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Abstract 

Background:  Ovarian cancer (OC) is among the deadliest malignancies in women and the lack of appropriate mark‑
ers for early diagnosis leads to poor prognosis in most cases. Previous studies have shown that KAZN is involved in 
multiple biological processes during development, such as cell proliferation, differentiation, and apoptosis, so defects 
or aberrant expression of KAZN might cause queer cell behaviors such as malignancy. Here we evaluated the KAZN 
expression and methylation levels for possible use as an early diagnosis marker for OC.

Methods:  We used data from Gene Expression Omnibus (GEO) microarrays, The Cancer Genome Atlas (TCGA), and 
Clinical Proteomic Tumor Analysis Consortium (CPTAC) to investigate the correlations between KAZN expression and 
clinical characteristics of OC by comparing methylation levels of normal and OC samples. The relationships among 
differentially methylated sites in the KAZN gene, corresponding KAZN mRNA expression levels and prognosis were 
analyzed.

Results:  KAZN was up-regulated in ovarian epithelial tumors and the expression of KAZN was correlated with the 
patients’ survival time. KAZN CpG site cg17657618 was positively correlated with the expression of mRNA and the 
methylation levels were significantly differential between the group of stage “I and II” and the group of stage “III and 
IV”. This study also presents a new method to classify tumor and normal tissue in OC using DNA methylation pattern 
in the KAZN gene body region.

Conclusions:  KAZN was involved in ovarian cancer pathogenesis. Our results demonstrate a new direction for ovar‑
ian cancer research and provide a potential diagnostic biomarker as well as a novel therapeutic target for clinical 
application.
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Background
Ovarian cancer is one of the most lethal gynecological 
malignancies in women. Due to the absence of symp-
toms at early stages and late detection, ovarian can-
cer is usually fatal. Data from SEER 182010–2016 show 
that 5-years relative survival for all patients with ovarian 
cancer is 46.8%, but 5-years relative survival in patients 
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at early-stages is significantly better than in patients at 
advanced-stages (92.6% vs30.2%) [1]. The most common 
histological types are epithelial tumors, including high-
grade serous carcinoma (HGSOC, accounting for ~ 60%), 
endometrioid, clear cell, mucinous, and low-grade serous 
carcinomas [2]. Recent studies report that the different 
histological subtypes of ovarian cancer may have distinct 
origins. Defects in BRCA1 and BRCA2 are well known 
genetic risks [3, 4], and mutations in many other genes 
are also associated with ovarian cancer, such as MSH2, 
MSH6, and TP53 [5–9], but in many cases the involved 
genetic factors remain unknown. Because of the genetic 
diversity and histological heterogeneity of ovarian can-
cer, the application of these studies for clinical diagnosis 
and effective therapy is rare and further investigation is 
urgently required [10].

Epigenetic changes are integral to all aspects of cancer 
genomics, such as DNA methylation, which is among the 
common epigenetic mechanisms involved in the forma-
tion and development of cancer [11, 12]. A large body 
of studies has shown that aberrant methylation of global 
DNA or specific genes may affect the progression [13] 
and prognosis of ovarian cancer [14], but the mecha-
nisms for the aberrant DNA methylations to be involved 
in ovarian cancer remain largely unknown.

KAZN is an evolutionarily conserved gene initially 
identified in keratinocytes and then found to be widely 
expressed across different human tissues [15]. A study 
with mouse eggs demonstrates that the cellular locali-
zation of KAZN changes dynamically during the devel-
opment [16]. KAZN is partially co-localized with 
desmoplakin and periplakin at desmosome and involved 
in the interplay between adherens junctions and des-
mosomes [15]. By binding to actin and intermediate fila-
ment, KAZN can affect the cell shape and remodeling of 
cytoskeletal networks [17]. In the nucleus, KAZN was 
found to be associated with the cell cycle, gene regula-
tion, and matrix stability. KAZN interacts with apoptotic 
regulators, ARC and Bax, and plays an important role in 
apoptosis and cell growth [18]. KAZN is up-regulated 
during keratinocyte terminal differentiation [17] and is 
dispensable for murine epidermal morphogenesis and 
homeostasis [19]. Since KAZN is involved virtually in all 
aspects of cell development, its roles in carcinogenesis 
can be speculated [20, 21]. Therefore, according to the 
dynamic changes of KAZN expression during cell devel-
opment and the regulation of gene expression by epige-
netics in time and space [22, 23], we postulate that the 
expression and methylation of KAZN are crucial in the 
occurrence and development of ovarian cancer.

