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Abstract

The Angiotensin Converting Enzyme 2 (ACE2) assists the regulation of blood pressure and 

is the main target of the coronaviruses responsible for SARS and COVID19. The catalytic 

function of ACE2 relies on the opening and closing motion of its peptidase domain (PD). In 

this study we investigated the possibility to the allosteric control of the ACE2 PD functional 

dynamics. After confirming that ACE2 PD binding site opening-closing motion is dominant in 

characterizing its conformational landscape, we observed that few mutations in the viral receptor 

binding domain fragments were able to impart different effects on the binding site opening of 

ACE2 PD. This showed that binding to the solvent exposed area of ACE2 PD can effectively 

alter the conformational profile of the protein, and thus likely its catalytic function. Using a 

targeted machine learning model and relative entropy-based statistical analysis, we proposed the 

mechanism for the allosteric perturbation that regulates the ACE2 PD binding site dynamics at 

atomistic level. The key residues and the source of the allosteric regulation of ACE PD dynamics 

are also presented.

1. Introduction

Angiotensin-converting enzyme 2 (ACE2) is a key player in a variety of crucial biological 

systems.1 Recently, ACE2 has gained considerable attention as the human receptor for a 

number of coronaviruses, including the ones responsible for the Severe Acute Respiratory 
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Syndrome (SARS) and the current Coronavirus Disease 2019 (COVID19).1–3 During 

coronaviruses infection, the viral spike protein fragment S13–5 binds to ACE2 at the host cell 

surface first. Then the viral capsid fuses with the membrane and injects the viral load into 

the cell.6

The severity in pathology for these respiratory coronaviruses, and in particular for 

COVID19, was correlated with comorbidities that are related to the Renin-Angiotensin-

Aldosterone System (RAAS). RAAS is the hormonal system responsible for the regulation 

of blood pressure as well as numerous other essential aspects of human physiology.7 

The connection between the RAAS anomalies and coronaviruses severity lies in ACE2. 

In RAAS, ACE2 catalyzes the hormonal peptide angiotensin-II, a vasoconstrictor, to 

angiotensin (1–7), a vasodilator, to lower blood pressure.1,5 Due to this dual role of ACE2, 

ACE2 inhibitors were proposed as potential treatment against coronaviruses infection.8

ACE2 is located at the extracellular side of cell membranes and interacts with the 

transmembrane sodium-dependent neutral amino acid transporter B(0)AT1, which ACE2 

helps as chaperone.1,9,10 ACE2 is composed of an extracellular N-terminal peptidase domain 

(PD, residues 19–615) and a C-terminal collectrin-like domain (CLD residues 616 to 768). 

The CLD domain is further divided into the neck domain (residues 616 to 726) and a 

transmembrane helix (residues 726 to 768). 3 The CLD domain anchors ACE2 to the cell 

membrane and aids B(0)AT1 in transporting amino acids.3,9,10

PD domain is responsible for ACE2 catalytic activity and is the target for coronavirus S1 

receptor binding domain (RBD) binding.3,11 Alteration of the this structural region has the 

potential to negate the catalytic ability of ACE2 by restricting the access to the binding 

site, which can ultimately impact ACE2 related pathologies. This could occur via protein 

allostery, a biological mechanism of protein dynamical and conformational space change via 

binding to a secondary allosteric site.

In this study, we present a computational mechanistic investigation to probe allosteric 

differences in ACE2 PD via targeted machine learning, structural, and statistical approaches. 

Four systems are considered: the ACE2 PD in the apo state11, the ACE2 PD in presence 

of the inhibitor MLN-4760,11 and ACE2 PD complexed with the S1 fragments of 

SARS-CoV-112 or SARS-CoV-23. Our mechanistic investigations are based on the ACE2 

simulation data provided by D. E. Shaw Research13 as part of the global initiative that 

sparked the scientific community to effectively study coronaviruses, ACE2, and their 

interaction.14–17

Molecular dynamics simulations serve as a powerful tool to explore the relations between 

molecular structures, their motions, and protein function by providing the evolution of 

a system over time at an atomistic level.18–20 Machine learning approaches have been 

applied to the study of biomolecular system and have helped to reveal the underlying 

biological information by tackling the high complexity of molecular dynamics simulations 

data.21–23 Among the multitude of machine learning approaches, Convolutional Neural 

Networks (CNN) have gained special interests due to their ability to extract local patterns 

in the data structure.24,25 Herein, we developed a Collective Variable-guided CNN (CV-
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CNN) model as a novel scheme to capture the functional and structural differences 

of ACE2 PD. Principal component analysis was used to visualize the high-dimensional 

protein conformational space. Markov state model was used to characterize the kinetics 

of ACE2 PD dynamics within its conformational space. Lastly, the relative entropy-based 

dynamical allosteric network model was employed to obtain the pathway information of 

residue-residue interactions that characterize ACE2 PD functional dynamics.

This ensemble of computational tools for analyzing molecular dynamics simulations enabled 

us to validate and integrate ACE2 PD functional dynamics with atomistic-level details, 

which are otherwise inaccessible from experimental investigations. Our results detail the 

possibility of the allosteric control of the functional dynamics of ACE2: where key 

interactions in the solvent exposed region of the ACE2 PD can force the closing of the 

catalytic domain.

2. Materials and Methods

2.1 Data Acquisition

The molecular dynamics trajectories were obtained from D.E. Shaw research.13 Four 

systems were obtained based on the following initial structure: ACE2 ectodomain (peptidase 

domain) in an apo open state (PDB ID: 1R42)11, ACE2 ectodomain in an inhibitor-bound 

closed state (PDB ID: 1R4L)11, human ACE2 in complex with the Receptor Binding 

Domain of spike protein from SARS-CoV-1 (PDB ID: 2AJF)12, and ACE2 in complex 

with the Receptor Binding Domain of spike protein from SARS-CoV-2 (PDB ID: 6M17)3. 

