GATK package v4.1.8.1. All variants were annotated
and characterized using ANNOVAR software. To iden-
tify pathogenic variants, we filtered out the following:
(1) low-quality variants (depth<10, or genotype qual-
ity<30); (2) variants in the noncoding regions, except
for those that might disrupt splicing; (3) synonymous
variants in the coding region; (4) variants with minor
allele frequency (MAF) >0.001 in several databases (1000
Genome Project, gnomad v2.1.1 and in-house database);
and (5) variants labeled as “benign” in the ClinVar data-
base. The deleterious effect of variants was predicted by
SIFT scores, REVEL, and CADD scores. To validate the
variants, Sanger sequencing of PDZD7 exon 15 was per-
formed on genomic DNA from all family members and
96 normal hearing controls. PCR and sequencing prim-
ers were designed by Primer3 online software. Sanger
sequencing was performed on a 3730XL sequencer
(Applied Biosystems) according to the manufacturer’s
instructions.

Results

Family and clinical presentations

Family D27 is a nonconsanguineous Chinese family that
includes three affected siblings and two normal hearing
parents (Fig. 1A). This family underwent auditory tests,
and the family history was obtained. The affected siblings
were 9, 7 and 2 years old during the examination. Audio-
grams of the two older patients showed bilateral moder-
ate to severe HL with a slightly downward slope (Fig. 1B).
The ABR test of II:3 revealed bilateral HL with a thresh-
old of approximately 65 dB (Fig. 1C). Although newborn
hearing screenings were not performed, the parents
recalled no responses to subtle sounds at 1-2 years of
age, suggesting a congenital phenotype. Vestibular func-
tional tests of the two older patients revealed no abnor-
malities. HRCT scans of II:1 and II:2 revealed no inner
ear malformations. We also performed pure tone audi-
ometry on the parents and detected no hearing loss
features. Otoscopy and full physical examination with
special attention to renal and ophthalmological evalua-
tions revealed no additional abnormalities.
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Fig. 1 Pedigree and audiograms of the hearing loss family. A Pedigree of the family. Darkened symbols denote affected individuals. B Audiograms
of the two affected Siblings (II:1 and I1:2) in the family. C ABR results of II:3

Targeted high-throughput sequencing

Targeted high-throughput sequencing of all exons and
exon—intron boundaries for 168 deafness genes was
performed on the proband II:1. Sequencing yielded 2.8
million 100 bp paired-end reads. After adaptor trim-
ming and low-quality read filtering, paired-end fastq
files were aligned to the human genome (hgl9). A mean
depth of 118.1 for the targeted exons was achieved, and
97.8% of the targeted genome intervals were covered by
at least 10 sequencing reads. After filtering against MAFs
from various databases (1000 Genome Project, gnomad
v2.1.1 and in-house database), we focused on variants
in the coding region and intronic variants that might
affect splicing. Based on the assumption of an autoso-
mal recessive mode of inheritance, we focused on genes

with homozygous or compound heterozygous variants.
A homozygous variant, ¢.2372del; p.(Ser791Phefs*17);
p-(Ser791fs) (NM_001195263.2), was identified in exon
15 of PDZD?7. This variant was not present in any of the
reference databases.

Genetic analysis of the PDZD7 variant

Sanger sequencing of exon 15 of PDZD7 was performed
for all family members (Fig. 2A). Variant interpretation
was performed according to the ACMG/AMP guide-
lines and ClinGen specifications [7-10]. Loss of func-
tion is a known mechanism of PDZD7-induced HL [11].
The frameshift variant p.(Ser791fs) is followed by an early
stop codon (Fig. 2A). The premature termination codon
lies in the middle of the antepenultimate exon of PDZD7
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and therefore would most likely cause NMD (PVS1) [12,
13]. The three affected siblings were homozygous for the
PDZD?7 variant, while their normal hearing parents were
both heterozygous, which suggests that the PDZD?7 variant
cosegregated with HL in this family (PP1). Moreover, the
variant was absent in the 1000 Genome Project, gnomad
v2.1.1 and in-house databases, and Sanger sequencing of 96
ethnically matched normal hearing controls did not detect
the variant (PM2). Therefore, the ¢.2372del; p.(Ser791fs)
(NM_001195263.2) variant is classified as pathogenic
according to the ACMG/AMP guidelines and ClinGen
specifications, with the applied criteria of PVS1, PM2 and
PP1 [8, 9].

Discussion

PDZD?7 is located on chromosome 10q24.31 and was origi-
nally identified as an autosomal recessive nonsyndromic
SNHL gene [4]. Subsequently, heterozygous variants in
PDZD7 were identified as a modifier of retinal disease and
a contributor to digenic Usher syndrome [5]. In Usher syn-
drome patients with biallelic UISH2A variants, another het-
erozygous PDZD7 variant causes earlier-onset and more
severe retinal disease [5]. Moreover, heterozygous variants
in both PDZD7 and ADGRVI induce Usher Syndrome
Type IIC [5]. In this study, using HTS, we identified a novel
pathogenic PDZD7 variant (c.2372del; p.(Ser791fs)) in a
Chinese Han family with congenital nonsyndromic SNHL.
The variant is located in the middle of exon 15, which is
the antepenultimate exon. According to current consen-
sus, this premature termination codon will lead to NMD,
and no protein will be produced [12, 13]. Furthermore, no
other variants in the Usher syndrome genes were found in
the proband. The affected siblings in the present study were
9, 7 and 2 years of age during examinations. Ophthalmo-
logical tests revealed no retinal abnormalities. Newborn
hearing screenings were not performed, but the parents
recalled a reduced response to small sounds and mispro-
nunciations for the two older sisters, which indicated con-
genital or prelingual onset.