In this study, we conducted a comprehensive analy-
sis on KAZN, using the data from GEO, TCGA, GTEx, 
and CPTAC datasets. We compared KAZN expression 

at levels of mRNA, protein, and DNA methylation, and 
detected the correlation between KAZN expression and 
survival time of the patients. Our results indicated that 
the expression and methylation patterns of KAZN were 
closely associated with the oncogenesis of ovarian cancer. 
These results can contribute to understanding the molec-
ular mechanisms of tumor occurrence and progression 
and can be used to develop new diagnostic as well as 
treatment strategies.

Materials and methods
Gene expression omnibus (GEO) database
The GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
is a public storage repository of microarray, methylation, 
and next-generation sequencing data. We searched the 
GEO datasets with the keywords “ovarian cancer” and 
“mRNA” and then filtered the documents by the follow-
ing criteria: 1, organisms from the Homo species; and 
2, datasets that contain both the tumor and non-tumor 
tissues (normal, benign, or para-carcinomas tissue). R 
package ‘GEOquery’ was used for data download and 
preprocessing. R package ‘Limma’ was used to normal-
ize and analyze the data. A t-test is a statistical test used 
to compare the means of two groups. R package ‘ggpubr’ 
was used to plot the boxplot.

Comprehensive meta‑analysis
R package ‘meta’ was used for performing a comprehen-
sive meta-analysis of GEO data. The analysis of KAZN 
expression in the normal and tumor group was displayed 
on forest plots that illustrate the standardized mean dif-
ference (SMD) and the 95% confidential interval (CI). 
The chi-squared test of Q and the I2 statistic were cal-
culated to assess heterogeneity across the studies and 
to determine the appropriateness of applying either a 
random-effects model or fixed-effects model to the pool-
ing process. Influence analyses were conducted to inves-
tigate the relative influence of each individual study on 
the pooled effect size using R package ‘meta’ metainf 
function. To measure publication bias, Egger’s and 
Begg’s tests and a funnel plot, for which significance was 
p < 0.05, were performed.

TCGA, GTEx, and GEO gene expression data integration 
and differentially expressed genes (DEGs) identification
RNA-Seq data of 356 ovarian cancer and 180 normal tis-
sue samples were downloaded from Genotype-Tissue 
Expression (GTEx) (https://​www.​gtexp​ortal.​org/​home/) 
and TCGA via NCI’s Genomic Data Commons (GDC) 
portal (https://​portal.​gdc.​cancer.​gov/). Besides, five gene 
expression profiles - Datasets GSE137238, GSE101108, 
GSE101948, GSE143897, and GSE132107 - were down-
loaded from GEO, with a sample size of 323 ovarian 

https://www.ncbi.nlm.nih.gov/geo/
https://www.gtexportal.org/home/
https://portal.gdc.cancer.gov/


Page 3 of 12Zhu et al. BMC Cancer          (2022) 22:662 	

cancer and 8 normal tissue samples. We integrated the 
data and ran ‘ComBat-seq’ in the R package ‘SVAseq’ 
(Version 3.38; http://​bioco​nduct​or.​org/​packa​ges/​relea​se/​
bioc/​html/​sva.​html) to correct the batch effect. ‘DESeq2’ 
(Version 1.30. 1[24]; http://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​DESeq2.​html) was used to detect the 
differential gene expression between ovarian cancer and 
normal ovarian tissue samples.