The glycosylation states of the systems are shown in Fig. S1. The simulations details are 

provided in the reference 17 and are briefly listed as the following. The simulations used 

the Amber ff99SB-ILDN force field26 for proteins, the TIP3P model 27 for water, and the 

generalized Amber force field28 for glycosylated asparagine. The carboxylate and amino 

peptide termini, including those exposed due to missing loops in the crystal structures, 

are capped with amide and acetyl groups, respectively. The system was neutralized and 

salted with NaCl at a final concentration of 0.15 M. Each system was simulated for 10 

μs. The interval between frames is 1.2 ns. The simulations were conducted at 310 K in 

the isothermal-isobaric (NPT) ensemble. In the present study, the naming of the secondary 

structure follows the UniProt29 classification and can be found in the Supporting Table S1.

2.2 CV-CNN: Collective Variable-Guided Multi-Task Convolutional Learning

A novel deep learning protocol was developed and implemented in the present study to 

obtain critical biologically relevant information regarding the ACE2 dynamics.

2.2.1 Data Featurization—The first step to achieve model interpretability is to provide 

the learner with reasonable training data representation. In this study, the following 

data featurization scheme is adopted. Each frame of the simulations is represented by 

a N×N contact matrix for N number of residues. This contact matrix initially contains 

residue-to-residue distances, expressed in angstrom (Å), between the closest heavy-atoms. 

Subsequently, the interaction distances exceeding 4 Å were set to zero. This cutoff was 

chosen as it represents the upper limit for significant inter-molecular interactions, such as 
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salt bridges and hydrogen bonding.30,31 This featurization strategy enforces the learning of 

local bonding patterns correlated with large protein motions. The distances were computed 

using the python package MDTraj 1.9.3.32

2.2.2 Model Architecture—Motivated by the unique feature of convolutional filters 

to extract detailed local patterns in the data structure while retaining the high-level 

semantics24,25, a multi-task Convolutional Neural Network (CNN) model was implemented 

in the current study. Convolution is a linear operation used for feature extraction. In a 

convolutional layer, a set of matrices called filters (or kernels) are applied across the 

input matrix. For each overlap between a filter and a portion of the input matrix, an 

element-wise product is calculated to obtain the output value in the corresponding position 

of the output matrix, called the feature map.33 The latter is then delivered as the input 

to the following layers. Because the convolutional filters extract local feature patterns, we 

expect that the model to learn specific short-range bonding patterns buried implicitly in 

the data. Accordingly, we defined two goals for the learning model: The first is a goal 

of classification that the CNN model is expected to correctly identify the state of each 

molecular dynamics snapshot, which are the two metastable states of ACE2 in the presence 

of SARS-CoV-1 and SARS-CoV-2 RBD fragments. The second is a goal of regression 

where the collective variable, which describes the opening of the ACE2 binding site, should 

be correctly predicted by the learning model. Accordingly, a multi-task CNN architecture 

was developed to achieve these two goals simultaneously (Fig. 1). These two outputs are 

connected to the convolutional section of the model via a fully connected (dense) layer 

that functions as the latent space. The latter is expected to select for and optimize the 

feature patterns that help both distinguishing protein functional states and correlation with 

the collective variable. For these reasons the machine learning model in our study is referred 

as CV-CNN.

The outline of the architecture is illustrated in Fig. 1. We used 32 filters, each of size 4×4, 

for all convolutional layers. The dense layers were composed of 64 neurons each. A rectified 

linear unit (ReLU) activation function is used for both convolutional and latent dense layer. 

The normalized exponential function (softmax) and the linear activation function were 

used for the classification and regression layers, respectively. In Table S2, the details for 

each layer are shown. The dropout and L1-regularization strategies were implemented to 

avoid overfitting and to promote generalizability of the model.34–36 The details on these 

techniques can be found in the supporting information. For the training process, 80% of the 

data was used for training and validation. The test set, composed of the remaining 20%, was 

used for further analysis. The machine learning analysis here described was performed using 

the GPU-accelerated version of TensorFlow 2.0.37

2.2.3 Explainable Artificial Intelligence (XAI)—A crucial component of our machine 

learning implementation is to attribute the contributions of each input dimension to the 

predictive outcome of our model, thus revealing the chemical interactions that are distinct 

between states upon binding of different S1 domains and are correlated with the pocket 

opening of the ACE2. Extracting learned information from machine learning, especially 

the deep learning models, is a major ongoing research direction known as the Explainable 
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Artificial Intelligence (XAI).38 XAI unravels the black box nature of deep learning and 

plays a fundamental role in both practical and ethical AI by serving as a tool for rational 

improvement of deep learning models and for granting transparency in the interpretation of 

the results.38–41 In the present study, the XAI technique Gradient-weighted Class Activation 

Mapping (Grad-CAM) was implemented and applied to our ACE2-learning CV-CNN 

model.25 Grad-CAM is a well-known XAI method in image processing and has recently 

shown potential for the analysis of protein structures.42 Formally, for a datapoint k, Grad-

CAM computes its gradient score yc for a certain class c with respect to the feature map 

activation of the last convolutional layer Ak, which yields the neuron importance weights αk
c.