The PDZD?7 protein is a paralog of harmonin (USHIC)
and whirlin (WHRN), sharing 35% and 55% similarity with
harmonin and whirlin, respectively [11]. It contains three
PDZ domains, a harmonin-N-like domain (HNL) and a
proline-rich (PR) region. PDZD?7 is expressed in inner ear
hair cells and forms an Usher quaternary protein com-
plex with USH2A, ADGRV1 and WHRN. This complex
is essential for the development and organization of the
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ankle-link complex, which localizes at the ankle region of
hair cell stereocilia [11, 14]. The first two PDZ domains of
PDZD7 mediate interaction with the other Usher quater-
nary protein complex components USH2A, ADGRV1 and
WHRN, whereas the third PDZ domain is only involved in
the interaction with WHRN [14].

To date, 22 pathogenic PDZD7 variants have been
reported in the literature, 3 of which are modifier vari-
ants of USH2A (Fig. 2B; Table 1) [3, 5, 15, 16, 18-22].
We summarized the features of these variants, includ-
ing the phenotypes of the patients and characteristics of
the variants, in Table 1. These variants are spread along
the gene without any hotspots (Table 1). Patients with
biallelic PDZD7 variants showed prelingual moderate
to severe hearing loss with a downsloping audiogram.
Hearing loss may be progressive in some patients. Three
USH modifier variants have been identified thus far.
These include two frameshift variants and one splicing
variant (p.Arg56fs, ¢.1750-2A >G and p.Cys732fs), all of
which are predicted to induce NMD. These USH modi-
fier variants show no difference in pathogenic mecha-
nisms compared with other monogenic PDZD?7 variants.
Moreover, p.Arg56fs was also found in nonsyndromic
patients. Four alternative splicing isoforms of PDZD7
have been detected; they encode either a full-length pro-
tein or short isoforms mainly containing the first two
PDZ domains [4]. The variant identified in this study
localizes to exon 15 of PDZD?7, which is unique to the
long isoform (Fig. 2B). Including our research, 3 patho-
genic variants have been discovered in domains unique
to the long isoform (Fig. 2B). Patients harboring each of
these 3 variants (p.Ser703fs, p.Arg781_Ser784del and
p.(Ser791fs)) showed the same characteristic auditory
phenotype of bilateral moderately severe hearing loss at
all frequencies with gentle downward sloping as patients
with variants in other parts of the gene [15, 16]. Another
variant (p.Cys732fs), cosegregating with biallelic USH2A
variants in a patient with Usher syndrome, unique to the
long isoform, was identified as a Usher syndrome modi-
fier [5]. A mouse model lacking exons 2-5 of Pdzd?7,
which disrupts all isoforms, and a mouse model lacking
exon 14, which only disrupts the long isoform, both man-
ifest stereocilia disorganization and MET deficits, leading
to a similar hearing loss phenotype. Moreover, in mice
lacking exon 14 of the Pdzd7 gene, the short isoforms
were not detected in the inner ear at the protein level.
These findings suggest that the PDZD7 long isoform is

(See figure on next page.)

Fig. 2 Sanger sequencing of the pathogenic variant. A Sanger sequencing chromatograms showing the c.2372del; p.(Ser791fs) variant in

the homozygous state in affected individuals II:1, 11:2, and II:3 compared with the heterozygous sequence in individuals I:1 and I:2 and an
ethnic-matched normal hearing control. Arrows indicate the location of the variant. The reverse strand was sequenced. B Schematic representation
of the PDZD?7 protein. The novel variant ¢.2372del; p.(Ser791fs) identified in this study is red. The gray rectangle indicates the domains of the PDZD7
protein that are unique to the long isoform. Variants identified as Usher syndrome modifiers are denoted with *
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indispensable for hair cell function. However, the PDZD7
short isoform may not localize in the stereocilia and
therefore make no contribution to stereocilia function.

Hereditary hearing loss is a genetically and pheno-
typically heterozygous disorder. To date, 124 genes have
been identified for nonsyndromic SNHL, and 46 genes
have been identified for the nine most common syn-
dromic HLs (https://hereditaryhearingloss.org/, data
updated on August 30, 2021). The phenotypes of the
patients vary by audiogram, age of onset, progression,
vestibular complications, inner ear malformations, reti-
nal complications, etc. [23]. These heterogeneities hin-
dered the genetic diagnosis of hearing loss and call for
a more comprehensive variant screening strategy that
takes phenotype-genotype correlations into consid-
eration. Since most cases of autosomal recessive non-
syndromic SNHL is characterized by prelingual severe
to profound HL, the relatively rare moderately severe
audiogram at all frequencies may serve as a reminder
for potential causative PDZD?7 variants.

We report a novel pathogenic frameshift variant on
PDZD?7 in a Chinese family with moderately severe HL.
This variant lies in exon 15 and is unique to the long
isoform of the PDZD7 protein. Our study extends the
variant spectrum of the PDZD7 gene in the Chinese
population. The relatively uncommon moderately severe
audiogram with a slightly downward slope is character-
istic of PDZD?7 patients. The identification of a novel
pathogenic PDZD7 variant may be valuable for genetic
consultation and functional research.
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