Proteomic analysis
Proteomic data were downloaded from The National 
Cancer Institute’s Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) (https://​prote​omics.​cancer.​gov/​
progr​ams/​cptac) [25]. After quality evaluation, a total of 
84 ovarian cancer tissue and 22 normal tissue samples 
from the CPTAC Ovarian Cancer Confirmatory Study 
were retained for further proteomic study. Differentially 
expressed proteins (DEPs) between normal and tumor 
tissues were identified by R package ‘Limma’ with a 
FDR < 0.05 cut-off criteria.

Survival analysis
Overall survival was computed as the number of years 
between the year of diagnosis and the year of death 
from all causes, the date of the last follow-up, or 5-year 
censored survival data. Kaplan–Meier curves compar-
ing overall survival according to subgroups divided by 
expression of KAZN and a log-rank test were used to 
assess the survival distributions across the subgroups. 
Samples were divided into either “high” or “low” groups 
with the cutoff at the lower quartile and upper quartile of 
KAZN gene expression. In log-rank, p < 0.05 was consid-
ered statistically significant. The survival curve was plot-
ted by R package ‘survival’ and ‘survminer’.

Cox regressions analysis and ROC curve
The relationship between KAZN mRNA and patients’ 
overall survival was analyzed by univariate Cox regres-
sion using R package ‘survival’ and ‘survminer’. The forest 
plot for the KAZN hazard ratios and confidence intervals 
was created by ggplot2. To assess the performance of 
the gene risk model and compare the prognostic value, 
the time-dependent receiver operating characteristic 
(ROC) curve for this model was plotted using R package 
‘survivalROC’.

Methylation level and mRNA expression level correlation 
analysis
The DNA methylation data (Illumina Human Meth-
ylation 27 k) of ovarian cancer (n = 601) and normal tis-
sues (n = 12) and corresponding clinical information 
were obtained from TCGA (https://​portal.​gdc.​cancer.​
gov/). The obtained DNA methylation data were further 

analyzed using Perl script and R package ‘ggpubr’. The 
Spearman rank correlation coefficient test was used to 
examine statistical significance in differences between 
DNA methylation and the expression of KAZN. R pack-
age ‘ggplot2’ was used to plot.

Tissue preparation
For the quantitative real-time PCR (qPCR) analyses, 6 
ovarian cancer tissues (HGSOC) and 8 normal ovar-
ian tissues were obtained from ovarian cancer patients 
in operation from The Third Affiliated Hospital, Harbin 
Medical University (Harbin, China).

RNA extraction and qRT‑PCR analyses
RNA isolation of ovarian tissue samples were conducted 
through TRizol reagent (Invitrogen) according to the 
manufacturer’s instructions. Total RNAs were reversely 
transcribed into cDNAs and then used to perform qRT-
PCR with Biosystems (ABI) 7500 platform. Homo sapi-
ens β-actin (beta ACTB) was selected as the internal 
reference gene. The primer sequences were as follows: 
KAZN forward 5′-GGC​AGA​TGA​AGG​AGA​TGT​TGG​
CGA​AGG-3′; KAZN reverse 5′-CTC​TCC​TTG​CGG​TGC​
TGC​TCA​TAG​TTG-3′; β-actin forward 5′-GGG​AAA​
TCG​TGC​GTG​ACA​TT-3′; β-actin reverse 5′-GGA​ACC​
GCT​CAT​TGC​CAA​T-3′. The KAZN gene expression was 
determined by the subtracting their threshold cycle val-
ues (CT) to CT of β-actin gene.

KAZN gene methylation pattern analysis
GEO datasets Illumina Infinium 450 K BeadChips were 
used to detect the methylation sites. R package ‘minfi’ 
was used to check the different CpG sites. Online wAN-
NOVAR webserver was used to annotate the CpG sites 
[26]. R package ‘pheatmap’ was used to generate the 
figure.