αk
c = 1

Z ∑
i

∑
j

δyc

δAi, j
k (Eq. 1)

In Eq. 1, i and j are indices for the row and columns in the activation matrix, 1/Z is the 

normalization factor. The importance weights are then calculated for each layer by the dot 

product between the weight matrices and the backpropagated gradients with respect to the 

activation function. The outcome of the Grad-CAM importance attribution is a heatmap of 

regions in the input space that have positive influence in the recognition of a certain class.25 

For each class, the importance heatmap is a square matrix of size N×N (with N the number 

of residues), where the contribution for each pair of residues is the normalized average 

importance over all frames. Grad-CAM is a post hoc XAI method with the advantages of 

generally applicability to any CNN architecture and not needing to re-train the model. In 

this study, Grad-CAM activation is applied on the test sets of the classes investigated. The 

implementation of this method using Keras/TensorFlow was employed in this study.43

2.3 Relative Entropy-Based Dynamical Allosteric Network (REDAN)

The REDAN model developed by Zhou et al.44 was used to build the quantitative model to 

accurately describe the ACE2 PD differences in conformational dynamics upon different S1 

domain binding. Relative entropy, or Kullback–Leibler divergence, is defined as a measure 

of similarity between the distributions p for system P and q for system Q.45

DKL P Q = ∫ p x ln p x
q x dx (Eq. 2)

In the context of molecular dynamics simulations, protein conformations can be represented 

as collections of pair-wise residue-residue distances. For each pair of residues, the 

distribution of the distances can be compared between different states. High relative entropy 

values indicate that the interaction between a residue pair is significantly different between 

two states.

In the REDAN implementation, the Dijkstra algorithm46 is used to identify the shortest 

path of interactions that connects two residues. The Dijkstra algorithm computes the path 

with the lowest cost between two nodes in a graph by iteratively looping all possible paths 

connecting these two nodes and calculating their costs.47 In our application, the inverse of 
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the relative entropy DKL between a pair of nodes i and j based on their distance distributions 

in states P and Q is calculated as the cost for the connection between them:

Costi, j = 1
DKL Pi Qj

(Eq. 3)

If a distance distribution is strongly perturbed between the two biological states, the 

interaction considered is likely important in the propagation of the structural changes in 

the protein. This will be reflected by high relative entropy values, which in turn will cause 

the cost to be low, making this particular interaction to be favored in the finding of the 

allosteric path with the lowest-cost.

Furthermore, the relative entropy for a pair of nodes i and j can be weighted by their 

associated machine learning importance, αk
c, obtained from Grad-CAM attributions for each 

class. As mentioned above, αk
c describes the structural regions crucial for the functional 

dynamics of a certain class. Therefore, this strategy would reveal the ability of a certain class 

to use the allosteric path identified and allow the comparison of allosteric communication 

for between different classes. The states of ACE2 in presence of the SARS-CoV-1 or SARS-

CoV-2 S1 domains are considered as different classes. This weighted REDAN model allows 

to compare the cost associated with the allosteric perturbation when different coronavirus S1 

domains are present. The machine learning weighted cost for a class c is calculated as

Costi, j
c = 1

DKL Pi | |Qj exp(αk
c) (Eq. 4)

and is used to build machine learning weighted REDAN model.

2.4 Principal Component Analysis (PCA)

PCA reduces the dimensionality of the data by projecting each data point onto a few 

principal components as a lower-dimensional representation of the original data while 

preserving its distribution variation.48 The principal components are linear combinations 

of input variables and are orthogonal to each other. Given two variables, x and y, their 

covariances measure how these two variables vary in relation to each other using n data 

points:

cov(x, y) = 1
n − 1 ∑

i = 1

n
(xi − x−)(yi − y−) (Eq. 5)

where xi and yi are the values in ith data point, and x− and y− are the averaged values for 

variables x and y, respectively.

In PCA, the covariance matrix C is subsequently constructed. In this symmetric matrix, each 

element is a covariance between two variables. For the N variables in the given dataset with 

each variable represented as ki, the covariance matrix has the following form:
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C =
cov k1, k1 … cov k1, kN

⋮ ⋱ ⋮
cov kN, k1 ⋯ cov kN, kN

(Eq. 6)

The eigenvectors of C are the components of PCA. The eigenvalues of C measure the 

contribution of each component in the dataset. The larger the magnitude of eigenvalue, 

the higher the contribution of its corresponding component, i.e., eigenvector. Generally, the 

eigenvectors with the largest eigenvalues are designated as principal components to form 

two-dimensional (2D) or three-dimensional (3D) space for data projection. The PCA was 

performed using Scikit-learn implemented in python.49

2.5 Markov State Model (MSM)

MSM50–53 has become increasingly useful network models to describe the transitions 

among functional states during allosteric events.53–56 The MSM provides the transition 

probabilities among macro-states.52,57 The collection of the transition probabilities among 

n macrostates is represented as the transition matrix T. The element of T is calculated as 

Tij =
cij

∑kcik
, where cik is the count of the number of times the trajectories transition from 

state i to state j within a certain time interval (referred as lag time τ).

In this study, the first two components of each PCA model were used as collective 

variables to construct the MSMs. The discretization of the conformational space into 200 

microstates was performed using k-means clustering implemented in scikit-learn.58 The 

PyEmma python package was used to build the MSM.59 The default hyper-parameters 

provided were used for the analysis. The ergodic cutoff was turned on and the Maximum 

Likelihood method was used to achieve the reversibility of the transition matrix. A lag time 

of 200 ns was chosen. The MSM was used as a mean to obtain a kinetical clustering of the 

conformational space. The metastable states, also referred to as macrostates, were created 

using the Perron-cluster cluster analysis (PCCA) implemented in the PyEmma package.59

2.6 Root Mean Square Deviation (RMSD)

For a system represented in Cartesian coordinates, RMSD is calculated to measure the 

deviation from a reference structure by taking the square root of the averaged difference 

between the atomic coordinates vectors of a reference structure, ri
0 and of the structure in the 

ith frame among total of N atoms, ri,

RMSD =
∑i = 1

N ri
0 − Uiri

2

N
(Eq. 7)

Ui is the rotation and translation matrix to superimpose the structure in the ith frame against 

the reference structure.
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2.7 Root Mean Square Fluctuation (RMSF)

The RMSF of atom i is calculated as its averaged fluctuation among T frames.

RMSFi =
∑j = 1

T ri
0 − Ui r−i

2

T
(Eq. 8)

2.8 Radius of Gyration

The protein compactness is measured using the radius of gyration, Rg
2.

Rg
2 = ∑mi ri − RC

2

M
(Eq. 9)

mi is the mass of the ith atoms, M is the mass of the atoms in the protein, Rc are the 

coordinates of the center of mass of the system, and ri are the coordinates of the ith atom.

3. Results

ACE2 plays a role in regulation of blood pressure in the RAAS system by catalyzing 

peptide hydrolysis of signaling peptide angiotensin II to angiotensin (1–7).1,11,60,61 The 

role of ACE2 in RAAS system has been studied as a target for cardiovascular diseases as 

well as the role of ACE2 in coronavirus pathology as an antiviral target.60,61 To explore 

these aspects of ACE2 biology, most ACE2 PD structural studies focus on screening of 

inhibitors62–67 and on the energetics of complexing with viral spike proteins.68–73 As 

the conformational ensemble of proteins are crucial for their biological functions, we 

investigated how orthosteric and allosteric binding can affect the functional ACE2 PD 

conformational dynamics using the inhibitor MLN-4760 and S1 RBD fragments from 

SARS-CoV-1 and SARS-CoV-2.

3.1 Orthosteric and allosteric effects on the conformational space explored by ACE2 PD

The conformational ensemble that proteins explore are crucial to biological function. The 

conformational space explored by ACE2 during extensive molecular dynamics simulations 

was examined. Four different systems were considered: ACE2 in its apo state (ACE2 apo), 

ACE2 bound to the inhibitor MLN-4760 (ACE2: inhibitor), ACE2 in complex with the 

S1 RBD fragment from SARS-CoV-1 (ACE2:COV1-S1), and ACE2 in complex with the 

S1 RBD fragment from SARS-CoV-2 (ACE2:COV2-S1). Only the PD was considered as 

both enzymatic and viral entry mechanisms occur through domain.3 In all systems, the 

simulations are stable and reached equilibrium (Fig. S2).

The RMSF analysis in Fig. 2a displays the dynamic fingerprint of the ACE2 PD. α1, 

α2, β5, β6, α20, the α17–α18 loop, and the α20–β21 loop are the structural regions 

responsible for the majority of the protein motions as shown by the highest fluctuation 

during the simulations (Fig. 2b). A common characteristic for these structural components 

is their location in proximity to the ACE2 PD entrance (Fig. 3a). This agrees with previous 

studies of ACE2, where the catalytic functionality of ACE2 was proposed to rely on the 
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opening and closing motion of the ACE2 PD binding site. 11 Thus, the binding site opening 

motions of ACE2 PD in the different systems are analyzed and compared. The front and the 

back of the ACE2 PD catalytic binding site entrance (Fig. 3a) were considered separately 

as they demonstrate distinct dynamical profiles in the RMSF analysis (Fig. 2a, 2b). The 

distance distribution analysis of the front and back opening/closing motions of the entrance 

show a non-synchronized movement (Fig. 3b, 3c). ACE2 PD is free to explore its open 

conformation in the apo state (Fig. 3b). On the other hand, in the ACE2:inhibitor complexes 

the MLN-4760 ortho-sterically closes the binding site, as expected from crystal studies.11

Interestingly, different RBD fragments allosterically affect the conformational landscape of 

ACE2 PD in distinct ways. The presence of SARS-CoV-2 S1 RBD fragment (ACE2:COV2-

S1) causes a wide distance distribution of the binding site opening similar to the apo 

state (Fig. 3b). This contrasts with the presence of the SARS-CoV-1 S1 RBD fragment 

(ACE2:COV1-S1), where the front of the binding site was observed to adopt a closed 

conformation, similarly to the ACE2:inhibitor complexes. This indicates that the binding 

to the ACE2 PD surface can allosterically cause a population shift on the free energy 

landscape, ultimately causing the closing of the protein catalytic site. This trend also affects 

the protein compactness, as shown by the radius of gyration (Fig. S3).

The interatomic distances between the backbone Cα in each conformation from the 

molecular dynamic simulations were employed for PCA. The first two principal 

components, PC1 and PC2, were selected to represent the conformational space of the 

protein dynamics. The conformational space explored by ACE2 apo overlaps substantially 

with the conformational space of ACE2:COV2-S1, partially with the conformational space 

of ACE2:COV1-S1, and very little with the conformational space of ACE2:inhibitor (Fig. 

3d). The inhibitor and SARS-CoV-1 S1 RBD fragment drive ACE2 PD to explore different 

conformational spaces, exclusive to each system. The most dominant component in the 

ACE2 PD conformational space, PC1, correlates with the opening motion of the front of the 

binding site. The second component, PC2, is correlated with the motion of the binding site 

back opening. These correlations are illustrated as the gradual change of the front and back 

openings along PC1 and PC2, respectively (Fig. 3e, 3f).

In summation, the opening and closing motions of the binding site dominate the 

conformational landscape of ACE2. The two RBD fragments have significantly different 

effects on the ACE2 functional conformational space. SARS-CoV-2 S1 RBD fragment does 

not strongly perturb the ACE2 apo conformational profile, whereas SARS-CoV-1 S1 RBD 

fragment allosterically induces the closing of the catalytic domain and increase the overall 

PD rigidity. The ACE2 inhibitor, MLN-4760, induces an ortho-steric closing of the ACE2 

catalytic domain.