Results
Assessment of KAZN mRNA level in ovarian cancer, based 
on gene expression omnibus (GEO) datasets
The expression data of KAZN in ovarian cancer were 
obtained through the GEO database. A total of 11 micro-
arrays from the GEO database met the entry criteria. The 
features of the selected GEO datasets are depicted in 
Table 1. Clinical features of samples in each dataset were 
listed in supplementary material Table S1. Expression of 
KAZN was significantly increased in ovarian cancer tis-
sues in GSE105437, GSE18520, GSE27651, GSE36668, 
GSE38666, GSE40595, GSE66957, GSE69428, GSE54388, 
and GSE14407 (p = 0.0017, p = 0.0012, p < 0.0001, 
p = 0.0075, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.0177, 
p = 0.0133, and p = 0.0049, respectively) (Fig.  1); 

http://bioconductor.org/packages/release/bioc/html/sva.html
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no statistical difference was detected in GSE29450 
(p = 0.0549, supplemental file: Fig. S1).

Meta‑analysis of GEO datasets
Meta-analysis was conducted based on 11 included 
microarrays from the GEO database (Fig. 2A). Given the 
apparent heterogeneity (p = 0.01, I2 = 56%), a random-
effects model was applied, and remarkable up-regulation 

(SMD = 1.18, 95% CI: 0.76, 1.61) of KAZN mRNA was 
found in ovarian cancer group.

Sensitivity analysis was performed to explore whether 
a particular microarray played a vital role in significant 
heterogeneity. By removing an individual study per 
time of meta-analysis to assess the influence of each 
study, the result showed that no study was found to 
have played a crucial role in any of the enrolled studies 
(overall effect p < 0.001, Fig. 2B). A funnel plot showed 

Table 1  Features of the enrolled Gene Expression Omnibus datasets

Accession GPL Year Tumor Normal p-value Source

N M SD N M SD

GSE105437 GPL570 2017 10 1121.506 246.6307 5 734.7216 132.1731 0.001701071 tissue

GSE18520 GPL570 2009 53 577.697 142.3088 10 379.0934 138.5165 0.001188975 tissue

GSE27651 GPL570 2011 43 475.5898 279.5294 6 145.5886 45.25907 6.603179e-09 tissue

GSE36668 GPL570 2012 4 323.7239 23.08583 4 183.7234 52.44505 0.007529066 tissue

GSE38666 GPL570 2012 18 1057.761 506.7567 12 419.1524 82.5453 5.18647e-05 tissue

GSE40595 GPL570 2012 32 0.2308594 0.4661838 6 -0.2144503 0.1490786 0.000188017 tissue

GSE66957 GPL15048 2015 57 7.500341 0.5333843 12 6.60236 0.4617553 1.310033e-05 tissue

GSE69428 GPL570 2015 10 7.175477 0.9314753 10 6.292184 0.4273923 0.01771169 tissue

GSE29450 GPL571 2011 10 7.175477 0.7607612 10 7.612039 0.4370185 0.05491613 tissue

GSE54388 GPL570 2014 16 0.08109442 0.4558437 6 -0.3042137 0.2037893 0.01326 tissue

GSE14407 GPL570 2009 12 1037.8184 618.19663 12 411.1272 85.17666 0.00489 tissue

Fig. 1  Expression of KAZN in ovarian cancer tissues and normal tissues based on Gene Expression Omnibus datasets. The expressions levels of 
KAZN are up-regulated in GEO datasets GSE105437, GSE18520, GSE27651, GSE36668, GSE38666, GSE40595, GSE66957, GSE69428, GSE54388, and 
GSE14407
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that no evidence of publication bias was observed for 
this analysis (p = 0.3918, Fig. 2C).

Validation of KAZN expression by qRT‑PCR
We used qRT-PCR to detect the expression levels of the 
KAZN in 14 human samples (8 normal ovarian tissues 
and 6 tumor tissues). The results showed that KAZN 
expression was significantly upregulated in ovarian can-
cer tissue compared with normal control (p = 0.0087, 
Fig.  3), which is. consistent with the results of GEO 
database.