3.2 Functional Discretization of ACE2 conformational space

The conformation analysis presented above demonstrates striking differences in the effects 

of SARS-CoV-1/2 S1 RBD fragments binding on the ACE2 PD functional dynamics, despite 

their high structural and sequence similarities. Thus, specific interactions established with 

the ACE2 PD surface are expected to be responsible for allosteric control of binding site 

motions. In the remainder of the study, we pursue a mechanistic explanation of this allosteric 
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phenomenon at atomistic level. Towards this goal, a target machine learning model, coined 

CV-CNN, was developed and used to extract specific interactions correlated with the S1 

RBD-related difference in ACE2 binding site dynamics.

For a machine learning model to learn biologically meaningful information, an appropriate 

data labeling strategy is needed. A biologically sensible approach is to classify each 

conformation of the molecular dynamics simulations by the functional metastable state to 

which they belong. The free energy landscape on the projected conformational surface 

presented in Fig. 4 suggests that ACE2 PD explores four distinct minima during the 

simulations. The free energy landscape is further correlated with a kinetical clustering 

Perron Cluster Cluster analysis (PCCA), which is based on MSMs. This clustering analysis 

is established on the assumption that structures belonging to the same functional metastable 

state interconvert more frequently than structure separated by high free energy barriers. 

From the analysis of the protein relaxation timescales of molecular motions at different lag-

times, four distinct macrostates, States 1 through 4, are identified, confirming the qualitative 

identification based on population density. The details on the micro clustering to build the 

MSM and the Chapman-Kolmogorov test are presented in Fig. S4.

The effect of inhibitor or S1 fragment domain complex on the peptide binding site of 

ACE2 is preserved by the clustering analysis (Fig. 4c). We observe that with exception for 

State 2, all the other states are uniquely populated. State 2, which is mostly populated by 

ACE2:COV2-S1, is populated by the ACE2 apo and ACE2:COV1-S1 as well.

3.3 CV-CNN and REDAN structural characterization of ACE2 PD allostery

After assigning ACE2 PD conformations to functional metastable states on the protein 

conformational landscape, the CV-CNN model was implemented to guide the learning 

of the structural features that influence the ACE2 PD allostery when different S1 RBD 

fragments are bound. ACE2 PD conformations corresponding to State 2 (mainly populated 

by ACE2:COV2-S1) and State 3 (mainly populated by ACE2:COV1-S1) were used to train 

our novel CV-CNN model. The selected conformations were featurized to express short 

range interactions as described in the method section. The CV-CNN learning process has a 

dual goal. It optimizes the learning of pairwise residues interaction patterns that distinguish 

ACE2:COV1-S1 from ACE2:COV2-S1 and are also correlated with the functional ACE2 PD 

binding site opening. CV-CNN achieved a 99% accuracy in its classification task and 0.4 Å 

error in predicting the degree of opening of the binding site (Fig. S5).

Grad-CAM, an explainable artificial intelligence method, was adopted to extract the 

structural information found by our CV-CNN model to be crucial in distinguishing 

ACE2:COV1-S1 and ACE2:COV2-S1 functional dynamics. To extract which areas of the 

protein are found to be more important in distinguishing the dynamics between these two 

states, the Grad-CAM results were averaged and pooled over the test set for each class. 

The ACE2 PD structural regions identified by Grad-CAM validate that our CV-CNN model 

learned structurally insightful information. These structural regions with high importance 

are located either in the proximity of the binding site entrance (Fig. 5a, 5b) or are directly 

involved in the binding site opening motion (Fig. 5c). Further, CV-CNN recognized that 

ACE2 PD spike binding locus (Fig. 5a) distinguishes ACE2:COV1-S1 and ACE2:COV2-
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S1 dynamics. Interestingly, the residues in this region bind to several spike mutations, 

suggesting that this region likely constitutes the origin of the allosteric phenomenon 

observed in ACE2 PD dynamics.

To complement the CV-CNN structural insights and to obtain a complete picture of ACE2 

PD allostery, a mechanistic investigation of this allosteric perturbation is performed using 

the REDAN model of Zhou et al.44 REDAN compares the distributions of residue-residue 

distances between two different states, in our case the states with SARS-CoV-1/2 RBD 

fragments, to identify the allosteric pathways contributing to their dynamical differences. 

This comparison is carried via relative entropy to identify which residues pairs are most 

affected by interaction differences between the S1 RBD fragments and ACE2 PD surface. 

The affected residue pairs will likely be part of the network of residue interactions which 

regulate overall ACE2 PD conformational dynamics.

To explore the connection among these residues, REDAN utilizes the shortest path Dijkstra 

algorithm. In the characterization of the allosteric path, the starting and ending points need 

to be determined. The starting point is selected from the α1, β21 and β22 highlighted 

in our CV-CNN model. These secondary structures are part of the spike-binding locus 

of ACE2 PD, and their residues interact with the mutations that differentiate the two S1 

RBD fragments. All the residues in these regions were considered as starting point for the 

allosteric perturbation, the residue that provided the lower cost associated with the pathway 

was selected for further analysis (Table S3). The residues selected is Asp350. The ending 

point is Tyr127, which lies at the entrance of ACE2 PD binding site on the opposite side of 

the spike binding region.

The allosteric pathway connecting Asp350 and Tyr127 is illustrated in Fig 6. In this pathway 

composed of 13 residues in addition to Asp350 and Tyr127 (Fig. 6a, 6b), three groups of 

interactions are observed:

1. Interactions starting from the spike protein complexing locus to the ACE2 

core (black dotted lines). These interactions involve residues Asp350, Asp382, 

Tyr385, His401, and His378;

2. Bridging interactions, bridging interaction that connect the two sides of the 

binding site and cause the pulling of the opposite side of the ACE2 binding 

domain (purple dotted lines). These interactions involve residues Glu402, 

Arg518, and Tyr515;

3. π-stacking network interaction that propagates the perturbation to the opening of 

the binding site (yellow dotted lines). These interactions involve residues Tyr515, 

Phe512, His505, Phe504, and Tyr127.

The overall effect of these interactions is a pull of the binding site region opposite to 

the spike complex locus as shown by the mesh surface of the residues involved in the 

allosteric path (Fig. 6c). Glu402 is identified as the pivotal residue in the opening closing 

mechanism of the binding site (Fig 6b, 6d). This residue interacts with both sides of the 

catalytic domain. Its interaction with His378, located in the catalytic domain, decreases in 

presence of SARS-CoV-1 S1 RBD fragment. Consequently, the Glu402 side chain is free to 
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rotate to form a salt bridge with Arg518 and partially a ternary π-cation-anion75 interaction 

with Tyr515 (Fig. 6b), both located on the opposite side of the catalytic domain (Fig 6a). 

We propose that the pulling exerted by the bridging residues is stabilized by neighboring 

residues. Specifically, upon the movement of Glu402, sidechain rotation of Glu398 occurs. 

This motion allows Tyr510 to establish a hydrogen bond with Glu398, uniquely observed in 

the presence of SARS-CoV-1 S1 fragment (Fig. S6).

A comparative analysis of the allostery prowess between the ACE2:COV1-S1 and 

ACE2:COV2-S1 states was performed by weighting the relative entropy in this REDAN 

model with the machine learning feature importance for each state. The allosteric pathway 

identified above remains as the dominant pathway in ACE2:COV1-S1 but has lower cost 

(Table S4). This indicates that the residues involved in the path are the key residues 

needed to define the dynamic behavior of ACE2:COV1-S1 compared to ACE2:COV2-S1, 

suggesting a stronger allosteric communication along the proposed path for ACE2:COV1-

S1.

3.4 Bridging S1 domain binding with ACE2 binding site motion

From our CV-CNN machine learning analysis, the ACE2 region adjacent to the 

RBD binding locus was found to differentiate the conformational dynamics between 

ACE2:COV1-S1 and ACE2:COV2-S1 and therefore considered the potential focus of 

allosteric control of ACE2 PD functional dynamics. Our targeted machine learning approach 

CV-CNN combined with the graph-based statistical analysis REDAN elucidated an allosteric 

path that regulates ACE2 PD closing. Aiming to detect the main interactions at the root of 

these findings, we performed a contact analysis between mutated residues in the spike S1 

domain fragment and ACE2 PD the α1, β21, and β22.

From comparing the top contacts between ACE2 and the S1 RBD fragments (Fig. 7a, 

7b), SARS-CoV-2 S1 RBD fragment establishes more energetically favorable interactions 

compared to SARS-CoV-1. The interactions among the ACE2 PD Lys353 and Asp38 and 

the SARS-CoV-2 Gln498 and Asn501 could exert a pulling force on α1, β21, and β22. 

On the other hand, the SARS-CoV-1 S1 RBD fragment lacks these interactions. Instead, 

Thr487, equivalent to Asn501 in SARS-CoV-2 S1, might sterically push β21 and β22 

towards the binding site. The superposition between these two ACE2 states (Fig 7c) reveals 

the concerted movement of β21 and β22. In the representative structure for ACE2:COV2-S1 

(blue structure in Fig 7c), α1 and the neighboring β21 and β22 are away from the ACE2 

core compared to the ACE2:COV1-S1 (yellow structure in Fig 7c). This shift of β21 and 

β22 allows for mechanistic description of allosteric propagation. The translation of these 

secondary structures shown in Fig 7d is accompanied by movement of Phe356. Phe356 is 

observed to sterically cause a shift in Asp382, which loses its hydrogen bond with Tyr385. 

The latter, in turn, switches its hydrogen bond towards His401, explaining the start of the 

allosteric path described above.

Ulterior difference between ACE2:COV-S1 and ACE2:COV2-S1 systems investigated are 

the glycosylation sites, which must be considered when researching the cause of the 

allosteric perturbation to the binding site dynamics. It is important to stress that the glycols 

molecules analyzed in this study do not depict the full glycosylation profile, and thus the 
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analysis is to find the cause of the specific ACE2 PD allosteric pathway identified above 

and not to delineate biological relevant differences between coronaviruses. Glycosylation 

sites on residues 53, 90, 322, and 546 in ACE2:COV1-S1 are all present in ACE2:COV2-S1, 

excluding the ability of these glycols to cause the allosteric perturbation observed (Fig. S1).

Additional glycosylation on residue 103, which lies in the back of the binding site, 

is present in ACE2:COV2-S1 but not in ACE2:COV1-S1. Therefore, the ability of this 

glycosylation site to cause the conformational differences observed between ACE2:COV2-

S1 and ACE2:COV1-S1 is further scrutinized. The conformational profile of the back of 

the binding site, where the glycosylation is located, is conserved in the two systems (Fig. 

3c). Furthermore, the possibility of this glycosylation to prevent the closing of the binding 

site in ACE2:COV2-S1 can be ruled out because of the presence of this glycosylation in 

ACE2:inhibitor (Fig. S1), which is able to adopt the closed conformation (Fig. 3b). The 

present results suggest that the conformational differences in the two systems considered 

does not derive from their glycosylation differences but from the contact analysis detailed 

above.

In summary, the different interactions between ACE2 and RBD fragments can explain the 

structural differences observed in the ACE2 spike complexing regions, specifically in α1, 

β21, and β22, which are identified in the CV-CNN machine learning model. These regions 

are crucial in the binding site opening mechanism, identified as the main component of 

the ACE2 functional conformational landscape. The allosteric propagation pathways from 

the spike binging region to the opposite side of the binding sited identified using REDAN 

models complete the picture of allosteric mechanism of ACE2 PD dynamics.