Up‑regulation of KAZN affects overall survival in ovarian 
cancer
TCGA ovarian cancer datasets have only cancer tissue 
samples, no normal tissue as a control, so we compared 
them to GTEx samples, which have expression data 
from normal ovary tissue of GTEx donors who did not 
have cancer. To eliminate the batch effect, we conducted 

ComBat-seq to integrate different sourced datasets [24]. 
The comprehensive analysis based on TCGA, GTEx, and 
GEO datasets showed that the KAZN mRNA expression 
was significantly differential, and the expression was up-
regulated in the TCGA group compared to GTEx group 
(p < 0.0001, Fig. 4A).

To further study the clinical effects of KAZN in ovar-
ian cancer, we divided the cases from TCGA OC data-
sets into four groups by the quantiles of KAZN counts, 
use quantile 1 and 4 as the KAZN high expression group 
and KAZN low expression group, and analyzed the sur-
vival status between the two groups. A Kaplan-Meier 
curve was used to identify the effects of the expression of 
KAZN on survival time and showed that the KAZN low 
expression group had significantly longer survival time 
than the KAZN high expression group (Fig.  4B). Uni-
variate Cox regression analysis showed the association of 
KAZN mRNA with overall survival, demonstratig KAZN 
as a risk factor for OC (HR, 1.19, 95% CI, 1.03-1.37, 

Fig. 2  Meta-analysis of Gene Expression Omnibus (GEO) data. A Forest plot of GEO chips. The standard mean deviation is 0.99 (95% CI: 0.76, 1.61) 
with great heterogeneity (I2 = 56%, p = 0.01) showing that KAZN expression was markedly up-regulated in the ovarian cancer tissues. B Sensitivity 
analysis of GEO chips (p < 0.001). C A funnel plot for evaluating the publication bias of GEO chips (z = − 0.86, p = 0.3918)
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p = 0.015, Fig. S2). Time-dependent ROC analysis indi-
cated the prognostic accuracies were 0.652 at 6.8 years 
(Fig. S3).

KAZN protein was up‑regulated in ovarian cancer
The Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) has produced huge amounts of cancer prot-
eomics data providing unprecedented research oppor-
tunities. The dataset from CPTAC Ovarian Cancer 
Confirmatory Study contains 41 normal participants 
and 169 tumor participants, which was used to validate 
the KAZN protein expression in Ovarian cancer. The 
result showed that in the tumor group, the KAZN protein 
expression was significantly higher than in the normal 
group (p = 0.0027, Fig. 5). KAZN protein expression was 
consistent with the mRNA level in this study.

Correlation of KAZN methylation level with mRNA 
expression in ovarian cancer
Methylated CpG sites have a moderate to strong asso-
ciations with gene expression changes across the phases 
in cancer-involved genes with specific functions. To 
study the correlation between the expression of KAZN 
and DNA methylation, we detected the DNA methyla-
tion level of CpG sites in the KAZN gene body region in 
TCGA datasets. From the TCGA database, we obtained 
27 K DNA methylation array data of ovarian cancer, 
which contains 601 tumors and 12 normal samples. 
We detected the correlation between the expression of 

Fig. 3  Quantitative real-time PCR analysis the expression of KAZN in 
human ovarian cancer tissues and normal ovarian tissues. ΔCt was 
used to determine the relative amounts of mRNA. There is Significant 
difference in 8 normal ovarian tissues and 6 tumor tissues by ANOVA 
statistical test, p = 0.0087

Fig. 4  KAZN expression in ovarian cancer and survival analysis based on TCGA database. A Box plot, illustrating median expression levels of KAZN in 
normal ovarian tissue (Left, from GTEx) and ovarian tumors (Right, from TCGA). B Kaplan-Meier survival curve, illustrating overall survival for patients 
who had a tumor with up-regulated or down-regulated KAZN 
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KAZN and cg17657618 and found the methylated CpG 
site cg17657618 positively correlated with the rising 
expression of the KAZN gene (Fig. 6A).