4. Discussion and Conclusion

The peptide hormone angiotensin II is a crucial part of RAAS where it acts as 

vasoconstrictor. Its mis-regulation can cause hypo- and hyper-tension, potentially leading 

to heart failure. To ensure proper regulation of this hormone, RAAS employs the protein 

ACE2. ACE2 plays a crucial role in the regulation of blood pressure via converting the 

angiotensin II to the vasodilator angiotensin (1–7). Past structural studies of inhibitors 

binding showed that functional motions of the peptidase domain of ACE2 play a role 

in its catalytic ability. In addition to ligands’ orthosteric control of binding site opening, 

simulations of the ACE2 PD in complex with RBD fragments of the S1 domains of SARS-

CoV-1 and SARS-CoV-2 can be leveraged to investigate the possibility of allosteric control 

ACE2 PD functional motions.

In this study, we investigated the dynamic profiles of the ACE2 PD and identified selective 

allosteric control on the human enzyme using RBD fragments of the S1 domains via 
advanced computational approaches. We combined standard methods of trajectory analysis 

with a custom CV-CNN and statistical REDAN analysis to identify key residues in the 

allosteric network.

The investigations of ACE2 conformational dynamics showed differences in binding site 

motions upon inhibitor or S1 RBD binding. The projection of the principal components 
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that define the ACE2 conformational space showed that these ACE2 systems fell into 

distinct functional metastable states. The ACE2 PD binding site opening-closing motion 

was identified to be dominant in characterizing the conformational landscape of the protein. 

Strikingly, different S1 domain RBD fragments imparted distinct effects on the opening 

of ACE2 PD, despite their similarity. Specifically, the SARS-CoV-1 RBD fragment caused 

the closing of ACE2 PD catalytic domain, similar to its response when an inhibitor is 

bound within the binding site. As ACE2 catalytic activity is contingent on these binding site 

dynamics, this evidence for allosteric-induced binding site closing might open the possibility 

to the allosteric inhibition of ACE2.

Using a novel CV-CNN machine learning model and REDAN statistical analysis, we 

propose the mechanism for the allosteric perturbation that regulates the ACE2 PD binding 

site dynamics. The allosteric path for closing the ACE2 binding site is based on the flip 

of residues Glu402, which interacts with Tyr515 and Arg518 to close the binding. Further, 

we proposed a series of side-chain motions, namely Tyr510 and Glu398, that assist the 

stabilization of the closed states. The difference in the interactions between the allosteric 

binders and the human receptor are proposed to be the cause of the difference in allosteric 

effect observed. Our CV-CNN machine learning model identified the region in the ACE2 

surface where the allosteric activation is most likely to start. This region, composed α1, 

β21, and β22, is in contact with some mutations in the RBD fragments considered, further 

validating this region as an allosteric center in ACE2. In our contact analysis between 

the ACE2 PD α1, β21, and β22 and the RBD fragments, we propose that binding to 

these surface secondary structures can induce a concerted shift of the β21 and β22 due to 

interactions between ACE2 PD Tyr41 and RBD Tyr 484 (Fig. 7a).

The similarities between ACE2:inhibitor and ACE2:COV1-S1 dynamic profiles show an 

additional structural factor linked to the ACE2 PD binding site closing. Tyr515, identified 

as part of the ACE2 PD allosteric path in our analyses, is a key residue in the interaction 

with the ACE2 inhibitor MLN-4760.11 As MLN-4760 causes the binding site to close, it 

supports the involvement of Tyr515 in the closing of ACE2 PD binding site. This suggests 

that the proposed allosteric pathway is intrinsic of ACE2 functional dynamics. Furthermore, 

the orthosteric binding of the ligand causes a decrease in flexibility of the disordered region 

adjacent to β21 and β22, which are located on the ACE2 PD surface. The same decrease 

in flexibility in ACE2:COV1-S1 is likely caused by the interaction of Glu329 and Arg426 

(Fig. S7). This comparison invigorates the allosteric connection proposed between ACE2 

PD surface and binding site opening motion and shows the bidirectionality of the allosteric 

phenomenon.

This study represents an advancement of the understanding of ACE2 conformational 

dynamics, its implications, and can be leveraged to guide further studies. However, 

potential limitations of the current work must be considered. The systems analyzed lack 

a complete description of the microheterogeneity of the glycosylated residues. This leads 

to an incomplete interaction profile between ACE2 PD and viral S1 RBD fragments.77–80 

Furthermore, the consideration ACE2 in membrane-bound dimeric form, full length viral 

spike, with other partners such as TMPRSS2, can impact ACE2 PD dynamics as well. 

Due to these limitations, the results presented should not be elaborated in the context of 
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coronaviruses pathology without further testing but should be interpreted as a demonstration 

of the possibility to allosterically control ACE2 PD conformational dynamics and how the 

allosteric perturbation can propagate within the domain.

In summary, ACE2 is essential in regulating the RAAS system by converting the 

vasoconstrictor Angiotensin-II into the vasodilator Angiotensin (1–7). The accessibility 

of the binding site is a fundamental prerequisite for this protein to exert its catalytic 

activity, thus the modulation of binding site opening via allosteric binding is of interest. 

The knowledge of the residues involved in the closing mechanism of ACE2 could help 

design ACE2 PD variants to induce the closing of the binding site. This, for instance, could 

be used to design ACE2 variants that are able to complex coronaviruses while not interfering 

with the RAAS system. A potential therapeutic application for such variants lies in ACE2 

administration therapy.76 Furthermore, the identification of common residue Tyr515 used by 

both the coronaviruses spikes and ACE2 inhibitor to induce closing of the catalytic domain 

could help the development of ACE2 inhibitors by rationally strengthening interactions that 

might trigger closing of the binding site.
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Fig. 1. 
The architecture of the collective variable-guided multi-task convolutional neural network 

(CV-CNN).
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Fig. 2. 
Root Mean Squared Fluctuation (RMSF) analysis of ACE2 PD in different systems. a) 

RMSF plot vs ACE2 PD residue for ACE2:apo, ACE2:inhibitor, ACE2:COV1-S1, and 

ACE2:COV2:S1. b) ACE2 PD fluctuation trends in its apo form. The color gradient from 

white to red represents the degree of flexibility from low to high, respectively. Protein 

rendered with 3D Protein Imaging.74
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Fig. 3. 
Conformational space of ACE2 related to the front and back openings of its binding site in 

different states. a) Structure of ACE2 peptidase domain (PD). The helices involving the front 

and back opening are colored in blue and orange, respectively. The helices involved are the 

α2 and α4 (Table S1). b) Distance distributions of the front opening in the different ACE2 

states. The distances reported are the average distance between the residues the residues 69 

to 84 of the α2 and the residues 101 to 116 of α4. c) Distance distributions of the back 

opening in the different ACE2 structures. The distances reported are the average distance 

between the residues 53 to 68 of the α2 and the residues 117 to 132 of α4. d) Projection 

of each state onto the conformational space represented by the first two components 

of principal component analysis. Each data point represents a frame (conformation) of 

ACE2 PD. Colored scheme: blue for ACE2 apo, orange for ACE2:inhibitor, green for 

ACE2:COV1-S1, red for ACE2:COV2-S1. e) Projection of conformational space explored 

using the first two components of principal component analysis. The data points are colored 

based on the value of average distance between the carbons of the helices at the entrance 

of ACE2 binding site (front opening). f) Projection of conformational space explored using 

the first two components of principal component analysis. The data points are colored 

based on the value of average distance between the carbons of the helices at the back of 

ACE2 binding site (back opening). Points are colored from light to dark for small to large 

distances, respectively. Protein rendered with 3D Protein Imaging.74
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Fig. 4. 
Identification and analysis of ACE2 PD macrostates using kinetical clustering. The 

clustering method used is PCCA on the assumption that conformations belonging to the 

same macrostate interconvert rapidly compared to transitioning to another macrostate. a) 

Visualization of high-density areas on the ACE2 conformational space, which correspond to 

energy minima. b) Visualization of PCCA macroclusters on the projected conformational 

space. The flux between the states is included as inverse of mean time passage. The 

choice of using four clusters was confirmed from the Chapman-Kolmogorov test of our 

Markov state model (Fig S3). c) ACE2 occupation of the different metastable states. d) 

Overlap of the ACE2 PB domain of the representative structures for the four macrostates 

identified. Macrostates representative structures are colored based on PCCA clustering. 

Protein rendered with 3D Protein Imaging.74
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Fig. 5. 
Structural regions found important by the CV-CNN model using Grad-CAM. The Grad-

CAM feature importance for State 3 was obtained by averaging the importance heatmap for 

each conformation in the test set for this state. The regions were obtained by pooling the 

averaged heatmap into groups of 19 residues each. a) Most important region includes α1 

(residues 40 to 58) and β21 and β22 (residues 344 to 362). These groups are adjacent to one 

of the S1 domain binding regions. b) Second most important region includes residues 268 

to 286 and residues 136 to 153, these groups are located at the entrance of the binding site 

region. c) Third most important region includes residues 59 to 77 and 97 to 115. The residue 

groups involved are located on the opposite side of the binding site, making this distance 

representative for the opening and closing of the binding site.
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Fig. 6. 
Proposed allosteric path used by ACE2 to dictate the closing of the binding site obtained 

from the REDAN analysis and its structural details. a) Residues involved in the allosteric 

path and their interaction. The path from REDAN was refined to ensure that chemically 

meaningful interactions are captured. The raw path can be found in Table S3. The dotted 

lines represent interactions. Black dots include the interaction of residues of the S1 domain-

binding side of the ACE2 binding site. The purple indicates interactions that bridge the two 

sides of ACE2 binding site. The orange dots show the π-stacking interactions that reach 

the opposite side of the binding site. b) Distance density distributions of key interactions. c) 

Surface mesh representation of the residues involved in the path to show the movement 

responsible for the binding site closing. The yellow represents State 3, occupied by 

ACE2:COV1-S1, whilst blue represents State 2, occupied mostly by ACE2:COV2-S1. d) 

Details of key interactions in the ACE2 PD bridging area between the two binding site sides 

that stabilize the closed state in presence of SARS-CoV-1. Residues in blue and yellow 

belong to State 2 and 3, respectively. Protein rendered with 3D Protein Imaging.74
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Fig. 7. 
Interaction between coronaviruses S1 domains and ACE2 PD via contact analysis and 

SASA. a) Contact analysis between the residues in α1, β21, and β22 of ACE2 PD and the 

SARS-CoV-1 spike S1 residues Tyr484 and Thr487. Residues in yellow belong to ACE2, 

residues in grey belong to viral spike S1 fragment. Contacts less than 4 Å for more than 

50% of the frames were shown. From the contacts shown only a π-stacking interaction was 

found as energetically favored interaction. b) Contact analysis between the residues in α1, 

β21, and β22 of ACE2 PD and the SARS-CoV-2 spike S1 residues Gln498 and Asn501. 

Residues in blue belong to ACE2, residues in grey belong to viral spike fragment. Contacts 

less than 4 Å for more than 50% of the frames were shown. In this case, a strong network 

of energetically favorable interaction was identified. The spike S1 residues considered differ 

between the two coronaviruses spikes. c) Details of the overlap of ACE2:COV1-S1 (in 

yellow) and ACE2:COV2-S1 (in blue). The secondary structures represented are α1, β21, 

and β22. d) Illustration of the effects of β21 and β22 shift on residues involved in the 

allosteric path. Protein rendered with 3D Protein Imaging.74
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