To detect the correlation between KAZN DNA meth-
ylation and the progress of OC, we divided all cases into 
two groups by stage of clinical traits. We compared the 
methylation level between the two groups. The result 
showed that the cg17657618 methylation level of the 
stage “I and II” group was significantly lower than the 
stage “III and IV” group (Fig.  6B). Survival analysis of 
cg17657618 showed a trend of longer survival time for 
the low CpG beta value group, though not statistically 
significant (p = 0.089) (Fig. S4), suggesting that KAZN 
methylation may have an important role in the develop-
ment and outcome of ovarian cancer.

The diagnostic value of KAZN methylation status in ovarian 
cancer
Illumina Infinium 450 K BeadChip covers 134 CpG sites 
for KAZN. The overview of all CpG sites for KAZN is 
shown in Fig. 7. In the GSE146552 and GSE81224 data-
sets, we found 13 and 12 differentially methylated CpG 
sites in the KAZN gene body region, respectively (details 
in supplemental Table S2). An unsupervised hierarchi-
cal clustering based on the 9 both different methylated 

CpG sites (cg00763594, cg00866953, cg01567509, 
cg02927252, cg08468082, cg13502395, cg14976342, 
cg21581845, cg27538859) in the two datasets in KAZN 
was constructed. The 9 CpG sites methylation pattern 
almost perfectly divided the samples of GSE146552 and 
GSE81224 into two groups, the tumor cluster, and the 
non-tumor cluster (Fig. 8), suggesting that the CpG pat-
tern may potentially be used as a new biomarker for the 
diagnosis of ovarian cancer.

Discussions
Previous studies have shown that KAZN is involved in 
multiple biological processes during development, such 
as cell proliferation and differentiation [17], as well as 
apoptosis [18], which prompted us to attempt identify-
ing any possible associations of KAZN defects or abnor-
mal expression levels with queer behaviors of cells, e.g., 
malignancies. To date, most of KAZN related studies 
have been focused on keratinocytes [15, 17, 27]. However, 
as KAZN is also expressed in many other tissues, its roles 
in health and diseases in general need to be investigated.

In the present study, we demonstrated that the expres-
sion of KAZN was significantly associated with OC. 
We compared 11 GEO microarray datasets to detect 
KAZN expression at the mRNA level and also conducted 

Fig. 5  KAZN protein level in ovarian cancer. The box plot illustrates the median of the KAZN protein in normal ovarian tissue (Left) and ovarian 
tumors (Right) based on CPTAC datasets
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Fig. 6  Correlation between KAZN methylation and mRNA expression and Correlation between KAZN methylation and clinical stage. A This 
plot illustrates that KAZN mRNA is positively correlated to cg17957618 methylation level (R = 0.29, p = 2.1e-08). B Boxplot for the cg17657618 
methylation level between “stage I and II” group and “stage III and IV” group

Fig. 7  All CpG sites in KAZN gene body based on Illumina Infinium 450 K BeadChip. The upward ball-bar shape represents the CpG site in the 
forward strand. The downward ball-bar represents the CpG site in the reverse strand. The length of the bar represents the average methylation beta 
value. The red CpG sites are differentially methylated in the GSE146552 and GSE81224 datasets
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meta-analysis. KAZN mRNA was significantly up-regu-
lated in OC in 10 GEO datasets, including 9 serous ovar-
ian cancers and one unspecified ovarian cancer. In the 
remaining one dataset, which is clear cell cancer (supple-
mental file: Fig. S1), we did not find significant differences 
in KAZN expression, suggesting that the expression of 
KAZN may be correlated to the histological subtype of 
OC.

One of the merit of this work is the use of multiple 
data sources, which all indicated that KAZN was differ-
entially expressed both on the mRNA level and on the 
protein level between ovarian cancer and normal tissues, 
with KAZN mRNA expression negatively correlated with 
survival time of the patients. KAZN can dually regu-
late proliferation and differentiation by Rho-dependent 
and –independent mechanisms [17], and also plays an 
important role in regulating cellular apoptosis by inter-
acting with ARC and Bax [18]. During invasion and 
metastasis, cancer cells undergo changes in morphology 

and disruptions of cell connections. Overexpression of 
KAZN in keratinocytes can cause changes in cell shape 
and impair the assembly of intercellular junctions. As a 
component of the desmosome, KAZN also participates in 
the formation of cell connections [15, 17]. A recent study 
suggests that KAZN F is highly expressed in human cer-
vical cancer tissues and could promote cell proliferation, 
migration and invasion in  vitro by inhibiting apoptosis 
and facilitating epithelial-to-mesenchymal transition 
(EMT) [18]. It was further proved that KAZN F was 
directly regulated by miR-186, which influences the sen-
sitivity of ovarian cancer cells to paclitaxel and cisplatin 
[28]. As such, it is reasonable to speculate that KAZN 
gene may participate in tumorigenesis, invasion, and 
metastasis of OC by affecting these key processes.

Growing evidence has shown that epigenetic changes 
are involved in cancer development and progres-
sion [22]. Indeed, DNA hypermethylation can lead 
to the silencing of tumor suppressor genes, whilst 

Fig. 8  Pheatmap of 9 KAZN methylation CpG sites. The tumor (epithelial ovarian cancer) group and non-tumor (non-tumor, includes epithelial layer 
of normal ovary and fimbriae fallopian tubes) group have different methylation patterns
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DNA hypomethylation can induce genomic instabil-
ity, increasing transcription and facilitating protein 
activation [29]. A large number of putative suppressor 
genes that are silenced or activated by aberrant meth-
ylation have been identified in ovarian cancer, includ-
ing hypermethylation of OPCML, RASSF1, CDKN2B 
as well as classical tumor suppressors BRCA1, p16 and 
MLH1, and hypomethylation of LINE-1, SLC6A12 and 
PRAME [30–38]. A recent study reported the associa-
tion of CpG site cg17657618 with Endometriosis [39], 
but whether this CpG site may be associated with ovar-
ian cancer was unknown. Our results based on TCGA 
human methylation 27 K BeadChips showed that 
cg17657618 was hypermethylated and positively corre-
lated with the expression of the KAZN in OC. Analysis 
of the 450 K array dataset revealed 9 methylation sites 
that were differentially expressed in both datasets. The 
differentially expressed CpG sites, including 5 hyper-
methylated and 4 hypomethylated CpG sites in OC 
samples, may affect KAZN expression in different ways, 
whereby participating in the formation and progression 
of ovarian cancer. These findings all support the critical 
roles of KAZN gene expression and its methylation in 
OC occurrence and progress.

It is a common practice to use cluster analysis to 
divide patients into different groups based on the 
expression values of multiple genes or the top-ranked 
methylation CpG sites ß-value. A recent study dis-
criminated EOC from normal ovarian tissues with 
high specificity and sensitivity based on the methyla-
tion of RASSF1A, OPCML and HOXA9 [40]. In another 
study, methylation of OPCML, together with methyla-
tion of RUNX3 and TFPI2, was demonstrated to be an 
early diagnostic marker for OC with higher sensitiv-
ity and specificity than classical CA125 [41]. However, 
our results based on single gene methylation CpG site 
ß-value were peculiar: the CpG methylation pattern 
of KAZN could be a new biomarker for predicting and 
diagnosing OC.

Previous studies have shown that KAZN has six 
splice variants, which are differentially expressed 
in a wide variety of cell types [15, 18]. As the tran-
scripts are mostly tissue-specific and expressed in a 
temporal sequence, multiple methylation sites in the 
single gene are expected to play different roles at dif-
ferent stages in the development of ovarian cancer. In 
contrast to genetic changes, the relatively reversible 
character of the epigenetic alterations like DNA meth-
ylation determines that it has the potential to be arti-
ficially regulated. DNA methyltransferases (DNMTs) 
are responsible for the establishment and maintenance 
of the DNA methylation patterns on human genome. 

Hence, with continuous discovery of various global and 
specific DNMT inhibitors, CpG methylation sites of 
KAZN could be a new potential therapeutic target for 
ovarian cancer treatment. Further understanding of the 
function of the KAZN gene and the mechanistic rela-
tionship between KAZN expression and methylation 
in cancer will open a new horizon for the control of 
malignant diseases.
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